当前位置:文档之家› 电力电子电路常用磁芯元件的设计

电力电子电路常用磁芯元件的设计

电力电子电路常用磁芯元件的设计
电力电子电路常用磁芯元件的设计

电力电子电路常用磁芯元件的设计

一、常用磁性材料的基本知识

磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。

1.低碳钢

低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。

2.铁氧体

随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。

铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。

高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。

3.粉芯材料

粉芯材料是将一些合金原料研磨成精细的粉末状颗粒,然后在这些颗粒的表面覆盖上一层绝缘物质(它用来控制气隙的尺寸,并且降低涡流损耗),最后这些粉末在高压下形成各种磁芯形状。

由于原料成分的不同,粉芯材料又可分为铁粉芯、钼坡莫合金粉芯(MPP)和高磁通粉芯(铁镍磁粉芯)等材料。

铁粉芯是所有粉芯材料中最为便宜的材料,磁导率一般在4~80左右。由于颗粒之间相互都绝缘,与硅钢片相比虽然涡流损耗被大大地降低,但高频情况下由损耗导致的温升仍很高。所以铁粉芯一般用于较低开关频率的场合。铁粉芯的饱和磁感应强度一般在1特斯拉(T)左右。

MPP磁芯的相对磁导率一般在14~350,饱和磁感应强度为 0.7T左右。在现有的粉芯材料中,MPP具有损耗低、温度稳定性好的优势。此外,它也是磁导率选择范围最广的粉芯材料。但是由于镍的含量高,所以它也是最昂贵的粉芯材料。由于MPP磁芯在所有粉芯材料中磁损最低,所以它特别适合应用于反激电路,Buck/Boost以及功率因数校正电路,此外均匀分布的气隙使铜损大大降低。

高磁通粉芯是一种气隙均匀分布的磁环,由50%镍和50%铁合金粉末制成,它的相对磁导率一般在14~200。高磁通粉芯的饱和磁感应强度高达1.5T,而一般MPP为0.7T,铁氧体为0.45T。与铁粉芯相比,高磁通粉芯的磁损大大地降低,又由于高饱和磁感应强度,该磁芯使得绝大多数场合下铁粉环尺寸降低成为可能。

4.非晶及纳米晶软磁合金

非晶态金属与合金是20世纪70年代问世的一类新型材料,采用了超急冷凝固技术,从钢液到薄带成品一次成型。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金。这种非晶合金具有优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体而涌向市场。常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。

二、磁芯材料的基本参数

(1)初始磁导率μi

初始磁导率是磁性材料的磁化曲线始端磁导率的极限值,即

H B H i lim 001

→=μμ 式中70104-?=πμH/m 为真空磁导率,H 为磁场强度(单位:A/ m ),B 为磁感应强度(单位:T )。初始磁导率i μ与温度和频率有关。

(2)有效磁导率μe

在闭合磁路中,磁芯的有效磁导率为

7e 2e 104??=A l N

L πμ 式中L 为线圈的自感量(mH );N 为线圈匝数;e A l 为磁芯常数,是磁路长度l 与磁芯截面积A e 的比值(单位:mm -1)。

(3)饱和磁感应强度B s

在指定温度(25℃或100℃)下,用足够大的磁场强度磁化磁性物质,磁化曲线接近水平线(见附图1-1)时,

不再随外磁场强度增大而明显增大

对应的B 值,称饱和磁感应强度B s 。

(4)剩余磁感应强度B r

铁磁物质磁化到饱和后,又将磁

场强度下降到零时,铁磁物质中残留

的磁感应强度即为B r ,称为剩余磁感

应强度,简称剩磁。

(5)矫顽磁力 H c

磁芯从饱和状态去除磁场后,需要一

定的反向磁场强度-H c ,使磁感应强度减小到零,此时的磁场强度H c 称为矫顽磁力(或保磁力)。

(6)温度系数αμ

附图1-1 磁性材料磁滞回线

温度系数为温度在T 1~T 2内变化时,每变化1℃对应的磁导率相对变化量,即 121121T T -?-=μμμαμ , T 2 >T 1

式中1μ为温度为T 1时的磁导率, 2μ为温度为T 2时的磁导率。

(7)居里温度T c

居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。

(8)磁芯损耗(铁耗)P c

磁芯损耗是指磁芯在工作磁感应强度时的单位体积损耗。磁芯损耗包括:磁滞损耗、涡流损耗、殘留损耗。磁滞损耗是每

次磁化所消耗的能量,正比于磁滞回线的面

积,如附图1-2所示;涡流损耗是交变磁场

在磁芯中产生环流引起的欧姆损耗;残留损耗

是由磁化弛豫效应或磁性滞后效应引起的损

耗。前两项是磁芯损耗的主要部分。

(9)电感系数A L

电感系数是磁芯上每一匝线圈产生的自

感量,即

2N L A L = 式中L 为磁芯线圈的自感量(单位:H ),N 为线圈匝数。

三、铁氧体磁芯的基本知识

1.材料的磁化

烧结后的铁氧体是由小的晶体组成,这种晶体的大小一般在10~20μm 的范围内,磁畴就是存在于这些晶体之中。

在没有外磁场作用时,这些磁畴排列的方向是杂乱无章的,如附图1-3(a )所示,小磁畴间的磁场是相互抵销的,对外不呈现磁性。当一个外加磁场(H )作用于该材料时,磁畴顺着磁场方向转动,加强了铁氧体内的磁场。随着外磁场的加强,转到外磁场方向的磁畴就越来越多,

与外磁场同向的磁感应强度就越强,

附图1-2 磁滞损耗曲线

如附图1-3(b )所示。这就是说材料被磁化了。

在这个磁化过程中,磁畴重新排列必须克服能

量势垒,因此,磁化总是滞后于磁场。所谓的“磁

滞回线”(见附图1-1),就是这种现象的结果。

如果对磁化的抵抗并不是很强时,一个特定的磁

场强度将会产生很大的感应磁场,铁氧体的磁导

率很高。磁滞回线的形状对铁氧体的其他性能有

着很强的影响,如磁损。

2.磁芯的形状

铁氧体磁芯有许多不同的形状,如附图1-4所示。这些形状各异的磁芯各有其特点,适用于制作各种磁性元件。

(1)磁环磁芯。从磁的角度而言,磁环也许是最佳选择,因为磁环的磁路是一个封闭的形状,因此铁氧体的性能可以最为充分地发挥出来。尤其是对于高磁导率的铁氧体材料,哪怕是一点点气隙都会使得磁导率显著下降。磁环主要应用于脉冲变压器、磁放大器、干扰抑制线圈(共模电感)等场合。磁环在特定功率处理能力下是最便宜的磁性元件之一,但是磁环的绕制却是最困难的。

(2)罐型磁芯。罐型磁芯最初是为通信滤波电感而设计的,磁芯几乎包围了所有的线包和骨架,这种结构很好地屏蔽了外部的电磁噪声(EMI )。罐型磁芯的成本要高于其他形状的磁芯,此外其散热性能较差,所以至今还没有适用于大功率场合的产品。

(3)E 型磁芯。E 型磁芯较罐型磁芯便宜,易于绕制,安装方便。E 型磁芯的骨架有立式和卧式两种,立式骨架占用PCB 板面积较小但高度很大,卧式骨架正好相反。E 型成为最为常用的磁芯形状。可以说EE 型磁芯和EI 型磁芯具有相同的外形,相同的尺寸,相同的骨架,仅仅在漏磁场分布存在差异,适用于制作开关电源变压器。

(4)EC 磁芯。EC 磁芯介于E 型与罐型之间,窗口面积较大(较罐型磁芯而言),有风道,利于散热。相同面积下圆形中心柱的周长比方形中心柱省11%,减少了铜损,并且绕制的时候圆形要比方形方便。

(5)PQ 磁芯。PQ

磁芯主要是为开关电源设计的,能在最小的磁心尺寸下附图1-3 磁化过程示意

获得最大的电感量和线包面积,因此这种磁芯能在最小的高度与体积情况下输出最大的功率。

(6)其他外形磁芯。

3.磁芯加气隙

由于铁氧体磁芯的磁导率一般都很高,稍加激励就容易产生磁饱和,所以

附图1-4 常见磁芯的形状 (a )环形 (b )罐型 (c )EE (d )EC (e )PQ (f )EP (g )RM

在开关电源中通常通过加气隙的办法来降低有效磁导率,使得电感能够储存更多的能量。电感储能有如下关系式:

e r

02

2221V B LI ??=μμ 式中L 为电感量,I 为电感电流,B 为磁感应强度,V e 为磁芯有效体积,μ0为真空磁导率,μr 为有效相对磁导率。

气隙的引入势必增强电感的漏磁场分布。磁性元件的漏磁场一般可分为外部漏磁场和内部漏磁场,它们主要是由漏磁通路的长度和磁动势决定的。由于内部漏磁场穿过线圈会引起额外的涡流损耗,而外部漏磁场能够产生EMI ,对附近的元件产生影响,所以气隙的引入在某种程度上恶化了电感的工作状态。

一般的说,共有五种增加气隙的方法:第一种方法是在磁芯中间垫上一层非磁物质,这样就相当于把气隙分为相等的两部分,第二种方法是通过研磨中心术强行在磁路中插入气隙;第三种方法主要是针对铁氧体磁环而言,由于磁环的特殊结构(既不能研磨又不能分离)只有通过切割的办法来插入气隙;第四种方法就是常用的磁棒;第五种方法是在磁芯加工的时候完成的,也就是常说的金属磁粉芯,包括铁粉芯、铁硅铝、铁镍钼、高磁能磁粉芯等。事实上,上述五种增加气隙的方法中,前三种可由设计者决定,后两种则决定于生产商,设计者只是通过相应的数据手册来选择适合自已的产品。

垫气隙的方法将气隙分为两个相同但是更小的气隙,并且每个气隙所承受的磁动势近似为二分之一的总安匝数。而研磨的方法把气隙集中在一处,所以这种方法漏磁场的幅值近似为垫气隙的两倍。此外,由于大气隙的缘故,它的边缘磁场穿过线圈的面积也越大,因此这种情况下的铜损要比垫气隙情况下的铜损要大。

当用铜皮绕制电感的时候,这种影响就更加严重了,因为边缘磁场具有很大的垂直分量,该分量垂直于线圈轴,也就是说垂直于铜皮的表面。

四、磁性元件损耗

磁性元件损耗主要由两部分组成:磁损(又叫铁损,指磁性材料的损耗)和铜损(指线圈中因流过电流而产生的损耗)。

(1)磁损

磁损由涡流损耗、磁滞损耗以及残留损耗组成,三部分损耗的计算公式为Steinmetz 方程。

e βαm c o r e V B

f C P ?=

式中C m 为损耗系数,f 为工作频率,B 为工作磁感应强度幅值,V e 为磁芯面积,α、β分别为大于1的频率和磁感应损耗系数。

(2)铜损

铜损是电流通过线圈所产生的损耗。在低频场合,铜损计算是直接将电流有效值的平方乘以线圈的直流电阻得到的。随着频率的提高,趋肤效应、邻近效应等因素的影响变得越来越严重。

五、高频变压器的设计

高频变压器的设计,应当预先设定具体的电路拓扑、工作频率、输入和输出电压、输出功率、变压器的效率以及环境条件。通常以满足最坏情况设计变压器,以保证设计的变压器在规定的条件下都能满意工作。不同的电路拓扑导致高频变压器磁化工作状态不同,如推挽、半桥、全桥等功率变换器的高频变压器磁芯双向磁化,工作在磁滞回线的第一和第三象限,为双极性工作模式;而正激、反激变换器的高频变压器磁芯单向磁化,仅工作在磁滞回线的第一象限,为单极性工作模式。

1、双极性开关电源变压器的设计

(1)初始条件

工作频率f (Hz )

开关变压器初级输入最高、最低电压幅值U 1max (V )、U 1min (V ) 变压器初级激励脉冲最大持续时间t onmax (s )(与最大占空比相关) 直流电源输出电压U o (V )、电流I o (A )

输出整流电路的形式及整流二极管压降U D (V )

附图1-5 变压器参数示意图(推挽变压器初级常为中心抽头结构) n 1n 2

T

(2)设计步骤

步骤1:确定原副边绕组匝比

计算匝比首先需要计算变压器次级输出电压U 2,对于直流开关稳压电源,次级输出一般接二极管全波整流电路及电感滤波电路,因此,次级输出电压在满足正常输出电压的同时,还需要补偿整流二极管和滤波电感的压降,有

)

/2(on L D o 2T t U U U U ++= 式中U o 为变换器输出电压,U D 为输出整流二极管的通态压降(对于全波整流一般为单个二极管压降,而桥式整流电路为两个二极管压降),U L 为输出滤波电感上的直流压降。

变压器的匝比应保证最低输入电压U 1min 时,电路能够保证正常输出电压。对应于桥式整流或全波整流,次级允许的最小输出电压为

)

/2(onmax L D o min 2T t U U U U ++= 因此变压器原副边变比为 m i n 2m i n 121U U n n m ==

步骤2:确定高频变压器磁芯材料

根据变压器的工作频率和传输功率,选择合适的磁芯材料。高频功率变压器磁芯材料通常选用铁氧体R2KB 。大功率铁氧体材料性能如附表1-1所示,其磁芯损耗与磁感应强度曲线、磁芯损耗温度特性曲线分别如附图1-6和附图1-7所示。 附表1-1 大功率铁氧体材料基本性能

附图1-6 磁芯损耗与磁感应强度曲线

附图1-7 磁芯损耗温度特性曲线

步骤3:磁感应强度B 的选择

确定磁感应强度B 需要考虑两个问题:当输入电压达到最高时磁芯不饱和,变压器温升满足要求。在给定温升条件下,当磁芯损耗与铜线损耗相等时,开关电源变压器输出功率最大。设计时初选磁感应强度可根据功率P (单位W ),工作频率f (单位kHz ),平均温升τ?(单位oC ),按附图1-8查出系数K B ,然后按下式计算工作磁感应强度:

m B B K B =

式中:B 为工作磁感应强度(T ),K B 为磁感应强度系数,B m 为磁性材料最大工作磁感应强度(T )。

步骤4:确定原边与副边的绕组匝数

选定磁芯材料,确定磁芯最大的工作磁感应强度,根据近似的面积乘积(AP )法,粗略估算、并预选一个磁芯型号

34

T W C )(f

B K P A A AP ???=?= (cm 4) 式中:A

C 为磁芯有效截面积(cm 2);A W 为磁芯窗口截面积(cm 2);P T 为变压器传输功率(W );ΔB 为磁通密度变化量,双极性变换器为ΔB =2B (T );f 为开关工作频率(H Z );K 为近似系数(正激、推挽中心抽头变压器取K =0.014;全桥、半桥变压器取K =0.017)。 附图1-8 磁感应强度系数

假定变压器的效率为η,则 ηo

o T I U P =

选定磁芯后,初、次级绕组匝数n 1、n 2也随之可以确定

4C

max on min 11102-???=A B t U n m

n n 12= 式中:U 1min 单位为V ,t onmax 单位为s ,B 单位为T ,A C 单位为cm 2

步骤5:确定绕组的导线线径和股数

在选用绕组的导线线径时,要考虑导线的集肤效应。所谓集肤效应,是指当导线中流过高频交变电流时,导线横截面上的电流分布不均匀,中间电流密度小、甚至无电流,边缘部分电流密度大,使导线的有效导电面积减小,电阻增大的现象。一般用穿透深度来描述导线的集肤效应,所谓穿透深度Δ,是指导线电流密度下降到表面电流密度的0.368(即1/e )时的径向深度。穿透深度Δ与频率f 和导线物理性能的关系为

μγ

πf k =? 式中k 为导线材料的电导率温度系数,μ为导线材料的磁导率,γ为导线材料的电导率。

对于铜质电磁导线,在25oC 时有:f 66

=? (mm )

而在100oC 时有:f 75

=? (mm )

为了更有效地利用导线,减小集肤效应的影响,一般要求导线的直径小于两倍的穿透深度,即?≤2d 。如果绕组的线径大于由穿透深度所决定的最大线径时,需采用小线径的导线多股并绕或采用铜皮来绕制,铜皮的厚度要小于2倍穿透深度。

在考虑集肤效应采用多股导线并绕时,初级绕组的导线股数N p 为

W

1rm sm ax P S J I N ?= 式中I 1rmsmax 为初级最大电流有效值;J 为导线的电流密度,对于开关变压器,一般取J =3~5A/mm 2,S W 为每根导线的导电面积(mm 2)。

当考虑集肤效应采用多股导线并绕时,次级绕组的导线股数N S 为

W

m ax rm s 2S S J I N ?= 式中I 2rmsmax 是副边最大电流有效值。

步骤6:核算磁芯窗口面积

在计算出变压器的初次级匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下,或者窗口是否过大。

窗口充填系数k W 定义为线圈铜占有的总面积与磁芯窗口面积之比

W

W S 2P 1W )(A S N n N n k += k W 大小与绝缘等级、环境条件和工艺结构等因素有关,考虑到层间绝缘、骨架、屏蔽以及爬电距离等因素,一般实际窗口利用率在0.25~0.5。

如果窗口面积太小,说明磁芯太小,要选择大一型号的磁芯;如果窗口面积过大,说明磁芯太大,可选小一型号的磁芯。重新选择磁芯后,应从步骤3开始计算,直到所选磁芯型号规格基本合适。

2、单极性开关电源变压器——.正激变换器的高频变压器设计

(1)初始条件

工作频率f (Hz )

开关变压器初级输入最高、最低电压幅值U 1max (V )、U 1min (V ) 变压器初级激励脉冲最大持续时间t onmax (s )(与最大占空比相关) 直流电源输出电压U o (V )、电流I o (A )

输出整流电路的形式及整流二极管压降U D (V )

(2)设计步骤

步骤1:确定原副边绕组匝比

计算匝比首先需要计算变压器次级输出电压U 2,对于直流开关稳压电源,

次级输出一般接二极管整流电路及电感滤波电路,因此,次级输出电压在满足正常输出电压的同时,还需要补偿整流二极管和滤波电感的压降,有

)

/(on L D o 2T t U U U U ++= 式中U o 为变换器输出电压,U D 为输出整流二极管的通态压降(通常为半波整流),U L 为输出滤波电感上的直流压降。

变压器的匝比应保证最低输入电压U 1min 时,电路能够保证正常输出电压。次级允许的最小输出电压为

)

/(onmax L D o min 2T t U U U U ++= 因此变压器原副边变比为 m i n 2m i n 121U U n n m ==

步骤2:确定高频变压器磁芯材料

该步骤与双极性变压器设计方法相同。

步骤3:磁感应强度B 的选择

该步骤与双极性变压器设计方法相同。

步骤4:确定原边与副边的绕组匝数。

正激变换器通常在磁路中加气隙来降低剩余磁感应强度和提高磁芯工作的直流磁场强度,因此计算时一般仍可以按步骤3的方法确定磁感应强度增量,

即 B B =?

通常,由于正激变换器的磁芯单向磁化,工作在第一象限,工作磁感应强度变化量 ΔB 也可参考下式:

r s r m B B B B B -<-=?

式中B s 为磁芯的饱和磁通密度,B r 为剩余磁通密度。如对于材质为R2KB 的铁氧体,B s =0.51T 、B r =0.12T ,则ΔB <0.39T 。

参考双极性变压器设计步骤4,根据近似的面积乘积(AP )法,粗略估算、并预选一个磁芯型号,则初、次级绕组匝数n 1、n 2也随之可以确定:

4C

max on min 1110-????=A B t U n

m

n n 12= 式中:U 1min 单位为V ,t onmax 单位为s ,B 单位为T ,A C 单位为cm 2

步骤5:确定绕组的导线线径和股数

该步骤与双极性变压器设计方法相同。

步骤6:核算磁芯窗口面积

该步骤与双极性变压器设计方法相同。

需要说明的是,按以上设计的变压器只是一种初步的样品,变压器的最终参数往往还需要经过实际电路试验后做一定的修正。

六、电感和反激变压器的设计

电感是电力电子电路中的常用元件,在开关电源中通常分为两类:

(1)单线圈电感:如输出滤波电感(Buck )、升压电感(Boost )、反激电感(Buck-Boost )和输入滤波电感等。

(2)多线圈电感:如耦合输出滤波电感、反激变压器等。

电感通常有两种工作模式,电流连续模式(CCM )和电流断续模式(DCM )。一般情况下,开关电源中的电感在电流连续模式时线圈和磁芯的交流损耗比较小,应尽可能选择大的工作磁感应强度以减小电感体积;而在电流断续模式时,磁芯和线圈的交流损耗是主要考虑因素。

电感设计的磁芯选择同样可以采用面积法预估,当磁芯损耗不严重,磁芯饱和限制的最大磁通密度为B m ,则面积经验公式为:

34

1m FL SP C W )(K B I LI A A AP == (cm 4) 当磁芯损耗比较严重,损耗限制的磁通摆幅为B ?时的面积经验公式为: 34

2m FL C W )(K B II L A A AP ??== (cm 4) 其中,L 为电感量(单位H ),I SP 为最大峰值电流(单位A ),B m 为饱和限制的最大磁感应强度(单位T ),ΔI 为初级电流增量(单位A ),ΔB m 为最大磁感应强度增量(单位T ),I FL 初级满载电流有效值(A )。

K 1、K 2为校正系数,有

(完整版)智能电子电路设计与制作期末试卷A

淮安信息职业技术学院2012-2013学年度第2学期 《智能电子电路设计与制作》期末试卷A 一、填空题(每空0.5分)共15分 1、MEGA16单片机I/O 端口的方向寄存器作用是(对端口输入输出选择)。 2、MEGA16单片机I/O 端口的输入寄存器作用是( 判断端口电平高低 )。 3、MEGA16单片机I/O 端口的数据寄存器作用是(对端口写入“1”或“0” )。 4、ATmega16单片机是( 8 )位单片机。 5、MCUCR 寄存器是( 控制寄存器 ),用于设置 INTO 和INT1的中断( 触发)方式。 6、GICR 寄存器是( 中断控制寄存器 ),用于设置外部中断的中断(允许 )位。 7、全局中断使能位是(状态)寄存器中的 第( 七 )位 即( BIT/7 )位。 8、TCNT0是定时器( T/C0)的(数据 )寄存器,作用是( 对计数器进行读写 )。 9、T/C0的计数时钟源可以来自( 内部 )和( 外部 )两种。 10、T/C0工作在普通模式时,( 计数初值 )由TCNTO 设置,最大值为( OXFFFF )。 11、使用MEGA16单片机的AD 相关寄存器有( AD 多工选择寄存器 )、( ADC 控制和状态寄存器A )、( ADC 数据寄存器)、( 特殊功能IO 寄存器 )。 12、MEGA16单片机TWI 相关寄存器有( TWI 比特率寄存器 )、( TWI 控制寄存器 )、( TWI 状态寄存器 )、( TWI 数据寄存器 )。 13、MEGA16单片机与SPI 相关的寄存器有( SPI 控制寄存器 )、( SPI 状态寄存器 )。 14、24C08是具有( I 2c )总线协议的非易失性存储器。 15、USART 模块的管脚发送数据管脚名称为( TXD )。 二、选择题(每题3分,共45分) 1. MCUCR 寄存器中的中断触发模式位是?(D ) A 、ICS00\ICS01 B 、ICS10\ICS11 C 、SM2 D 、A 和B 2. ATmega16的GICR 寄存器中外部中断0的中断使能位是(B ) A 、INT1 B 、INT0 C 、INT2 D 、INT3 3.多位数码管显示器通常采用(B )法显示 系部: 班级: 学号: 姓名:

电气原理图设计方法及实例分析

电气原理图设计方法及实例分析 【摘要】本文主要对电气原理图绘制的要求、原则以及设计方法进行了说明,并通过实例对设计方法进行了分析。 【关键词】电气原理图;设计方法;实例 继电-接触器控制系统是由按钮、继电器等低压控制电器组成的控制系统,可以实现对 电力拖动系统的起动、调速等动作的控制和保护,以满足生产工艺对拖动控制的要求。继电-接触器控制系统具有电路简单、维修方便等许多优点,多年来在各种生产机械的电气控制 中获得广泛的应用。由于生产机械的种类繁多,所要求的控制系统也是千变万化、多种多样的。但无论是比较简单的,还是很复杂的控制系统,都是由一些基本环节组合而成。因此本节着重阐明组成这些控制系统的基本规律和典型电路环节。这样,再结合具体的生产工艺要求,就不难掌握控制系统的分析和设计方法。 一、绘制电气原理图的基本要求 电气控制系统是由许多电气元件按照一定要求连接而成,从而实现对某种设备的电气自动控制。为了便于对控制系统进行设计、研究分析、安装调试、使用和维修,需要将电气控制系统中各电气元件及其相互连接关系用国家规定的统一图形符号、文字符号以图的形式表示出来。这种图就是电气控制系统图,其形式主要有电气原理图和电气安装图两种。 安装图是按照电器实际位置和实际接线电路,用给定的符号画出来的,这种电路图便于安装。电气原理图是根据电气设备的工作原理绘制而成,具有结构简单、层次分明、便于研究和分析电路的工作原理等优点。绘制电气原理图应按GB4728-85、GBTl59-87等规定的标 准绘制。如果采用上述标准中未规定的图形符号时,必须加以说明。当标准中给出几种形式时,选择符号应遵循以下原则: ①应尽可能采用优选形式; ②在满足需要的前提下,应尽量采用最简单形式; ③在同一图号的图中使用同一种形式。 根据简单清晰的原则,原理图采用电气元件展开的形式绘制。它包括所有电气元件的导电部件和接线端点,但并不按照电气元件的实际位置来绘制,也不反映电气元件的大小。由于电气原理图具有结构简单、层次分明、适于研究等优点,所以无论在设计部门还是生产现场都得到广泛应用。 控制电路绘制的原则: ①原理图一般分主电路、控制电路、信号电路、照明电路及保护电路等。 ②图中所有电器触头,都按没有通电和外力作用时的开闭状态(常态)画出。 ③无论主电路还是辅助电路,各元件应按动作顺序从上到下、从左到右依次排列。 ④为了突出或区分某些电路、功能等,导线符号、连接线等可采用粗细不同的线条来表示。 ⑤原理图中各电气元件和部件在控制电路中的位置,应根据便于阅读的原则安排。同一电气元件的各个部件可以不画在一起,但必须采用同一文字符号标明。 ⑥原理图中有直接电联系的交叉导线连接点,用实心圆点表示;可拆卸或测试点用空心圆点表示;无直接电联系的交叉点则不画圆点。 ⑦对非电气控制和人工操作的电器,必须在原理图上用相应的图形符号表示其操作方式。 ⑧对于电气控制有关的机、液、气等装置,应用符号绘出简图,以表示其关系。 二、分析设计法及实例设计分析 根据生产工艺要求,利用各种典型的电路环节,直接设计控制电路。这种设计方法比较简单,但要求设计人员必须熟悉大量的控制电路,掌握多种典型电路的设计资料,同时具有丰富的设计经验,在设计过程中往往还要经过多次反复地修改、试验,才能使电路符合设计

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电子电路实训心得体会

电子课程设计心得体会 通过一周的电子设计,我学会了如何将书本上学到的知识应用与实践,学会了一些基本的电子电路的设计、仿真与焊接,虽然在这个过程中我遇到了很多麻烦,但是在解决这些问题的过程中我也提高了自身的专业素质,这次设计不仅增强了自己在专业方面的信心,鼓舞了自己,更是一次兴趣的培养。 这次电子实习,我所选的课题是“倒计时光控跑马灯”,当拿到选题时,我认为这个不是很难。但当认真的考虑时,我才发现一切并非我想的那么简单。无论一个多么简单的课题,他所牵涉的知识比较多的,比如我这个选题不仅仅包括许多模电器件和数电器件,它还包含许多以前我没有接触或熟知的器件。所以我在设计时也在不断的学习,了解每一个器件的结构、工作原理及其运用。经过与搭档的多次交流,我们才确定了最后的电路方案,然后在多次的电路仿真之中,我们又进行了更加完善的修改,以达到万无一失。 第三天的任务主要是焊接自己设计的电路板。开始,我们都充满了好奇,毕竟这是第一次走进实验室去焊接电路板。不过才过了一天,所有的好奇心都烟消云散,换而的是苦与累。我这时才知道焊电路板确实是一件苦差事。焊电路板要人非常的细心,并且要有一定的耐心,因为焊接示若稍不注意就会使电路短路或者焊错。经过一两天的坚苦奋斗,终于焊完的。但当我们去测试时却无法出现预期的结果。然后我没办法只得去慢慢检查,但也查不出个所以然来。我想实际的电路可能与仿真的电路会产生差错,毕竟仿真的是在虚拟的界面完成的。 所以在接下来的几天我都在慢慢调试和修改中度过,想想那几天过的真的好累,在一次次的失败中修正却还是得不到正确的结果。好几次都想放弃,但最后还是坚持下来。经过多次调试,最后还是得到正确的结果,那一刻,我感觉如释重负,感觉很有成就感。一个星期的电子实习已经过去,但是使我对电子设计有了更的了解,使我学了很多,具体如下:1. 基本掌握手工电烙铁的焊接技能够独立的完成简单电子产品的安装与焊接。熟悉电子产品装工艺的生产流程,了解电子产品的焊接、调试与维修方法;2. 熟悉了有关电子设计与仿真软件的使用,能够熟练使用普通万用表;3.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能够灵活的运用 4.增强自己解决问题的能力,利用网上和图书馆的资源,搜索查找得到需要的信息; 5.明白了团队合作的重要性,和搭档相互讨论, 学会了怎么更好解决问题。篇二:电子技术实训心得体会 电子技术实训心得体会 开学的第一周,我们迎来了新学期里的第一堂课--电子工艺实训课。对于新学期里的新课程、新知识,我有种迫不及待的感觉。 在这一学期里,我们首先接触的是对电子元件的初步认识,还有电路的结构和布局。而这一实训课里最重要的东西便是日常生活里所见到的电焊。在课堂上,老师指导了我们对电焊的使用,由于在焊接过程中,加热的电焊是比较具有危险性的,如果使用不当会对自己或别人造成伤害。所以我们必须严格按照相关规定及正确的使用方法去使用电焊,避免烙伤事故的发生。 当我们初步掌握了电子元件的焊接方法技巧之后,便可以开始尝试焊接一些电路板元件了。其中电子元件的布局是很重要的。因为它关联到电路连接的方便简洁。 短短的一周过去了,在这一周里,如果没有老师的指导,我们的实训将会有很大的败笔,实训课无法得以完成,其次,在这一次实训中,使我明白,与同伴的合作交流是很重要的。团队精神要劳记在心里。与同性分享成功的喜悦难道不是一种很美好的事么? 实训课已渐入尾声,通过这一次,我们又收获到了很多珍贵的知识,而这与老师的辛勤是离不开的。在此,我和全体同学对老师说一声谢谢!老师您辛苦了!篇三:电子电路实训报告

电子电路设计与制作教学大纲

《电子电路设计与制作》教学大纲1.课程中文名称:电子电路设计与制作 2.课程代码: 3.课程类别:实践教学环节 4.课程性质:必修课 5.课程属性:独立设课 6.电子技术课程理论课总学时:256总学分:16 电子电路设计与制作学时:3周课程设计学分:3 7.适用专业:电子信息类各专业 8.先修课程:电路分析基础、模拟电子技术、数字电子技术、PCB电路设计一、课程设计简介 实验课、课程设计、毕业设计是大学阶段既相互联系又相互区别的三大实践性教学环节。实验课是着眼于实验验证课程的基本理论,培养学生的初步实验技能;毕业设计是针对本专业的要求所进行的全面的综合训练;而课程设计则是针对某几门课程构成的课程群的要求,对学生进行综合性训练,培养学生运用课程群中所学到的理论学以致用,独立地解决实际问题。电子电路设计与制作是电子信息类各专业必不可少的重要实践环节,它包括设计方案的选择、设计方案的论证、方案的电路原理图设计、印制板电路(即PCB)设计、元器件的选型、元器件在PCB板上的安装与焊接,电路的调试,撰写设计报告等实践内容。电子电路设计与制作的全过程是以学生自学为主,实践操作为主,教师的讲授、指导、讨论和研究相结合为辅的方式进行,着重就设计题目的要求对设计思路、设计方案的形成、电路调试和参数测量等展开讨论。 由指导教师下达设计任务书(学生自选题目需要通过指导教师和教研室共同审核批准),讲解示范的案例,指导学生各自对自己考虑到的多种可行的设计方案进行

比较,选择其中的最佳方案并进行论证,制作出满足设计要求的电子产品,撰写设计报告。需要注意是,设计方案的原理图须经Proteus软件仿真确信无误后,才能进行印刷电路图的制作,硬件电路的制作,以避免造成覆铜板、元器件等材料的浪费。电路系统经反复调试,完全达到(或超过)设计要求后,再完善设计报告。设计的整个过程在创新实验室或电子工艺实验室中完成。 二、电子电路设计与制作的教学目标与基本要求 教学目标: 1、通过课程设计巩固、深化和扩展学生的理论知识,提高综合运用知识的能力,逐步提升从事工程设计的能力。 2、注重培养学生正确的工程设计思想,掌握工程设计的思路、内容、步骤和方法。使学生能根据设计要求和性能参数,查阅文献资料,收集、分析类似电路的性能,并通过设计、安装、焊接、调试等实践过程,使电子产品达到设计任务书中要求的性能指标的能力。 3、为后续的毕业设计打好基础。课程设计的着眼点是让学生开始从理论学习的轨道上逐渐转向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解工程设计的程序和实施方法;通过课程设计的训练,可以给毕业设计提供坚实的铺垫。 4、培养学生获取信息和综合处理信息的能力,文字和语言表达能力以及协调工作能力。课程设计报告的撰写,为今后从事技术工作撰写科技报告和技术文件打下基础。 5、提高学生运用所学的理论知识和技能解决实际问题的能力及其基本工程素质。 基本要求: 1、能够根据设计任务和指标要求,综合运用电路分析、电子技术课程中所学到的理论知识与实践操作技能独立完成一个设计课题的工程设计能力。 2、会根据课题需要选择参考书籍,查阅手册、图表等有关文献资料。能独立思考、深入钻研课程设计中所遇到的问题,培养自己分析问韪、解决问题的能力。

电子技术课程设计的基本方法和步骤模板

电子技术课程设计的基本方法和步骤

电子技术课程设计的基本方法和步骤 一、明确电子系统的设计任务 对系统的设计任务进行具体分析, 充分了解系统的性能、指标及要求, 明确系统应完成的任务。 二、总体方案的设计与选择 1、查阅文献, 根据掌握的资料和已有条件, 完成方案原理的构想; 2、提出多种原理方案 3、原理方案的比较、选择与确定 4、将系统任务的分解成若干个单元电路, 并画出整机原理框图, 完成系统的功能设计。 三、单元电路的设计、参数计算与器件选择 1、单元电路设计 每个单元电路设计前都需明确本单元电路的任务, 详细拟订出单元电路的性能指标, 与前后级之间的关系, 分析电路的组成形式。具体设计时, 能够模拟成熟的先进电路, 也能够进行创新和改进, 但都必须保证性能要求。而且, 不但单元电路本身要求设计合理, 各单元电路间也要相互配合, 注意各部分的输入信号、输出信号和控制信号的关系。 2、参数计算 为保证单元电路达到功能指标要求, 就需要用电子技术知识对参数进行计算, 例如放大电路中各电阻值、放大倍数、振荡器中电阻、电容、振荡频率等参数。只有很好地理解电路的工作原理, 正确利用计算公式, 计算的参数才能满足设计要求。 参数计算时, 同一个电路可能有几组数据, 注意选择一组能完成

电路设计功能、在实践中能真正可行的参数。 计算电路参数时应注意下列问题: (1)元器件的工作电流、电压、频率和功耗等参数应能满足电路指标的要求。 (2)元器件的极限必须留有足够的裕量, 一般应大于额定值的 1.5倍。 (3)电阻和电容的参数应选计算值附近的标称值。 3、器件选择 ( 1) 阻容元件的选择 电阻和电容种类很多, 正确选择电阻和电容是很重要的。不同的电路对电阻和电容性能要求也不同, 有些电路对电容的漏电要求很严, 还有些电路对电阻、电容的性能和容量要求很高, 例如滤波电路中常见大容量( 100~3000uF) 铝电解电容, 为滤掉高频一般还需并联小容量( 0.01~0.1uF) 瓷片电容。设计时要根据电路的要求选择性能和参数合适的阻容元件, 并要注意功耗、容量、频率和耐压范围是否满足要求。 ( 2) 分立元件的选择 分立元件包括二极管、晶体三极管、场效应管、光电二极管、晶闸管等。根据其用途分别进行选择。选择的器件类型不同, 注意事项也不同。 ( 3) 集成电路的选择 由于集成电路能够实现很多单元电路甚至整机电路的功能, 因此选用集成电路设计单元电路和总体电路既方便又灵活, 它不但使系统体积缩小, 而且性能可靠, 便于调试及运用, 在设计电路时颇受欢迎。选用的集成电路不但要在功能和特性上实现设计方案, 而且要满足功耗、电压、速度、价格等方面要求。 4、注意单元电路之间的级联设计, 单元电路之间电气性能的 相互匹配问题, 信号的耦合方式

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

[电子电路实训总结]电子电路课程实训心得体会

[电子电路实训总结]电子电路课程实训心得体会【--实习工作总结】 电子电路课程是学习什么的呢?电力电子电路属于强非线性电路系统,下面是带来的电子电路课程实训,希望对大家有帮助。 电子工艺实习是一门技术性很强的技术基础课,也是我们理工科进行工程训练,学习工艺知识,提高综合素质的重要实践环节。从第2周到第5周每周周二下午四个小时来进行这次实习。 实习任务是制作一台万用表,刚开始时我并不清楚电子工艺实习到底要做些什么,以为像以前的金工实习那样这做做那做做。后来得知是自己做一个万用表,而且做好的作品可以带回去。听起来真的很有趣,做起来应该也挺好玩的吧!就这样,我抱着极大的兴趣和玩的心态开始这次的实习旅途。 实习第一天也就是第二周,通过看录像中电子工艺实习的范围与技术,还有录像中老师高-潮的技艺让我艳羡不已,这个下午,我对电子工艺实习有了初步的认识,对电路板,电路元件有了一定的认识,对我接下类的三周的实际操作给予了一定的指导。

第3周也并不是学制作,而是做一些基本工的练习,练习如何用电烙铁去焊接电阻,导线。电烙铁对我来说很陌生,所以我很认真地对待这练习的机会。 我再说说焊接的过程。先将准备好的元件插入印刷电路板规定好的位置上,待电烙铁加热后用烙铁头的刃口上些适量的焊锡,上的焊锡多少要根据焊点的大小来决定。 焊接时,要将烙铁头的刃口接触焊点与元件引线,根据焊点的形状作一定的移动,使流动的焊锡布满焊点并渗入被焊物的缝隙,接触时间大约在3-5秒左右,然后拿开电烙铁。拿开电烙铁的时间,方向和速度,决定了焊接的质量与外观的正确的方法是,在将要离开焊点时,快速的将电烙铁往回带一下,后迅速离开焊点,这样焊出的焊点既光亮,圆滑,又不出毛刺。 在焊接时,焊接时间不要太长,免得把元件烫坏,但亦不要太短,造成假焊或虚焊。焊接结束后,用镊子夹住被焊元件适当用力拔一下,检查元件是否被焊牢。如果发现有松动现象,就要重新进行焊接。 焊接看起来很简单但其中有很多技巧要讲究的,比如说用偏口钳掐导线的力度、焊锡丝的量和在焊的过程中时间都要把握准才行,

电子系统设计的基本原则和方法

电子系统设计的基本原则和设计方法 一、电子系统设计的基本原则: 电子电路设计最基本的原则应该使用最经济的资源实现最好的电路功能。具体如下: 1、整体性原则 在设计电子系统时,应当从整体出发,从分析电子电路整体内部各组成元件的关系以及电路整体与外部环境之间的关系入手,去揭示与掌握电子系统整体性质,判断电子系统类型,明确所要设计的电子系统应具有哪些功能、相互信号与控制关系如何、参数指标在那个功能模块实现等,从而确定总体设计方案。 整体原则强调以综合为基础,在综合的控制与指导下,进行分析,并且对分析的结果进行恰当的综合。基本的要点是:(1)电子系统分析必须以综合为目的,以综合为前提。离开了综合的分析是盲目的,不全面的。(2)在以分析为主的过程中往往包含着小的综合。即在对电子系统各部分进行分别考察的过程中,往往也需要又电子局部的综合。(3)综合不许以分析为基础。只有对电子系统的分析了解打到一定程度以后,才能进行综合。没有详尽以分析电子系统作基础,综合就是匆忙的、不坚定的,往往带有某种主管臆测的成分。 2、最优化原则 最优化原则是一个基本达到设计性能指标的电子系统而言的,由于元件自身或相互配合、功能模块的相互配合或耦合还存在一些缺陷,使电子系统对信号的传送、处理等方面不尽完美,需要在约束条件的限制下,从电路中每个待调整的原器件或功能模块入手,进行参数分析,分别计算每个优化指标,并根据有忽而

指标的要求,调整元器件或功能模块的参数,知道目标参数满足最优化目标值的要求,完成这个系统的最优化设计。 3、功能性原则 任何一个复杂的电子系统都可以逐步划分成不同层次的较小的电子子系统。仙子系统设计一般先将大电子系统分为若干个具有相对独立的功能部分,并将其作为独立电子系统更能模块;再全面分析各模块功能类型及功能要求,考虑如何实现这些技术功能,即采用那些电路来完成它;然后选用具体的实际电路,选择出合适的元器件,计算元器件参数并设计个单元电路。 4、可靠性与稳定性原则 电子电路是各种电气设备的心脏,它决定着电气设备的功能和用途,尤其是电气设备性能的可靠性更是由其电子电路的可靠性来决定的。电路形式及元器件选型等设计工作,设计方案在很大程度上也就决定可靠性,在电子电路设计时应遵循如下原则:只要能满足系统的性能和功能指标就尽可能的简化电子电路结构;避免片面追求高性能指标和过多的功能;合理划分软硬件功能,贯彻以软代硬的原则,使软件和硬件相辅相成;尽可能用数字电路代替模拟电路。影响电子电路可靠性的因素很多,在发生的时间和程度上的随机性也很大,在设计时,对易遭受不可靠因素干扰的薄弱环节应主动地采取可靠性保障措施,使电子电路遭受不可靠因素干扰时能保持稳定。抗干扰技术和容错设计是变被动为主动的两个重要手段。 5、性能与价格比原则 在当今竞争激烈的市场中,产品必须具有较短的开发设计周期,以及出色的性能和可靠性。为了占领市场,提高竞争力,所设计的产品应当成本低、性能好、

电子设计大赛常用电路图

错误 !未定义书签。 图2 L293D 的电机驱动电路 图3 电源稳压电路 图4 降压电路

图3 降压斩波电路原理图 图4 电流检测模块

OS CI ICE_SDA ICE_SCK ICE_EN AV SS1OP I AGC M ICOUT DA C2DA C IOB12IOB11IOB15IOB13SLE EP IOB14VS S IOA12IOA14IOA11IOA10IOA15IOA13I O B 9I O B 10IOA9 I O B 5I O B 8I O B 7V C P I O A 8 V D D H I O A 6I O A 7V S S VS S V D D H VS S V R T A V S S 1 V D D _P I O B 2V C M I O A 3I O B 6I O B 1I O A 1V M I C I O B 0I O A 2M I C P R E S _B I O B 4 I O A 4 I O B 3I O A 0I O A 5VREF2V S S V D D H SPCE061A DA C1M ICN AV SS1VDD VS S VS S VS S OS CO +C29100u C31104 U1 OS C32O 12OS C32I 13XT EST 14VDD 15XICE 16XICECLK 17XICES DA 18VS S 19PV IN 20DA C121DA C222VREF223VS S 24AGC 25OP I 26M ICOUT 27M ICN 28PFUSE 29M I C P 33V C M 34V R T P A D 35V D D 36V M I C 37V S S 38I O A 041I O A 142I O A 243I O A 344I O A 445I O A 546I O A 647I O A 748V S S 49V S S 50V D D H 51V D D H 52I O A 8 53 N C 39N C 40NC 30NC 31NC 32 IOA9 54 IOA1055IOA1156IOA1257IOA1358IOA1459IOA1560XROM T 61VS S 62XS LEEP 63IOB1564IOB1465IOB1366IOB1267IOB1168PV PP 69V D D H 75 I O B 1076I O B 977NC 70NC 71NC 72NC 73NC 74I O B 878I O B 779I O B 680I O B 581I O B 41I O B 32I O B 23N C 82N C 83N C 84I O B 14I O B 05X R E S B 6V D D 7V C P 8V S S 9N C 10N C 11C8104C7104C18104 +C5 100u C28104 + C27100u +C17100u + C4100u V D D _A SPCE061A 芯片引脚电路图 电机驱动电路 图5 电源变换电路图

电子电路课程设计密码锁(满分实验报告)解析

密码锁设计报告 摘要: 本系统是由键盘和报警系统所组成的密码锁。系统完成键盘输入、开锁、超时报警、输入位数显示、错误密码报警、复位等数字密码锁的基本功能。 关键字:数字密码锁 GAL16V8 28C64 解锁与报警 1

目录: 一、系统结构与技术指标 1、系统功能要求 (4) 2、性能和电气指标 (5) 3、设计条件 (5) 二、整体方案设计 1、密码设定 (6) 2、密码判断 (6) 3、密码录入和判断结果显示 (6) 4、系统工作原理框面 (7) 三、单元电路设计 1、键盘录入和编码电路图 (8) 2、地址计数和存储电路 (12) 3、密码锁存与比较电路 (12) 2

4、判决与结果显示电路 (14) 5、延时电路 (15) 6、复位 (17) 7、整机电路图 (19) 8、元件清单 (19) 四、程序清单 1、第一片GAL (21) 2、第二片GAL (23) 五、测试与调整 1、单元电路测试 (25) 2、整体指标测试 (26) 3、测试结果 (26) 六、设计总结 1、设计任务完成情况 (27) 2、问题及改进 (27) 3、心得体会 (28) 3

一、系统结构与技术指标 1.系统功能要求 密码锁:用数字键方式输入开锁密码,输入密码时开锁;如果输入密码有误或者输入时间过长,则发出警报。 密码锁的系统结构框图如下图所示,其中数字键盘用于输 入密码,密码锁用于判断密码的正误,也可用于修改密码。开锁LED1亮表示输入密码正确并开锁,报警LED2亮表示密码有误或 者输入时间超时。 开锁green 键盘密码锁 错误red 4

2.性能和电气指标 2.1 开锁密码为8位十进制数字,由按键输入,按“确认”键后,输入的数字有效。 2.2 输入的8位数字与预设的密码相同时开锁,用绿灯亮,红灯灭表示。数据有误时或输入的密码时间过长即报警,红灯亮。 2.3 输入的数字间隔时间小于或等于15s。超过时限则报警,同时电子锁复位。 2.4 具有手动、自动复位功能。 3. 设计条件 3.1 电源条件:稳压电源提供+5V电压。 3.2 可供选择的元器件如表1-1所示 型号名称及功能 74374 锁存器 28C64 EEPROM 存贮器 7485 4位比较器

电子电路设计的一般方法和步骤

电子电路设计的一般方法与步骤 一、总体方案的设计与选择 1.方案原理的构想 (1)提出原理方案 一个复杂的系统需要进行原理方案的构思,也就是用什么原理来实现系统要求。因此,应对课题的任务、要求和条件进行仔细的分析与研究,找出其关键问题是什么,然后根据此关键问题提出实现的原理与方法,并画出其原理框图(即提出原理方案)。提出原理方案关系到设计全局,应广泛收集与查阅有关资料,广开思路,开动脑筋,利用已有的各种理论知识,提出尽可能多的方案,以便作出更合理的选择。所提方案必须对关键部分的可行性进行讨论,一般应通过试验加以确认。 (2)原理方案的比较选择 原理方案提出后,必须对所提出的几种方案进行分析比较。在详细的总体方案尚未完成之前,只能就原理方案的简单与复杂,方案实现的难易程度进行分析比较,并作出初步的选择。如果有两种方案难以敲定,那么可对两种方案都进行后续阶段设计,直到得出两种方案的总体电路图,然后就性能、成本、体积等方面进行分析比较,才能最后确定下来。 2.总体方案的确定 原理方案选定以后,便可着手进行总体方案的确定,原理方案只着眼于方案的原理,不涉及方案的许多细节,因此,原理方案框图中的每个框图也只是原理性的、粗略的,它可能由一个单元电路构成,亦可能由许多单元电路构成。为了把总体方案确定下来,必须把每一个框图进一步分解成若干个小框,每个小框为一个较简单的单元电路。当然,每个框图不宜分得太细,亦不能分得太粗,太细对选择不同的单元电路或器件带来不利,并使单元电路之间的相互连接复杂化;但太粗将使单元电路本身功能过于复杂,不好进行设计或选择。总之,

应从单元电路和单元之间连接的设计与选择出发,恰当地分解框图。 二、单元电路的设计与选择 1.单元电路结构形式的选择与设计 按已确定的总体方案框图,对各功能框分别设计或选择出满足其要求的单元电路。因此,必须根据系统要求,明确功能框对单元电路的技术要求,必要时应详细拟定出单元电路的性能指标,然后进行单元电路结构形式的选择或设计。 满足功能框要求的单元电路可能不止一个,因此必须进行分析比较,择优选择。 2.元器件的选择 (1)元器件选择的一般原则 元器件的品种规格十分繁多,性能、价格和体积各异,而且新品种不断涌现,这就需要我们经常关心元器件信息和新动向,多查阅器件手册和有关的科技资料,尤其要熟悉一些常用的元器件型号、性能和价格,这对单元电路和总体电路设计极为有利。选择什么样的元器件最合适,需要进行分析比较。首先应考虑满足单元电路对元器件性能指标的要求,其次是考虑价格、货源和元器件体积等方面的要求。 (2)集成电路与分立元件电路的选择问题 随着微电子技术的飞速发展,各种集成电路大量涌现,集成电路的应用越来越广泛。今天,一块集成电路常常就是具有一定功能的单元电路,它的性能、体积、成本、安装调试和维修等方面一般都优于由分立元件构成的单元电路。 优先选用集成电路不等于什么场合都一定要用集成电路。在某些特殊情况,如:在高频、宽频带、高电压、大电流等场合,集成电路往往还不能适应,有时仍需采用分立元件。另外,对一些功能十分简单的电路,往往只需一只三极管或一只二极管就能解决问题,就不必选用集成电路。

电力电子-降压斩波电路设计..教学总结

1.引言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。

2.方案确定 电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。 图1降压斩波电路结构框图 在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。通过控制开关的开通和关断来控制降压斩波电路的主电路工作。控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。

2020年电子技术基础实训报告

电子技术基础实训报告 导语:电子技术基础实训结束了,电子技术基础实训报告怎么写?以下是为大家的文章,欢迎阅读!希望对大家有所帮助! 一、实训目的: 1、培养动手能力,在实践中加强对理论知识的理解。 2、掌握对电子元器件识别,相应工具的操作,相关仪器的使用,电子设备制作、装调的全过程的方法。 3、掌握查找及排除电子电路故障的常用方法。 4、学习使用protel电路设计软件,动手绘制电路图。 二、实训设备及仪器: 1、电烙铁:焊接的元件多,所以使用的是外热式电烙铁,功率为30w,烙铁头是铜制。 2、螺丝刀、镊子等必备工具以及练习焊接时用的铜丝。 3、锡丝:由于锡熔点低,焊接时,焊锡能迅速散步在金属表面焊接牢固,焊点光亮美观。 4、松香,导线,剥线钳等其它需要用到的工具。 5、相关实验项目所需的电路板,电子元件等。 三、实训要求: 1、识别不同的电子元器件的规格和种类,熟练掌握焊接技术。 2、按照电路图设计合理安排元器件的位置,连接好电路,对接口进行焊接,完成对指定功能的测试。未达到测试要求的重新调试,直至排除故障。 四、实训内容:

1、项目: (1)模拟声响器 (2)汽车尾灯控制器(3)数字时钟(4)组装收音机 2、实验电路: (1)模拟声响器电路: (2)汽车尾灯控制器电路: (3)数字时钟电路: (4)收音机电路: 五、实训结果: 所有项目均完成,电路成品经过测试检修。其中,项目一达到 测试目标,项目二三四部分达到测试目标。 六、实训心得: 1、对电气技能训练的理论有了初步的系统了解。进一步学习了电子技术以及电子安装工艺和测量调试技术。我了解到了焊普通元件与电路元件的技巧、收音机的工作原理与组成元件的作用等。 2、实训项目对自己的动手能力是个很大的锻炼。在实习中,我锻炼了自己动手技巧,提高了自己解决问题的能力。虽然在实习中会遇到难题,但是从中我学到了很多,使自己的动手能力也有所提高,也认识到了理论学习跟实践的差别。 3、今后我想在以后的理论学习中我就能够明白自己的学习方向,增进专业知识的强化。同时联系实际,促进理论成果的产业化过程

电力电子降压斩波电路课程设计

电力电子降压斩波电路课程设计

《电力电子技术》课程设计说明书 直流降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:刘贝贝 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号: 完成时间: 6月

湖南工学院《电力电子技术》课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路. 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键字:直流斩波,降压斩波

ABSTRACT DC chopper as DC into another fixed voltage DC voltage or adjustable in DC converter, and DC - regenerative power transmission system, charging circuit, switch power, power electronics device and all sorts of electrical equipment transformation in ordinary application. Then appeared such as step-down chopper, booster chopper, lift pressure chopper composite chopper, etc.. the commutation circuit DC chopper technology has been widely used in switching power supply and DC driver, make its smooth acceleration control, and obtain the fast response, managing electric energy effect. All-controlling power electronics device IGBT in traction power transmission and transformation of power transmission and active filter etc widely application. Keywords: DC chopping; Buck chopper

电子电路综合设计实验报告

电子电路综合设计实验报告 实验5自动增益控制电路的设计与实现 学号: 班序号:

一. 实验名称: 自动增益控制电路的设计与实现 二.实验摘要: 在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况; 另外,在其他应用中,也经常有多个信号频谱结构和动态围大体相似,而最大波幅却相差甚多的现象。很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。 自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小围变化的特殊功能电路,简称为AGC 电路。本实验采用短路双极晶体管直接进行小信号控制的方法,简单有效地实现AGC功能。 关键词:自动增益控制,直流耦合互补级,可变衰减,反馈电路。 三.设计任务要求 1. 基本要求: 1)设计实现一个AGC电路,设计指标以及给定条件为: 输入信号0.5?50mVrm§ 输出信号:0.5?1.5Vrms; 信号带宽:100?5KHz; 2)设计该电路的电源电路(不要际搭建),用PROTE软件绘制完整的电路原理图(SCH及印制电路板图(PCB 2. 提高要求: 1)设计一种采用其他方式的AGC电路; 2)采用麦克风作为输入,8 Q喇叭作为输出的完整音频系统。 3. 探究要求: 1)如何设计具有更宽输入电压围的AGC电路; 2)测试AGC电路中的总谐波失真(THD及如何有效的降低THD 四.设计思路和总体结构框图 AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA以及检波整流控制组成(如图1),该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。如图2,可变分压器由一个固定电阻R和一个可变电阻构成,控制信号的交流振幅。可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源V REG和大阻值电阻F2组成的直流源直接向短路晶体管注入电流。为防止Rb影响电路的交流电压传输特性。R2的阻值必须远大于R1。

相关主题
文本预览
相关文档 最新文档