当前位置:文档之家› 航空发动机零部件的自动化修理

航空发动机零部件的自动化修理

航空发动机零部件的自动化修理
航空发动机零部件的自动化修理

航空发动机构造及强度复习题

航空发动机构造及强度复习 一、基本概念 1. 转子叶片的弯矩补偿 2. 转子的自位作用 3. 动不平衡与动不平衡度 4. 静不平衡与静不平衡度 5. 挠轴转子与刚轴转子 6. 转子叶片的静频与动频 7. 转子的临界转速8. 转子的同步正涡动与同步反涡动 9. 转子的同步正进动与同步反进动10. 持久条件疲劳极限 11. 尾流激振12. 恰当半径 13. 陀螺力矩14. 压气机叶片的安全系数 15. 轮盘的破裂转速16. 应力比 17. 动刚度18. 动波 19. 低循环疲劳20. 轮盘的局部安全系数与总安全系数 二、基本问题 1.航空燃气涡轮发动机有哪几种基本类型? 2.航空发动机工作叶片受到哪些负荷? 3.风扇叶片叶尖凸台的作用是什么? 4.航空燃气涡轮发动机中,两种基本类型发动机的优缺点有哪些? 5.列举整流叶片与机匣联接的三种基本方法。 6.压气机转子设计应遵循哪些基本原则? 7.压气机防喘在结构设计方面有哪些措施? 8.压气机转子有哪三种结构形式?各有何优缺点? 9.发动机转子轴向力减荷有哪三项措施? 10.叶片颤振的必要条件是什么?说明颤振与共振的区别。 11.疲劳破坏有哪些基本特征? 12.燕尾形榫头与枞树形榫头有哪些主要特点? 13.说明疲劳损伤的理论要点。 14.轮盘有几种振动形式,各举例画出一个振型图。 15.航空发动机燃烧室由哪些基本构件组成? 16.排除叶片共振故障应从哪几个方面考虑?举例说明各方面的具体措施。 17.什么是等温度盘,为什么采用等温度盘,其温度条件是什么? 18.涡轮相比的结构特点是什么? 19.涡轮部件冷却的目的及对冷却气的要求是什么?在涡轮部件上采用的冷却、散热、 隔热措施有哪些?

航空发动机复杂零部件的新型测量技术

航空发动机复杂零部件的新型测量技术 发布时间:2014-6-30 13:37:51 近几年来,航空市场发展迅猛,国内的航空发动机制造技术也正加速发展。在技术提升的过程中,航空发动机从研发到制造,对计量和测量的需求都非常迫切。在新型号研制过程中,设计部门希望获得准确的测量数据,用于设计验证;制造部门需要更加高效地完成测量工作,提升合格率并控制制造成本。目前,国内对高精度测量设备的投入和对新型测量技术的采用程度,与国外先进企业的水平还有一定的差距。 航空发动机的零部件种类多、结构复杂,进而带来了复杂的测量任务。以整体叶盘为例,目前测量编程仍然是一个很大挑战,在现有的技术平台上,测量过程既要根据叶盘的整体结构设计测量路线,还要根据叶片型线考虑扫描过程控制。因此,测量设备本身的效率和精度的提升是必然的,同时,在设备的附属工具、测量软件、探测技术等方面寻找新的突破点,提升复杂零部件的测量效率和测量效果,也成为新型测量技术的发展趋势。 全球对航空发动机的性能追求从未停歇,对航空发动机零部件的要求也日益提高。海克斯康最新研发的Leitz三坐标测量机扫描技术、HP-O非接触测量和I++ Simulator模拟软件等,为解决航空发动机复杂零部件的测量难题,提出了新的手段和方法。 基于航空发动机复杂零部件的制造发展和质控需求,本文将介绍海克斯康计量新近推出的典型测量技术,包括高效率精密扫描技术、复合式高效高精密探测技术和提高测量机有效工时的仿真模拟软件技术等。 Leitz高精密高速扫描技术 触发式模拟扫描技术已经成为发动机精密零部件测量的主要探测方式,该技术能高速提供密集点云,实现几何量形状和位置的精密判定,但是,复杂曲面曲线的高密度扫描,需要设备能够实时根据曲率变化给出智能的调整,以期平衡点密度和效率的同时获取最精确的结果。Leitz最新的扫描技术,借助最先进的控制技术,控制系统根据机器特性和工件扫描状态,判断和调整扫描过程。多样的扫描形式和控制形式的实现,使三坐标测量机的扫描能力显著提升,面对复杂专业的测量任务更加得心应手。 1VHSS 扫描技术:可变速扫描 能快则快,当慢则慢。依据曲面曲率,在已知几何特征上实时连续调整测量速度。在此之前的扫描技术,需要人为编程控制机器扫描的速度,速度的设定,需要考虑机器性能、工件特点、效率要求等多种因素,对编程者的挑战是:想达到最佳的效率,要么具备经验,要么从此任务中开始积累经验。VHSS扫描则无关乎具体使用者的经验,机器根据自身的性能特点和待检测曲面的数据,自动优化扫描过程的速度,编程者直接得到最佳的测量效率。 在进行复杂零部件的扫描时,比如航空发动机叶片,传统的扫描方法需要手动调整速度,以避免探针和工件表面“失联”。采用来自Leitz Pathfinder的VHSS技术,机器可以在已知几何量情况下进行持续的调整,实时调整扫描。平直的部位扫描速度快,前尾缘附

航空发动机强度复习题(参考答案)

航空发动机构造及强度复习题(参考答案) 一、 基本概念 1. 转子叶片的弯矩补偿 适当地设计叶片各截面重心的连线,即改变离心力弯矩,使其与气体力弯矩方向相反,互相抵消,使合成弯矩适当减小,甚至为零,称为弯矩补偿。 2. 罩量 通常将叶片各截面的重心相对于z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 3. 轮盘的局部安全系数与总安全系数 局部安全系数是在轮盘工作温度与工作时数下材料的持久强度极限t T σ,与计算轮盘应力中最大周向应力或径向应力之比值。0.2~5.1/max ≥=σσt T K 总安全系数是由轮盘在工作条件下达到破裂或变形达到不允许的程度时的转速c n ,与工作的最大转速m ax n 之比值。max /n n K c d = 4. 轮盘的破裂转速 随着转速的提高,轮盘负荷不断增加,在高应力区首先产生塑性变形并逐渐扩大, 使应力趋于均匀,直至整个轮盘都产生塑性变形,并导致轮盘破裂,此时对应的转速称为破裂转速。 5. 转子叶片的静频与动频 静止着的叶片的自振频率称为静频; 旋转着的叶片的自振频率称为动频;由于离心力的作用,叶片弯曲刚度增加,自振频率较静频高。 6. 尾流激振 气流通过发动机内流道时,在内部障碍物后(如燃烧室后)造成气流周向不均匀,从而对后面转子叶片形成激振。 7. 转子的自位作用 转子在超临界状态下工作时,其挠度与偏心距是反向的,即轮盘质心位于轴挠曲线的内侧,不平衡离心力相应减小,使轴挠度急剧减小,并逐渐趋于偏心距e ,称为“自位”作用。

8. 静不平衡与静不平衡度 由不平衡力引起的不平衡称为静不平衡;静不平衡度是指静不平衡的程度,用质量与偏心矩的乘积me 表示,常用单位为cm g ?。 9. 动不平衡与动不平衡度 由不平衡力矩引起的不平衡称为动不平衡;动不平衡度是指动不平衡的程度,用me 表示,常用单位是cm g ?。 10. 动平衡 动平衡就是把转子放在动平衡机床上进行旋转,通过在指定位置上添加配重,以消除不平衡力矩。 11. 挠性转子与刚性转子 轴的刚性相对于支承的刚度很小的转子系统称为挠性转子;转子的刚性相对于支承的刚性很大的转子称为刚性转子。 12. 转子的临界转速 转子在转速增加到某些特定转速时,转子的挠度会明显增大,当转速超过该转速时,挠度又明显减小,这种特定的转速称为转子的临界转速,是转子的固有特性。 13. 涡动 转轴既要绕其本身轴线旋转,同时,该轴又带动着轮盘绕两轴承中心的连线旋转,这种复合运动的总称为涡动。 14. 自转与公转(进动) 轮盘绕轴旋转称为自转;挠曲的轴线绕轴承连线旋转称为公转或进动。 15. 转子的同步正涡动与同步反涡动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动; 16. 转子的协调正进动与协调反进动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动,对应的进动称为协调正进动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动,对应的进动称为协调反进动。 17. 持久条件疲劳极限 规定一个足够的循环次数L N ,以确定L N 下的“持久疲劳极限”,称为“持久条件疲劳极限”。

航空发动机维修工程

1.描述MGS-2和MSG-3的不同之处? MGS-2飞机维修大纲规定的维修要求主要是针对飞机系统单独项目的维修方式(定时、视情、监控维修方式);MGS-3飞机维修大纲规定的维修要求是针对飞机系统或分系统的维修工作(润滑/勤务,操作检查/目标检查、检查/功能测试、恢复和报废)。 MSG2:面向过程的维修 MSG2是针对维修方式的分析逻辑。人们把在波音747 项目上获得的经验应用到所有新研制的飞机上,为了做到这一点,更新了判定逻辑,删除了某些特定的747 过程信息,剩下的通用文件即为MSG2。根据MSG2方法制定的维修大纲,主要针对飞机的每类组件(系统、部件或设备)采用“从下往上”的分析方法,其分析结果是为指定的各组件确定适宜的维修方式。作为20世纪70年代制定新飞机维修大纲的指导文件,MSG2确定了三种维修工作方式,即:定时(HT)、视情(OC)和状态监控(CM)。 MSG3:面向任务的维修 MSG3是针对维修工作的分析逻辑。根据MSG3制定的维修大纲,主要针对飞机的系统/分系统的维修工作。采用“从上往下”或称“故障结果”逻辑方法,从飞机系统的最高管理层面而不是在部件层面进行故障分析,确定适合的计划维修任务,以防止故障发生和保证系统的固有可靠性水平。它所采用的“从上往下”的逻辑方法,着眼于系统功能失效时的潜在影响、确定故障的能力和故障及维修的成本。基于这个原理有效维修系统的目标是: 1、确保实现飞机固有的安全性和可靠性水平 2、当偏离发生时能恢复到固有的安全性和可靠性水平 3、能够从固有的可靠性不适合的项目中获得改进设计

2.简述系统/动力装置MSG-3分析过程包含的步骤 答:(1)重要维修项目(MSI)选择; (2)MSI的功能、故障、影响和原因分析; (3)维修工作上层分析(确定影响类别); (4)维修工作下层分析(确定维修工作); (5)确定任务间隔; (6)评估与应用; (7)反馈。

航空发动机制造为何需要智能制造生产线你get到了吗

航空发动机制造为何需要智能制造生产线,你get到了吗? 进入新世纪以来,信息技术快速发展,与工业化深度融合,其引发的新一轮科技革命和产业变革蓄势待发,揭开了全球新一轮工业革命浪潮的序幕。国际上许多国家纷纷推出了利用信息技术提升制造业水平的战略举措(如德国的工业4.0、美国的再工业化等),这些战略基本都是以“数字化、网络化、智能化”为特征,推行智能制造以改造传统工业并进行再工业化。构建需求分析 多年来,我国航空发动机制造企业将数字化生产线建设作为企业信息化重点,并初见成效,改变了传统的生产制造模式,有力保障了科研/批产型号任务的交付。但根据我国航空发动机生产线多品种、小批量,科研、批产混线生产的特点以及生产线总体水平的现状,建设具有“数字化、网络化、智能化”特征(见表1)的智能制造生产线,还需进行3 个方面的改进:(1)制造工艺的进步:面向工序的工艺到面向过程的复合工艺管理。传统的工艺设计较多关注了面向工序的关键制造工艺研究,开展智能制造需要建立产品、工艺、制造紧密关联的工艺模型;同时精细工艺,实现工艺过程关键因素可监测、可控制、可优化;减少对人的经验的依赖,消除人为影响,知识显性化、结构化、自学习、自进化,从而促进生产线整体能力增效。

(2)信息化发展:由传统信息化应用向信息物理融合的一体化软硬集成体系发展。通用工具(CAD/CAM/CAE)向以产品对象为专业化应用核心的专用工具集发展;系统集成不仅仅要解决IT 工具的集成,更关键的是解决设备联网、软硬集成和相互嵌入;开展信息物理一体化建模、标准化、支撑大数据/ 云计算环境的建立等。 (3)装备配备的转变:由传统工艺流水配置装备向与智能制造匹配配备。推行智能制造,引进机器人,不仅降低人工成本,高度的自动化和柔性化更符合智能制造需要,通过设备联网组建智能化装备集群,逐步推进自适应加工,人和机器的融合,探索3D 打印等新技术,简化制造过程。航空发动机智能制造生产线架构研究智能制造生产线的内涵航空 发动机智能制造生产线是在继承传统数字化生产线基础上,基于企业级工业互联网络和自动化制造装备,引入智能传感技术,建设生产线赛博物理系统,旨在提高生产线柔性、快速响应能力及制造能力,适应航空发动机多品种、小批量生产模式带来的定制需求挑战,提高航空发动机产品研制质量和效率,其架构如图1 所示。智能制造生产线主要组成 01 生产线智能管控 建立涵盖技术、质量、生产等业务综合管理的生产线指挥调度中心,基于生产线智能决策系统,对生产线运行状态及时掌握,对生产过程中常见的延期交货、物料短缺、设备故障、

航空发动机强度与振动

航空发动机强度与振动课程设计报告 题目及要求 题目基于 ANSYS 的叶片强度与振动分析 1.叶片模型 研究对象为压气机叶片,叶片所用材料为 TC4 钛合 金,相关参数如下: 材料密度:4400kg/m3弹性模量:1.09*1011Pa 泊松比: 0.34 屈服应力:820Mpa 叶片模型如图 1 所示。把叶片简化为根部固装的等截

面悬臂梁。叶型由叶背和叶盆两条曲线组成,可由每条曲 线上 4 个点通过 spline(样条曲线)功能生成,各点位置 如图 2 所示,其坐标如表 1 所示。 注:叶片尾缘过薄,可以对尾缘进行修改,设置一定的圆角 2.叶片的静力分析 (1)叶片在转速为 1500rad/s 下的静力分析。 要求:得到 von Mises 等效应力分布图,对叶片应力分布进行分析说明。并计算叶片的安全系数,进行强度校核。 3.叶片的振动分析 (1)叶片静频计算与分析 要求:给出 1 到 6 阶的叶片振型图,并说明其对应振动类型。

(2)叶片动频计算与分析 要求:列表给出叶片在转速为 500rad/s,1000rad/s,1500rad/s, 2000rad/s 下的动频值。 (3)共振分析 要求:根据前面的计算结果,做出叶片共振图(或称 Campbell 图),找出叶片的共振点及共振转速。因为叶片一弯、二弯、一扭振动比较危险,故只对这些情况进行共振分析。 3. 按要求撰写课程设计报告 说明:网格划分必须保证结果具有一定精度。各输出结果图形必须用ANSYS 的图片输出功能,不允许截图,即图片背景不能为黑色。 课程设计报告 基于 ANSYS 的叶片强度与振动分析1. ANSYS 有限元分析的一般步骤 (1)前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形

航空发动机总资料

第一章概论 航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。P3 空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。P4 燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。 由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。P5 航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。涵道比小于1为小涵道比,大于4为大涵道比,大于1小于4为中涵道比,加力式涡扇发动机涵道比一般小于1,甚至0.2~0.3。P8~9 喷气时代(主流),服役战斗机发动机推重比从2提高到7~9,定型投入使用的达9~11,我国到8。民用大涵道比涡扇发动机的最大推力已超过50000daN 巡航耗油率从20世纪50年代涡喷发动机 1.0kg(daN·h)-1下降到0.55kg(daN·h)-1,噪声下降20dB,NO X下降45%。服役的直升飞机用涡轴发动机的功重比从2Kg/daN提高到4.6kW/daN~7.1kw/daN。发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2/1000EFH~0.4/1000EFH(发动机飞行小时),民用发动机为0.002/1000EFH~0.02/1000EFH。战斗机发动机热端零件寿命达

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

CFM56-7B飞机发动机部件位置及功能

第70-80章: 发动机系统 名称 反推控制手柄 启动电门 发动机启动电门, 发动机点火选择电门 发动机附件装置(EAU)位置 中央操作台、推力手柄上 驾驶舱P5面板上 驾驶舱P5前顶板 在电气设备(EE)舱内 E3架上 主电子舱E3架上功能 提供反推的放出和收回的信号向发动机启动系统提供启动信号的输入…….. 启动电门选择启动模式,点火选择电门选择点火模式控制反推装置(T/R)自动再收入操作,帮助做反推装置控制系统的故障分析,控制驾驶舱内P5后舱顶板上的反推灯计算机存储每台发动机的振动值,提供帮助?发动机配平平衡操作的振动平衡? 发动机主要的控制器,控制和监控容纳发动机滑油,从回油中清除空气,使你做滑油而检查和充加滑油系统冷却IDG滑油,同时加温发动机燃油供给发动机伺服系统和燃油系统的燃油

增压燃油 启动活门打开提供气压动力至起动机测量流至燃油总管和燃油喷嘴的燃油质量流量 提供一号轴承振动信号 AVM信号处理器 发动机电子控制组件(EEC) 滑油箱 IDG滑油冷却器 燃油滤压差电门 液压机械组件(HMU) 燃油泵 启动活门 燃油喷嘴油滤 燃油流量传感器 1号轴承振动传感器位置: 在风扇机匣 风扇机匣2:00钟位置 风扇机匣3:00位置 风扇机匣7:00位置 风扇机匣8:00钟位置 风扇机匣8:00钟位置

AGB的后面,在发动机风扇 机匣左侧08:00钟位置 风扇机匣上(9:00)高于起动机风扇机匣10:00钟位置 风扇机匣10:00钟位置 在发动机内部,接头在风扇机 匣上,发动机滑油箱后部,发 哦的那个叫铭牌的上面 风扇机匣的右侧下部 风扇框架上3:00钟位置 风扇框架6:00钟位置 点火激励器 风扇框架压气机机匣垂直振 动传感器(FFCCV) 防漏活门 VBV作动筒 VBV门 LPTCC活门提供高能电压到点火电嘴提供风扇框架压气机机匣垂直面的振动值 风扇框架后面在4: 00、"8:00钟VBV作动筒接受指令作动,带动摇臂作动VBV门,打开到指令位置风扇框架上一圈,12个

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.doczj.com/doc/916271026.html,

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

航空发动机强度复习总结

1转子叶片强度计算的目的是为了保证所设计的转子叶片能可靠工作,又使其尽可能轻。 2转子叶片受到的载荷:叶片自身质量产生的离心力;气流的横向气体力(弯曲应力和扭转应力);热负荷;振动负荷。 3简化假设和坐标系:将其看做根部完全固装的悬臂梁;叶片仅承受自身质量离心力和横向气体力,只计算拉伸应力和弯曲应力;扭转中心(刚心),气体压力中心与中心三者重合,离心力与气体力均作用于重心。 4计算点的选择:发动机设计点(H=0,V=0,n=n max );低空低温高速飞行状态(最大气体力状态H=0,V=V max ,n=n max ,t=233K );高空低速飞行状态(最小气体力状态H=H max ,V =V min ,n =n max ,t =t H ) 5推导气动力:(ρ2m c 2am t 2m ×1)c 2am ? ρ1m c 1am t 1m ×1 c 1am =2πQ Z m ρ2m c 2am 2? ρ1m c 1am 2 ; p 1m ?p 2m t m ×1=2πZ m Q p 1m ?p 2m ;p xm =2πZ m Q ρ1m c 1am 2?ρ2m c 2am 2)+ (p 1m ?p 2m ;p ym =2πZ m Q (ρ1m c 1am c 1um ?ρ2m c 2am c 2um ) 6离心力弯矩:若转子叶片各截面重心的连线不与Z 轴重合,则叶片旋转时产生的离心力将引起离心力弯矩.离心力平行于Z 轴所以对Z 轴没有矩,离心力必须垂直于转轴在X 轴方向的分力必然为0. 7罩量:通常将叶片各截面的重心相对于Z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 8罩量调整:合理地选择叶片各截面重心的罩量,使之既保证叶片在发动机经常工作的状态具有较低的应力,又照顾到在其它各种工作状态下的应力都不太大。在一般情况下,仅以根部截面作为调整对象。 9压气机与涡轮叶片所受气动力方向相反,重心连线偏斜方向总是与叶片所受的气体力的方向一致。 10以离心力弯矩补偿气体力弯矩时,还必须注意到这两个弯矩随工作状态的变化.往往取最大气体力弯矩和最小气体力弯矩的平均值作为离心力弯矩补偿的目标。 11弯曲应力:通过截面重心,有一对惯性主轴η、ξ,对η轴的惯性矩最小,对ξ轴的惯性矩最大。在距离η轴最远的A 、B 、C 三点在仅有作用时,弯曲应力最大。 12压气机叶片n s =?s ?总,max 一般n s =2.0~3.5 ;涡轮叶片n T =?T s ?总,max (一般n T =1.5~2.5) 13影响叶片强度:扭转应力(两个扭转力矩方向常常相反,所以可忽略);热应力(热端部件影响,热冲击反复产生致热疲劳);扭向(扭向愈大,对叶片截面上离心拉伸应力分布不均匀的影 响愈大);蠕变(采用叶片材料的蠕变极限?a /T t 作为许用应力,安全系数 n T =?a T t ?总,max (一般n T =1.5~2.5);;叶片弯曲变形(由于变形产生的附加弯矩,将使离心力弯 矩对气体力弯矩的补偿效果更好);叶冠(增大应力项);其它因素(不同的叶根形状将使叶片上的离心拉伸应力产生明显的分布不均现象) 20轮盘的破损形式:1,在轮盘外缘榫头部分断裂;2,轮盘外缘的径向裂纹,尤其在固定叶片的销孔处;3,由于材料内部缺陷(例如松孔或夹杂)导致盘中心断裂;4,由于轮盘在高温下工作,容易引起蠕变(甚至局部颈缩),使盘外径增大,最后导致轮盘破裂。 21轮盘强度计算主要考虑负荷:1安装在轮盘外缘上的叶片质量离心力以及轮盘本身的离心力;2沿盘半径方向受热不均引起的热负荷。其他负荷:1由叶片传来的气动力,以及轮盘前后端面上的气体压力;2机动飞行时产生的陀螺力矩;3叶片及盘振动时产生的动负荷;4盘与轴或盘与盘连接处的装配应力,或在某种工作状态下,由于变形不协调而产生的附加应力。 22轮盘强度计算的假设:1轴对称假设;2平面应力假设;3弹性假设。 23轮盘强度计算基本公式方程:平衡方程、几何方程、物理方程。计算方法:力法、位移法。 24轮盘的应力有三部分组成:1,由应力、位移、温度的边界条件决定的,它们通过常数K1和K2来表示;2,轮盘以角速度ω旋转引起的离心应力;3,由于温度影响引起的热应力。 25等厚圆环法的基本思路:1,将剖面形状复杂的轮盘沿半径方向划分成有限个段,每段构成一个等厚圆环,相互套接在一起,虽然整个轮盘的温度分布沿径向是不均匀的,但对于每

航空发动机复杂结构零件加工技术探索

航空发动机复杂结构零件加工技术探索 摘要:现阶段,科学技术的发展迅速,航空事业的发展也有了很大的改善。航 空发动机作为飞机的动力装置,是飞机的心脏,其设计与制造技术对于航空工业 的发展起着关键性的作用,是体现一个国家科技水平、军事实力和综合国力的重 要标志之一。航空发动机零件结构复杂、制造难度大、技术含量高,代表制造业 发展的方向,被称为制造业一颗璀璨的明珠。数控加工技术和设备起源于满足航 空航天制造的需求,并在不断满足高、精、尖加工要求的过程中发展提高,成为 现代航空航天制造业的基础性关键技术。国内外航空航天制造业一直是数控技术 与数控机床的最大用户,在航空航天制造企业中,数控机床制造企业的比例高达80%以上。 关键词:航空发动机;复杂结构;零件加工技术探索 引言 航空发动机零件的制造具有材料难加工、形状结构复杂、容易变形振动、加 工精度高等特点,代表着一个国家制造技术的实力和国防现代化的发展水平。以 航空发动机叶片、叶轮、机匣、盘轴类零件为研究对象,分析了这些典型零部件 的材料和结构特性、加工工艺方法与特点、加工装备等,总结了航空发动机零件 加工对数控机床性能与功能的要求,并展望了航空发动机制造技术的发展趋势。 1加工复杂结构零件的机床工具特征 刀具在解决航空难加工材料复杂结构零件的加工中起着至关重要的作用。先 进的航空产品要求航空零件具有更优异的性能、更低的成本和更高的环保性。加 工工艺要求具有更快的加工速度、更高的可靠性、高重复精度和可再现性。航空 钛合金、高温合金零件难切削的工件材料、复杂而薄壁的形状、高精度的尺寸和 表面粗糙度要求及大的金属去除量等特点,对刀具质量一致性提出了更高的要求。现代高效精准加工要求刀具具有高精度、高耐磨性、高抗冲击性和高可靠性的特点,即具有高性能刀具的全部特征。高质量的刀具方案明显标志是刀具结构形式、刀具材料与被加工零件的材料、结构相适应。国外各著名数控机床制造商不遗余 力的开发高性能数控机床,进一步针对高动态响应、高精度和高刚性等展开研发。高刚性以及高承载性能的线性导轨确保了全行程内光滑连续地移动,获得了工件 的高几何精度和表面质量,也保证了高加工效率。机床的高刚性减小了加工系统 的振动,延长了刀具使用寿命。高性能刀具涉及刀具材料、刀具涂层技术、刀具 结构设计与优化、刀具配套技术及刀具的应用等很多方面。刀具结构的创新体现 在刀具结构的优化、切削负荷的合理分布、断屑槽型以及各种新型可转位刀片结构。零件的精准加工对刀具的装夹提出了新的要求,它要求装夹精度高、径向圆 跳动小、夹持刚性好、结构紧凑且操作简单等。 2典型零件加工 2.1叶片加工 航空发动机叶片多采用钛合金、高温合金等材料,材料切削性能差,尺寸精 度要求严格,表面质量要求高。叶片的加工部位主要包括叶身型面加工、叶片榫 头和榫齿加工、阻尼台加工、安装板及叶冠加工。叶片加工的复杂性在于叶身部 分由复杂曲面组成,曲面按成形原理可分为直纹面和非直纹面,直纹面分为可展 和不可展。对于可展直纹面,可以采用常规机械加工技术加工。对于不可展直纹

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

相关主题
文本预览
相关文档 最新文档