当前位置:文档之家› QK-煤层气井压裂工艺技术研究及应用

QK-煤层气井压裂工艺技术研究及应用

QK-煤层气井压裂工艺技术研究及应用
QK-煤层气井压裂工艺技术研究及应用

煤层气排采技术规范

煤层气排采技术规范

煤层气企业标准 煤层气井排采工程技术规范 (试行) 2008-08-18发布2008-08-18实施

煤层气企业标准 煤层气井排采工程技术规范 1范围 本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。 本标准适用于煤层气井的排采作业工程。 2引用标准 下列标准所包含的条文,通过对标准的引用而成为本规范的条文。 中联煤层气有限责任公司煤层气井排采作业管理暂行办法 SY/T 5587.6-93 油水井常规修井作业起下油管作业规程 SY/T 5587.7-93 油水井常规修井作业洗井作业规程 SY/T 5587.16-93 油水井常规修井作业通井、刮削套管作业规程 SY/T 5587.5-93 油水井常规修井作业探砂面、冲砂作业规程 SY/T5523-92 油气田水分析方法 SY/T6258-1996 有杆泵系统设计计算方法

3 排采总体方案的制定 3.1基本数据 3.1.1钻井基本数据 钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完钻日期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、补芯高。 3.1.2完成套管程序 完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。 3.1.3煤层深度、厚度及射孔井段 3.1.4解吸/吸附分析成果 包括含气量、含气饱和度、临界压力 3.1.5注入/压降测试及原地应力测试数据 包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压力梯度、破裂压力等。 3.2 排采总体方案 3.2.1排采目的 3.2.2排采目的层及排采方式 3.2.3排采设备及工艺流程设计 3.2.4排采周期 3.3工艺技术要求 3.3.1动力系统 3.3.2抽油机 3.3.3泵挂组合

煤层气井试井研究的意义

[基金项目] 本研究得到国家重大专项/大型气田及煤层气开发0专项支持,课题编号2009ZX05038001。[作者简介] 赵培华,男,高级工程师,主要从事煤层气排采技术及研究项目管理工作。 [联系作者] 刘曰武,男,研究员,主要从事渗流力学及油气藏工程方面的研究工作。地址:北京市北四环西路15号力学所,邮政编 码:100190。 煤层气井试井研究的意义 赵培华1 刘曰武2 鹿 倩1 徐建平3 蒋 华3 韩旭东 3 (1.中石油煤层气有限责任公司 北京100028; 2.中国科学院力学研究所 北京100190; 3.大港油田测试公司 天津300270) 摘要 从国内外对煤层气井试井的主要认识的分析出发,对煤层气试井技术研究的基本观点进行了介绍;从了解煤层储层特征、煤层动态变化、措施效果评价、合理工作制度制定等方面,论述了煤层气井试井技术的研究意义。 关键词 煤层气 试井 煤层 两相流 0 引 言 煤层气排采是煤层气开发技术的核心,决定了煤层气开发是否成功。煤层气排采制度是否合理是制约着单井产量提高的关键技术难题之一,要制定合理排采制度,必须了解煤层的特征、煤层气的赋存特征、煤层在开发过程中的变化状况等。煤层测试技术是了解煤层动态变化的主要动态手段之一,它通常被称为煤层气藏开发工程师的/眼睛0。煤层气井生产测试成果是可以提供煤层的特征参数描述、进行煤层措施效果的评价、分析煤层气井之间的连通情况、确定煤层分布的非均质性、得到各煤层的产出状况、区域压降效果,以及不同开发阶段的煤层中的流体分布状况等,是充分了解煤层气藏动态变化规律重要技术手段。煤层气井生产测试资料的分析成果可以为煤层气藏数值模拟、开发方案编制和调整提供第一手重要资料,对制定合理排采工作制度,保证连续、稳定排采,提高单井产量具有重要指导作用。煤层气井生产测试技术是确定合理排采制度、进行合理高效煤层气生产的重要技术保障。 目前,世界上已有74个国家进行了煤层气资源的勘探工作。据国际能源机构(IE A )预计,世界 2000m 以浅的煤层气资源总量约为260@1012m 3 ,其中90%分布在5个国家,资源量由高到低依次为:俄罗斯(113@1012 m 3 )、加拿大(76@1012 m 3 )、中国(36.8@1012 m 3 )、美国(21.2@1012 m 3 )和澳大利亚(14@1012 m 3 ) [1~2]。目前,世界上开发煤层气有地面开 采和井下抽采两种方式。由于井下抽采的效率远低于地面抽采,而且井下抽采的煤层气中甲烷含量要比地面抽采的低,所以本文用煤层气年产量作为各国煤层气发展程度的评价标准时,未考虑煤层气井下抽放的部分。美国是世界上煤层气年产量最高的国家,其煤层气发展程度居世界首位,其次为加拿大、澳大利亚和中国。俄罗斯虽然煤层气资源量最为丰富,但由于本国常规天然气资源供应还很充足等原因,煤层气开发未得到充分重视,煤层气发展程度远远落后其他国家。中国煤层气虽然地面年产量低,但井下抽采量非常高,2008年的单年井下抽采量达到53@108 m 3 ,是目前世界上煤层气井下抽采量最高的国家。 我国煤层气开发具有以下几方面的重大意义:1提高煤矿生产安全;o改善大气环境;?缓解能源危机;?改善能源结构等。我国的煤层气地面开发工作是从80年代末开始的,由于无论在甲烷浓度还是甲烷回收率上煤层气地面开发都明显高于井下抽 2010年12月油 气 井 测 试第19卷 第6期

煤层气井压裂技术现状研究及应用

煤层气井压裂技术现状研究及应用 摘要:煤层气其主要成分为高纯度甲烷。煤层气开发的主要增产措施是压裂,而压裂设计是实施压裂作业的关键。本文介绍了煤层气储层的特征,并根据美国远东能源公司煤层气井压裂工艺技术,对其在山西寿阳区块几口井的压裂设计进行了分析。讨论了煤层气井压裂设计的主要参数如施工排量、压裂液、支撑剂、加砂程序的优化措施。 关键词:煤层气储层压裂设计小型压裂测试树脂涂层砂 1 引言 美国是率先进行煤层气开采的国家,其煤层气工业起步于70年代,大规模的发展则是在80年代。我国是世界上煤炭资源最丰富的国家之一,经测算煤层甲烷总资源量为30~351012 m3,约是美国的三倍。我国煤层气目前处于商业化生产的阶段。至今已在全国各煤矿区施工600多口煤层气井、10余个井组,大部分进行了压裂增产等措施。煤层气是我国常规天然气最现实、最可靠的替代能源,开发和利用煤层气可以有效地弥补我国常规天然气在地域分布上的不均和供给量上的不足。山西省是中国煤层气储量最丰富的地区之一,开发利用煤层气的优势十分突出,如何坚持科学发展的指导思想,解决开发利用过程中遇到的难点和瓶颈问题,达到合理有效地开发利用是我们当前应该着重思考的问题。 2 煤层气概况 煤层气俗称瓦斯,其主要成分为高纯度甲烷,是成煤过程中生成的、并以吸附和游离状态赋存于煤层及周岩的自储式天然气体,属于非常规天然气。在亿万年漫长的煤炭形成过程中,都有以甲烷为主的气体产生,如果它较多地从母质煤炭岩层中游离迁移出来并进入具有孔隙性和渗透性均良好的构造中储存积聚,则被称为煤成气(即煤基天然气),其开采方式与常规天然气较相似。 2.1 煤层气的赋存特点 煤层气藏与常规气藏最大的差异就是煤层甲烷不是以简单的游离状态储存于煤岩的孔隙中,煤层气中90%以上均是吸附状态附着于煤的内表面上,少量的煤层气是以游离状态储存于煤岩的割理、裂隙和孔隙中,还有部分煤层气是以溶解状态储存于煤层水中。煤是一种多孔介质,其中微孔隙特别发育,形成了异常巨大的内表面面积,据测定每吨煤的内表面面积可达0.929亿m2 。煤的颗粒表面分子通过范德华力吸引周围气体分子,这是固体表面上进行的一种物理吸附过程。压力对吸附作用有明显影响,国内外的研究均表明,随着压力增加,煤对甲烷的吸附量逐渐增大。 2.2 煤层气储层特征

煤层气井动力洞穴完井工艺

2000年6月油 气 井 测 试第9卷 第2期 煤层气井动力洞穴完井工艺 顾维军Ξ王 倩 (华北石油管理局井下作业公司) 在煤层气的勘探与开发领域中,特别是在煤层气井的完井工艺和方法上常见的有套管完井、主力煤层段的裸眼完井和主力煤层段的洞穴完井等。对于不同地区、不同的构造特征,选用的完井工艺及方法也不尽相同,但最终目的只有一个,就是在目前的工艺水平的基础上尽快让煤岩储层的吸咐气解吸出来,并具有工业价值,造福人类。动力洞穴完井工艺技术从钻井、完井、排水采气的整个工序过程与其它完井方法相比,具有不进行单相注入Π压降试井和压裂等措施就可以达到单井面积降压、恢复和提高煤层渗透率等优点。该工艺方法同样适用于煤层割理发育,物性较好、封盖条件好、厚度大、含气量及解吸率高的中低挥发份(中高煤阶)的煤岩储层。 地面设备及工具要求 1.井架高度不低于16m的50~80t修井机一台。 2.波纹S- 3.5动力水龙头一套(包括液压操作系统)。 3.适用73mm钻杆的旋转防喷器(SF18210)一套,其中包括20d作业的密封跟件。 4.63.5mm四方钻杆1根、73mm钻杆数根、101.6mm~108mm钻铤4~6根、152.4mm三牙轮钻头一只。 5.压风机3~4台及相应的连接管线,排量10m3Πmin,型号为S210Π150或S210Π250型。 6.400或700型水泥车一台,40m3储水罐一个。 7.修井机水龙带为25~35MPa的高压水龙带。 8.放喷管线末端为139.7mm套管,不得少于20m。 9.预定气压吞吐作业时间15~20d(作业吞吐范围按煤层水平距离30m估算)。 10.注入气压管线试压不得少于25MPa。 11.井场所有设备及工具按石油天然气集团公司新颁布的标准摆放,便于施工作业,并且符合HSE管理体系要求。 地面作业流程及洞穴完井管柱结构 动力洞穴完井地面作业流程及完井管柱结构见图1。 Ξ顾维军,男,1981年毕业于华北石油学校钻井专业,长期从事井下试油、测试、修井作业以及煤层气的勘探与开发工作。地址:河北省任丘市华北石油管理局井下作业公司,邮政编码:062552。

煤层气地面集输工程技术规范正式版

Through the joint creation of clear rules, the establishment of common values, strengthen the code of conduct in individual learning, realize the value contribution to the organization.煤层气地面集输工程技术 规范正式版

煤层气地面集输工程技术规范正式版 下载提示:此管理制度资料适用于通过共同创造,促进集体发展的明文规则,建立共同的价值观、培养团队精神、加强个人学习方面的行为准则,实现对自我,对组织的价值贡献。文档可以直接使用,也可根据实际需要修订后使用。 1 范围 本标准规定了煤层气地面集输工程设计和施工的技术等。 本标准适用于煤层气地面集输工程建设的设计、施工和验收。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 50251 输气管道工程设计规范

GB 50275-98 压缩机、风机、泵安装工程施工及验收规范 GB/T 15543 油气田液化石油气 GB/T 50183 石油天然气防火规范 SYL 04-83 天然气流量的标准孔板计量方法 SY/T 0076-2003 天然气脱水设计规范 SY/T 0089-2006 油气厂、站、库给水排水设计规范 SY/T 0515-1997 油气分离器规范 JJF 1059—1999 机械设备安装工程施工及验收规范 3 术语和定义 下列术语和定义适用于本文件。

煤层气井排采工操作手册

煤层气井排采操作手册中石油煤层气公司韩城分公司

目录 一、名词解释 二、煤层气排采基本原则 三、韩城煤层气地质特征 四、韩城煤层气排采特点 五、韩城煤层气井排采制度要求 六、煤层气井排采资料录取要求 七、排采巡井工岗位职责 八、排采住井工岗位职责 九、排采工作业流程 十、排采设备检查保养要求 十一、典型案例 基础篇 一:名词解释 1、煤层气:就是指在煤层内产生和赋存的天然气,其主要成分是 甲烷(CH4),约占70%以上,又称煤层甲烷、煤层吸附气或煤层瓦斯,它是煤层气的一种,是一种非常规天然气。煤层气与常规天然气最大不同点就在于煤岩既是它的储集岩又是生气原岩,它是煤层煤化作用的结果。煤的储集性和煤中天然气的储集是整个成煤作用过程的结果。 2、煤储集岩石学方面的参数:主要指煤阶、煤的显微组分、煤的 显微硬度。煤阶通过测定煤中镜质组反射率(R0)来确定。其余则用反光显微镜区分,同时亦可以求得割理宽度和密度。

3、煤阶:表示煤在埋藏历史中,沉积物有机质在成分和结构上经 历了一系列变化,其过程称之为煤的变质作用或煤化作用。可 以用多种物理和化学参数来表征煤的变质程度,常见的煤阶参 数有固定碳含量、镜质组反射率、水分含量。煤阶是影响割理 发育的主要因素。通常,低媒阶的煤割理不甚发育,到烟煤系 列时割理发育。割理面最密集的主要发生在低挥发分烟煤煤阶 附近,高于低挥发分烟煤煤阶,割理或裂缝又不发育,标本上 表现为割理封闭。 4、煤岩工业分析参数:该类参数是指煤的固定碳、挥发分、灰分、 水分,目的是对煤岩性能质量作出评价以及在煤储层评价中校 正含气量。 5、煤显微硬度:显微镜下可识别的煤的显微组分的抗压强度。不 同煤级和不同显微组分的显微硬度不同。在研究中,一般以均 质镜质体的显微硬度为代表。它是用专门的显微硬度仪进行测 定的。随着煤级的增高,煤显微硬度也有变化。 从褐煤到超无烟煤,煤的显微硬度值是增大的;同一煤级中,当镜质组还原性增强时,煤显微硬度略微降低;同一煤样中,煤显微硬度最大值与最小值间亦存在微小差异,反映出非均一性。 6、煤层含气量:是散失气量、解析气量和残余气量之和。散失气 量是指现场取出的含气煤心在装入解析罐之前释放出的气量; 解析气量是指煤心装入解析罐之后解析出的气体总量;残余气 量是指终止解析后仍留在煤中的那部分气量。对煤层气开采有 实际意义的是散失气量和自然解析气量,两项之和占总含气量 百分率越大,对煤层气开采越有利。 7、煤储层压力:是指煤层孔隙内流体所承受的压力,即通常所说 的孔隙流体压力。 8、临界解析压力:临界解析压力是指在煤层降压过程中气体开始 析出时所对应的压力值。可以根据临界解析压力与煤层压力了 解煤层气早期排采动态,临界解析压力越接近地层压力,排水 采气中需要降低的压力越小,越有利于气体降压开采,据此可 为制定煤层气排采方案提供重要依据。 9、地解比:地解比是临界解析压力与原始地层压力的比值。据此 比值可以预测产气高峰期到来的时间及是否可以高产。临界解 析压力越接近原始地层压力,含气饱和度愈高,高产富集条件 愈优越。据已勘探开发的数据,可将地解比划分为高地解比(>

煤层气井排采制度探讨总结

煤层气井排采制度探讨总结 1、稳定生产阶段。这一阶段储层特性将决定气、水产量和生产时间。此时环空液面应低于生产层,而且井口压力应接近大气压。随着排采的进行,压力的下降,在近井地带形成一个很小的低含水饱和区,有助于解吸气体流人井筒。此时,生产制度平稳,不要频繁更换油嘴改变生产压差。尽管在开始排采的前几周,产气量较低,达不到设计产量,但从长远的观点看,有助于保证今后生产的正常进行,减少故障发生。(任源峰.煤层气排采中的技术管理[J].油气井测试,2003,12(5):66-68.) 2、当储层压力接近解吸压力时要特别注意,这时易产生一个突变,一般表现为气产量突然增大,套压增大,有时气会将环空水带出,造成环空液面突然下降。(任源峰.煤层气排采中的技术管理[J].油气井测试,2003,12(5):66-68.) 3、由于继续排水,液面缓慢下降,同时逐步加大油嘴使套压降低,减小套压利于储层中更多的水进入井筒并疏干井筒附近的水,目的是在环空液面降低到泵的吸人口后,地面压力长期保持在正常工作的范围(O.05~0.1MPa)。(任源峰.煤层气排采中的技术管理[J].油气井测试,2003,12(5):66-68.) 4、加大油嘴直径,套压下降,产气量上升;反之,减小油嘴直径,套压上升,产气量下降。一般油嘴直径为3~7mm,套压不低于0.05MPa。(任源峰.煤层气排采中的技术管理[J].油气井测试,2003,12(5):66-68.) 5、对产水量大的井,需长期的排采才能使压力逐步下降,不可能在很短时间内将液面降低到要求的范围。因此,有些供液能力强的井,需要一个很长的排采周期。(任源峰.煤层气排采中的技术管理[J].油气井测试,2003,12(5):66-68.) 6、检泵时最好不洗井,一旦需要检泵,在砂面不埋煤层的情况下最好不要洗井,如必须洗井,最好用煤层产出的水,这样可防止煤层污染。另外,尽量缩短检泵作业时间,可缩短恢复产气的时间。检泵后,排采降液仍需一个缓慢的过程,切不可降液幅度太大,急于产气。(任源峰.煤层气排采中的技术管理[J].油气井测试,2003,12(5):66-68.) 7、排采流压的控制依靠控制液面来实现,要及时调整排采工作制度,使环

煤层气开发钻井工艺及设备选择方案讲解

煤层气开发钻井工艺及设备选择方案 APE OGGO 李向前 2010-12 煤层气简介 煤层气(Coal Bed Methane/CBM。煤层气俗称“ 瓦斯” ,其主要成分是甲烷,它是在煤的生成和煤的变质过程中伴生的气体。在成煤的过程中生成的瓦斯是古代植物在堆积成煤的初期,纤维素和有机质经厌氧菌的作用分解而成。甲烷通常是由水压支撑在煤层气中。煤层气的主要组成部分(95%是天然气。因此,煤层气具有热值/每立方米与天然气几乎一样,可与天然气混合运输。

煤层气就像天然气,相对便宜,是清洁燃料。 CBM 是 21世纪重点发展的替代能源。 CBM 开发技术基本成熟,在中国潜力巨大。 煤层气储量 中国煤层气产业数据概览: 36.8万亿立方米可开采资源总量占世界总量的 12% 41. 5万平方公里煤层气产区面积 2010年地面产量为 15亿立方米; 2015年地面产量为 110亿立方米; 2020年达240亿立方米。 中国 9大煤层气富集盆地: 沁水盆地,鄂尔多斯盆地、准噶尔盆地、滇东黔西、二连、吐哈、塔里木、天山和海拉尔等含气盆地(群、 121个含气区带。

中国煤层气资源丰富,发展前景广阔,资源分布集中,适于开发资源比例大, 煤层气产业刚刚起步,煤层气市场逐步步入商业化阶段,煤层气资源量与常规天然气相当,有效勘探开发可以对常规天然气形成重要补充。 目前能够商业化的煤层气主要目标市场为山西沁水、韩城、河南、湖北、湖南等中部地区 储存特点:低渗透,低压力,开发难度较大。 煤层气开发与常规天然气开发技术不同

煤层气开发流程 -地面开发 第一步:勘查规划(国家投资带动外资 第二步:招商引资(区块开采权:中石油,中联,煤业集团第三步:钻井、固井、压裂、排采(承包商承包:煤田地质勘探队; 钻井工程公司等等 第四步:运输(井口压缩机,管道输送 第五步:应用(煤层气发电,加气站,工厂,民用

煤层气井微破裂试验测试技术及应用

收稿日期:20020705 作者简介:陈志胜(1969-),男,河南内黄人,中国煤炭科学研究院西安分院工程师,从事煤田地质和煤层气试井研究. 第32卷第1期 中国矿业大学学报 Vo l.32No.12003年1月 Jo ur nal o f China U niver sity of M ining &T echno log y Jan .2003 文章编号:1000-1964(2003)01-0053-04 煤层气井微破裂试验测试技术及应用 陈志胜 (煤炭科学研究总院西安分院,西安 710054) 摘要:根据煤层气勘探开发新区内煤储层参数资料和实际应用情况,研究了微破裂试验的测试工艺技术和数据分析方法.介绍了微破裂试验的测试方法、设备组合、施工程序以及数据分析解释,并通过实例阐述了微破裂试验在煤层气井测试工作中的应用.结果表明,在煤层气勘探开发新区,注入压降试井测试前进行一次微破裂试验,可以获取有用的储层信息,为煤层气井的试井设计提供重要的参数依据. 关键词:煤层气井;微破裂试验;测试技术;应用;数据分析中图分类号:P 618.11 文献标识码:A 随着煤层气勘探事业的发展,试井测试技术得到普遍应用,微破裂试验作为注入/压降试井的一种辅助测试方法,在煤层气试井过程中起着重要作用.尤其对勘探开发新区,煤层气勘探井非常少,储层参数资料有限,这给试井设计带来一定困难.微破裂试验提供了一种揭示真实储层的方法,是煤层气井试井设计及试井施工的重要依据. 微破裂试验是在小型压裂试井技术[1]的基础上,结合煤储层特点逐步发展完善的一种测试方法.早期微破裂试验主要目的是获取煤储层闭合压力,测试工艺技术相对比较简单.经过近几年的研究和实践应用,对测试工艺技术逐步进行改进和完善,伴随着数据分析技术的发展,微破裂试验可以反映出更多的储层信息,为准确编制试井设计提供可靠的储层参数.目前,微破裂试验测试技术已在我国许多煤层气勘探开发区应用. 本文从微破裂试验测试实际应用的角度,对测试工艺技术和数据分析方法进行研究.一方面通过改进工艺技术、优化设备组合,减少微破裂试验对随后进行的注入/压降试井的影响;另一方面加强对关井后期的数据分析,以获取更多的储层参数. 1 微破裂试验测试技术 1.1 测试方法 微破裂试验是一种瞬时压裂煤层的测试方法,通过向目标煤层注水,依此产生一个压裂煤层的瞬 时压力脉冲,根据注入流量的变化,在确认煤层被压裂后井底关井,观测压力变化趋势.采用压力计记录井底压力随时间的变化规律,通过分析,可以判断和确定储层的参数性质.微破裂试验测试中需 特别考虑的因素: 1)注入流体的选择[2]:注入流体是造成煤层污染的一个因素,由于流体中固体颗粒对煤层孔隙的堵塞而导致煤层孔隙的连通性降低,因此对注入水的水质应加以控制,可选用清水注入,以防止对煤层造成伤害. 2)注入流体体积的控制:大量的流体进入煤层后对煤层(特别是低渗透的薄煤层)的恢复非常不利,通过优化泵注设备,在满足瞬时压裂煤层的前提下,减少注入时间,控制进入煤层的流体体积. 3)测试时间的选择:测试时间的选择原则:缩短注入时间,延长关井时间.在测试过程中缩短注入时间,可以减少注入流体体积,煤层产生的裂缝小,因此关井后裂缝很快闭合;另外,适当延长关井时间,有利于地层压力的恢复,对随后进行的注入/压降试井分析不会产生太大影响.1.2 地面设备 微破裂试验所需的地面设备包括注水泵、储水罐、流量计、压力表、回流阀、截流阀及高压管汇.其中注水泵是关键设备,为确保在很短的时间内压裂煤层,通常采用高压大排量注水泵,以满足微破裂试验的测试需求,同时可以最大限度降低进入煤层

煤层气井不稳定试井解释项目

comet3, f.a.s.t cbm都可以 我目前主要用COMET3软件,另外做煤层气数值模拟的软件还有Eclipse、CMG、FAST软件等,这是一些较为熟悉的煤层气软件。目前comet3是做煤层气最专业的软件,不过这个软件需要购买,目前还没有破解版,其它几款软件已有破解版,可在论坛下载学习。希望可以帮到你。 煤层气行业的试井软件,大多是从石油天然气行业借鉴过来的,其引用标准也和石油天然气行业的标准相似。目前主要有以下几种试井解释软件。F.A.S.T CBMTM煤层气储层分析系统Saphir试井解释软件PanSystem试井解释分析与设计软件Work Bench 1.8.2试井软件 ,如果采用常规试井的方法,在开井期间则很容易造成水、气同出,且由于储层渗透率相对较低,压力恢复时间过长,在测试过程中很难准确取得煤储层的地层真实压力,所以就使试井解释很难准确的确定储层参数。 我公司拟在柿庄南区块开展国家科技重大专项项目的专题“柿庄南区块高阶煤储层渗透率评价方法研究”的研究工作,其主要内容包括:(1)柿庄南区块低压煤储层注入/压降试井方法研究;(2)柿庄南区块压前排采生产压力不稳定试井方法研究;(3)利用排采生产资料解释渗透率方法研究;(4)编制3口井注入/压降试井 及3口井压前排采生产压力不稳定试井施工设计; DST测试:测的时间比较短,如果是低渗的话(流体进入钻杆测试器的体积就会笑),测的结果就不准确。 1:压前不稳定试井:(1)目前在CNKI,根据调研的参考文献,没有人做过压前不稳定试井;(2)如果做的话,有一个问题,压前地层压力大于煤层气临界解吸压力,这个煤层气井主要产水,只有当地层压力低于煤层气临界解吸压力时,煤层气井才会产气。 地面注入设备 地面注入设备包括注入泵、储液罐、高、低压管汇、压力表等,目的是将储液罐中的液体以高压注入井中。 利用注入泵:将地层水注入地层中去(注入一天左右),让储层压力大于原始地层压力,然后再关井一段时间(关井5天左右)。问题:注入液体过程,可能导致地层破裂,影响试井解释结果,表皮系数为负。

煤层气压裂工艺技术及实施要点分析

煤层气压裂工艺技术及实施要点分析 发表时间:2019-07-17T09:24:30.543Z 来源:《建筑学研究前沿》2019年7期作者:康锴 [导读] 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。 新疆维吾尔自治区煤田地质局一六一煤田地质勘探队 摘要:近几年,我国经济建设发展迅速,煤矿企业为我国发展做出了很大贡献。我国煤层具有松软、压力低、表面积大和割理发育的特征,导致煤层气开采普遍存在经济效益低、单井产量低的问题。为了适应煤层气特殊的产出条件,本文探讨煤层气压裂工艺技术与实施要点,以期为我国煤层气开采提供参考意见。 关键词:煤层气;压裂工艺技术;实施要点 引言 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。因为煤层气本身属于清洁能源发展行列,本身带有极强的清洁性能和使用的高效性,对于此资源进行科学合理的开发应用,能够有效缓解现阶段我国能源紧缺的尴尬局面。进行开采过程中,需要对煤层的低饱和、低渗透和低压的发展特点充分了解,可以通过对水力压裂技术的改造升级,完成增产增效工作,保证煤层气井开采效率和高质量发展。在此过程中,需要注意的问题是,因为不同煤层在发展过程中,都受到不同介质的作用,其内部构成和物质特性方面都存在很大差异性,所以,科学掌握煤层气压裂工艺技术有着重要的现实意义。 1煤层气探采历史 1733年美国首次实现地下管道煤层气抽放,1920年第一次完成3口地面煤层气抽采井。1953年在圣胡安完成高产井,日产1.2万m3。我国起步较晚,1957年阳泉四矿在井下成功实现,临近煤层瓦斯抽采。1992年正式开始研究实验。1996年中联煤层气有限责任公司的成立,标志着我国煤层气开发研究的新纪元。 2矿岩压裂的主要影响因素 2.1天然裂缝割理 在煤层开采发展过程中,主要的裂缝系统包括天然裂缝和割理,这两种现象会严重影响到压裂裂缝的发展形态,同时还会对周围水文地质的发展起到一定的影响作用。通常它们的主要性能会对水力裂缝的形态进行延伸,造成冲击作用,也就是说,通过这两个作用力的共同作用,煤层气井在发展和延伸的时候,很容易发生突然转向和次生裂缝。 2.2矿岩力学性质 对矿岩力学性质进行研究的过程中,需要重点做好三个方面的工作:首先,做好矿岩硬度和密实度的勘察工作。第二,对整体强度和弹性力度问题进行研究。第三,深入探讨研究断裂相关内容。对有显著特点的矿样进行综合检测分析,通过观察和对比,得到的结论是,矿岩在受到某些压力和应力的共同作用下,其自身的特征也会发生改变,呈现出弹性模量低、脆性大、易破碎和易受压缩等显著特点,所以,需要对矿岩力学性质进行综合研究。 2.3地应力 在矿井气层发生水力起裂现象的过程中,地应力的变化情况会对裂缝整体位置和形态产生主要影响作用。通过科学调查结果显示,起裂压力大小情况与地应力差之间存在负相关的变化发展联系。换言之,破裂压力的影响因素主要为天然裂缝与最大水平主应力间的夹角,在高水平应力差作用力的影响下,会发生层次较规律的主缝问题。在低水平应力差作用力的影响下,裂缝问题就会向周边进行延伸和扩展。 3煤层气压裂工艺技术 3.1大排量压裂技术 在煤层储层中,有着大量的天然割理系统,加之在压裂施工中使用了活性水压裂液,因此容易造成在压裂过程中滤失量过大及效率低的情况。而为了控制液体滤失以保障效率,应当要根据活性水压裂液的特点,选择大排量注入压裂液的施工方式。 3.2低砂比压裂技术 煤层气压裂的砂比是由多种因素共同决定的,包括煤层本身的特性、压裂液及其排量、支撑剂密度等等。煤层具有性脆、易破碎以及易滤失等特性,而这些都容易引起压裂过程中煤层出现砂堵;再者压裂液粘度低,也是造成砂堵的一项常见因素。而若应用低砂比压裂技术,则能够十分有效地预防砂堵现象。 3.3脉冲加砂技术 若想实现煤层气开采的增产,其主要途径之一就是尽量增加缝长和沟通天然割理系统。在深层煤层气的压裂施工过程中,支撑剂的泵入可以选择采用将前置液与携砂液交替注入的方式。这种方法既能够更多地增加缝长和沟通天然割理系统,同时又能够防止砂堵,提高压裂效率。 3.4复合支撑技术 该深层煤层气储层的闭合压力<20MPa,经分析和评价后,认为其在支撑剂的选择上以石英砂为宜。由于煤层气储层具有易滤失的特点,所以在加砂前,首先要处理天然割理,即加入适量的细粒径石英砂,从而降低其滤失;其次在加砂过程中,要加入适量的中粒径石英砂,从而延伸裂缝;而在加砂后期,则要加入粗粒径石英砂,以使煤层中的气流畅通。 4煤层气压裂工艺技术及实施要点分析 4.1优选煤层气压裂液体系 在煤层气压裂中,压裂液既需要携砂、造缝,又会因液体浸入储层而伤害煤层,所以优选压裂液体系至关重要,即要求煤层气压裂液满足压裂工艺的技术要求、与储层配伍性且尽量不伤害煤层。煤层气井从客观实际出发优选压裂液体系,具体要点包括:一是少用添加剂,如有机类添加剂,以免伤害煤储层;二是研发与煤层气压裂条件相适宜的压裂液材料,以提高其与煤储层的配伍性;三是在满足压裂工艺与施工要求的前提下,提高压裂液的经济性,从而适应市场经济的发展要求。据此,山西沁水盆地煤层气井决定选用清水压裂。

煤层气井排采过程中各排采参数间关系的探讨

中国煤田地质 COAL GEOLO GY OF CHINA Vol.12No.1Mar.2000 第12卷1期2000年3月 作者简介:曹立刚,男,高级工程师,煤层甲烷气开发中心 主任。 收稿日期:1999—09—13编 辑:葛晓云 煤层气井排采过程中各排采参数间关系的探讨 曹立刚,郭海林,顾谦隆 (东北煤田地质局,沈阳 110011) 摘要:煤层气井必须进行排水降压,才能达到产气的目的。而煤层气井的产气量又受控于储层特性并由排采时的各参数所制约,只有掌握产气量与这些参数的关系才能制定合理的开采工作制度。本文利用铁法D T3井资料研究了在供气条件具备时,排采中产气量、排水量、井口压力和液面深度间的关系,提出了井底压力的作用及估算方法,将有利于煤层气井生产过程的认识和合理开发。关键词:煤层气;排采;参数关系;井底压力中图分类号:P618111 文献标识码:A 文章编号:1004—9177(2000)01—0031-05 排采是煤层气井开发中的一个重要环节,排 采中必须测定各项排采参数,通过对排采参数的分析,建立排采参数间的关系,是极其有意义的一项工作,它将成为掌握排采特征,建立合理的工作制度的基础。铁法煤田大兴区D T3井在完井和压裂以后,连续进行了479天的排采,总计产气量 15019万m 3,排水1128万m 3 ,积累了丰富的基础资料。现将该井排采时各排采参数之间的关系和做法初步总结,供参考。 1排采中应测定的参数 排采工作应测定的参数一般为: 产气量、排水量、井口套压、液面深度、系统压力、气温、水温、气体成份、水成份、固体携出物和携出量、油嘴直径、 抽油机特征数(如冲程、冲次、工作时间和功能图等)等。 其中:系统压力和气温用于标准方气 量的换算;气体成份用以确定气体质量以及判断产气层位;水成份用以确定压裂液排出情况及指示水的来源;根据固体携出物和携出量判断井的工作状况;抽油机特征数用以了解抽油机的工作效率和工作状况等等。因此参数中经常直接影响产气量的 参数为排水量、井口套压和液面深度。 2 参数间的相互关系 211 计算基础数据选择 由于排采时各参数值都是变化的,有的甚至 出现跳跃和突变,计算时采用相对稳定段作为基础,即每个计算时段内的产气量、排水量、 套压和

煤层气井压裂标准样本

沁水盆地南部煤层气田枣园煤层气开发示范工程项目煤层气井压裂总体技术方案 中联煤层气有限责任公司

沁水盆地南部煤层气田枣园煤层气开发示范工程项目压裂总体技术方案 设计人: 审核人: 审批人: 中联煤层气有限责任公司

目录 前言 一、地质概况 二、基本数据 三、地质设计 四、施工工艺技术要求 五、安全环保及质量要求 六、应提交的资料报告 七、附录: 附录1、主要施工工序预测 附录2、压裂施工应上主要设备、材料 附录3、井身结构示意图

前言 枣圆煤层气开发试验区总体布置40口井,1999年首先实施第一批井—“9+1方案”,即以TL-003井为基础,再打9口井,组成10口井的井网。井网呈菱形分布(图3),菱形的短轴/长轴约为0.6;井网井距沿主裂缝方向(以TL-003井压裂资料为依据,主裂缝方位为N45°E。)约400m,垂直主裂缝方向不小于300m 。 “9+1方案”菱形井网周边上共布置有7口井,中心位置布有三口井。 井网其它各井钻井工程全部结束后,统一对煤层进行射孔压裂和排水采气试验。以整体改造,面积降压为基础,采取同步实施,单井监测,综合评估的方法评价煤层在井间干扰条件下的地层压力变化,吸附气的脱附情况以及出水产气能力。 在压裂工艺上,选取不同类型的压裂液,目的是通过压裂改造和测试手段,评价不同液体对煤层的改造程度和增产效果,从中优化出适合本地区储层特征的压裂液体系。

一、地质概况 沁水南部-该区为煤田普查区、详查区和精查区。西部和北部主要为普查区和远景区。目前共有煤层气井20口,其中16口排采井。已完成的煤田勘探(87口井)和煤层气勘探(21口井)能够比较好的控制了煤层的分布、主要煤层的厚度变化、埋深和煤岩煤质的变化;煤层气井资料比较好地揭示了煤层含气量渗透率和储层压力的分布特征。勘探结果表明,该区总体上为一个高渗富集区。该区主要地质特征如下: 1、煤层分布与沉积环境 勘探结果表明,该区煤层厚度大,区域上分布稳定,3号煤层厚度5~7m,平均6m;15号煤层厚度2~4m,平均厚度3m。煤田地质勘探所获得的煤层厚度及分布特征基本是可靠的。 煤层分布状态与其沉积环境密切相关。C3t早期主要为大范围的分流间湾相环境,P1s 早期主要为湖泊~沼泽相环境,上述沉积环境有利于成煤。 2、煤层实际含气量 近期煤层气井实测气含量资料表明,采用现代方法测得的含气量结果比煤田勘探提供的瓦斯含量高1/3~3/5。 根据TL-003井、TL-006井、TL-007井、晋试1井、潘2井和CQ-9井的实测结果,一般在20~30m3/t,平均23~25m3/t之间。在寺头断层以东地区,煤层含气量高,表现出由北向南含气量逐渐增高的趋势。煤层实际含气量高于煤田勘探成果。 3、含气饱和度 根据目前所掌握的资料,该区自北向南含气饱和度由低向高。TL-003井3号煤的含气饱和度只有85.6%,到潘庄地区则呈饱和或超饱和状态。这种变化规律,主要受控于保存条件。 对于这种构造特别稳定的煤层,煤层顶板的封盖性起到不可忽视的作用,高含气量井的3号煤层直接顶板主要为泥岩。 沁水南部3号煤层顶板岩性

煤层气井常用试井方法及应用

煤层气井常用试井方法及应用 学号: 2010050031 姓名: 张恒

煤层气井常用试井方法及应用 摘要:试井测试是目前能够准确获取煤层参数的有效方法。现从实际应用的角度,重点 介绍了煤层气井常用试井方法,并对各种试井测试方法的优缺点、适用范围进行了研究评价。结合煤层渗透率及储层压力的特征,探讨了试井测试方法在煤层气勘探开发中的应用 关键词:煤层气;试井方法;应用 0引言 煤层气的勘探、开发离不开煤层气试井,它是对煤层进行定量和定性评价的工艺方法,它在确定煤层基本参数方面具有明显的优势,其主要目的是获取储层的评价参数,为煤层气井的勘探开发和生产潜能评价提供科学的依据。但煤层气属于非常规天然气资源,它在储集、运移、产出机理方面与常规油气之间存在明显差异。目前试井测试的方法很多,主要依赖于常规油气井试井技术,尽管一些常规试井方法可用于煤层气试井测试,由于煤层气在储集、运移、产出机理方面与常规油气之间存在明显差异,这些试井技术的应用有一定的局限性。大量的研究资料表明,我国煤储层具有低压、低渗的特点,即煤层的储层压力和渗透率普遍较低。本文通过对煤层气常用试井方法研究评价,结合我国煤储层特点,探讨煤层气试井方法在煤层气勘探开发中的应用[1]. 1煤层气井常用试井方法 煤层气试井测试方法有很多,目前国内外常用的试井测试方法主要有DST测试、段塞测试、注入/压降测试、水罐测试,微破裂试验测试技术等 1.1DST测试[2] DST测试利用钻杆地层测试器进行,依靠地层流体的流动、产出和压力恢复的过程求取地层参数,是认识测试层段的流体性质、产能大小、压力变化和井底附近有效渗透率以及目的层段被污染状况的常用手段。煤层气井DST测试目的与常规油气井有些不同,由于煤层气多以吸附状态存在于煤储层中,因此煤层气井DST测试主要是了解煤储层中水的能量、割理的渗透能力、储层压力以及判断原始游离气是否存在,为下一步的改善措施提供参数依据。DST测试方法常用于渗透率和储层压力较高的储层中。 图1 DST测试半对数曲线示意图 1.2注入/压降测试[3] 注入/压降法试井是一种单井压力瞬变测试,或称不稳定试井,可以估算测试层和测试井的

煤层气排采技术规范

煤层气排采技术规范 煤层气企业标准 煤层气井排采工程技术规范 (试行) 2008-08-18发布 2008-08-18实施 煤层气企业标准 煤层气井排采工程技术规范 1 范围 本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。本标准适用于煤层气井的排采作业工程。 2 引用标准 下列标准所包含的条文,通过对标准的引用而成为本规范的条文。中联煤层气有限责任公司煤层气井排采作业管理暂行办法 SY/T 5587.6-93 油水井常规修井作业起下油管作业规程 SY/T 5587.7-93 油水井常规修井作业洗井作业规程 SY/T 5587.16-93 油水井常规修井作业通井、刮削套管作业规程 SY/T 5587.5-93 油水井常规修井作业探砂面、冲砂作业规程 SY/T5523-92 油气田水分析方法 SY/T6258-1996 有杆泵系统设计计算方法 3 排采总体方案的制定 3.1基本数据

3.1.1钻井基本数据 钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完钻日期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、补芯高。 3.1.2完成套管程序 完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。 3.1.3煤层深度、厚度及射孔井段 3.1.4解吸/吸附分析成果 包括含气量、含气饱和度、临界压力 3.1.5注入/压降测试及原地应力测试数据 包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压力梯度、破裂压力等。 3.2 排采总体方案 3.2.1排采目的 3.2.2排采目的层及排采方式 3.2.3排采设备及工艺流程设计 3.2.4排采周期 3.3工艺技术要求 3.3.1动力系统 1 3.3.2抽油机 3.3.3泵挂组合 3.3.4 地面排采流程 a.采气系统;

延川南煤层气复杂缝网整体压裂技术研究与应用

油气藏评价与开发 第8卷第3期2018年6月 RESERVOIR EVALUATION AND DEVELOPMENT 收稿日期:2017-11-23。 第一作者简介:赖建林(1986—),男,工程师,非常规及低渗透储层改造研究。延川南煤层气复杂缝网整体压裂技术研究与应用 赖建林,房启龙,高应运,魏伟 (中国石化华东油气分公司石油工程技术研究院,江苏南京210031) 摘要:由于煤储层端割理和面割理发育的特点,压裂容易形成复杂的裂缝形态,常规双翼裂缝模型并不适用于煤层气压裂设计优化。为了提高煤层气整体压裂开发效果,提出了煤层复杂裂缝等效渗流表征方法,将复杂的网络裂缝等效为高渗透带,通过优化高渗透带的大小和渗透率,获得最佳的整体压裂裂缝长度和导流能力。同时采用三维裂缝模拟软件进行体积压裂施工参数优化,并开展3口井压裂施工和井下微地震裂缝监测试验。结果表明,压裂裂缝波及范围较广,复杂程度较高,压后平均日产气量1376.7m 3,为实现煤层气田整体压裂开发提供了技术支撑。 关键词:煤层气;整体压裂;缝网压裂;体积压裂;参数优化 中图分类号:TE357文献标识码:A Research and application of integral network-fracturing of coal-bed methane of southern Yanchuan Lai Jianlin,Fang Qilong,Gao Yingyun and Wei Wei (Petroleum Engineering Technology Research Institute,East China Company,SINOPEC,Nanjing,Jiangsu 210031,China )Abstract:Due to the well-developed end cleat and surface cleat,the complicated fracture morphology forms easily in the coal-bed fracturing,and the conventional double-wing fracture model is not suitable for the optimization of the coal-bed methane fracturing design.In order to improve the production of the coal-bed methane,we proposed a characterization method for the equivalent seep?age of the complex fracture,in which the complex network fracture was equivalent to the high permeability zone.By optimizing the size and permeability of the high permeability zone,we got the best overall fracturing fracture length and fracture conductivity.Meanwhile,we also optimized the pumping parameters by using 3D fracturing simulation software,and carried out the fracturing op?eration and down-hole micro-seismic monitor tests of 3wells.The results showed that the fracture length covers a wide field and the complexity after fracturing is high,and the average post-fracturing daily production is 1376.7m 3/d.It provides a technical sup?port to the integral fracturing development of coal-bed methane.Key words:coal-bed methane,integral fracturing,network fracturing,SRV fracturing,parameter optimization 由于我国煤层低饱和、低渗透、低压的特点,煤 层气井产量普遍较低,故需要进行一定的增产改造, 最常用的就是水力压裂技术[1]。国内外煤层气开发 井压裂施工普遍采用活性水压裂液造缝携砂,但压 裂后的裂缝展布规律无法直接观测,分析与模拟的 关键问题之一就是确定裂缝的几何形状及其动态延 伸规律,常用的二维模型包括PKN 模型、KGD 模型[2]。由于煤储层割理裂隙发育,压裂缝通常是复杂的网缝结构,采用均质二维模型进行压裂设计模拟优化存在不足。因此,本文采用高渗透带等效煤层复杂裂缝,通过优化高渗透带大小和渗透率来确定煤层气压裂施工参数,形成了复杂缝网整体压裂设计优化方法,并在延川南煤层气田产能建设中进行了推广应用,为进一步提高煤层气田开发效果奠定基础。

相关主题
文本预览
相关文档 最新文档