当前位置:文档之家› 全国大学生数学建模竞赛2004优秀论文:C、D题()

全国大学生数学建模竞赛2004优秀论文:C、D题()

全国大学生数学建模竞赛2004优秀论文:C、D题()
全国大学生数学建模竞赛2004优秀论文:C、D题()

C 题之一(全国一等奖)

酒精在人体内的分布与排除优化模型

桂林工学院,袁孟强,王哲,张莉

指导教师:数模辅导组

摘要:酒精进入机体后,随血液运输到各个器官和组织,不断的被吸收,分布,代谢,最终排除体外。为了研究酒精在体内吸收,分布和排除的动态过程,以及这些过程与人体反应的定量关系,本文建立了一个酒精在人体内的分布与排除优化模型,在药物动力学的一室模型的基础上,进行优化,改进,分别建立了酒精在人体内分布的房室模型Ⅰ'和房室模型Ⅱ',以及酒精在人体内的静态排除模型Ⅰ'和动态排除模型Ⅱ',导出模型的体液酒精浓度的状态函数,用常数交叉拟合方法,采用VB 编写程序,得到两个重要系数01k 和10k 。根据此模型,计算的体液酒精浓度理论值与实验值十分相符,并很好地解释了给出的所有问题,得到一些有价值的结论。

关键词:房室模型,排除模型,体液酒精浓度,动态和静态的转换

酒精在人体内的分布与排除优化模型

一、问题的重述

国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?

参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:

1. 对大李碰到的情况做出解释;

2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:

1)酒是在很短时间内喝的;

2)酒是在较长一段时间(比如2小时)内喝的。

3. 怎样估计血液中的酒精含量在什么时间最高。

4. 根据你的模型论证:如果天天喝酒,是否还能开车?

5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据

1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下(表—1):

二、模型假设

1、酒精的转移速率,及向体外排除的速率,与该室的血酒浓度成正比。

2、酒精的转移速率,及向体外的排除速率,与时间有关,与空间(人

体的各个部分)无关。

3、中心室与体外有酒精交换,及酒精从体外进入中心室,最后又从中

心室排出体外。与转移和排除的数量相比,酒精的吸收可以忽略。

三、模型建立与求解

房室模型Ⅰ(在短时间内喝下酒精量为0D )

在短时间内喝下酒精量为0D ,酒精进入胃,人体吸收酒精,然后排除出体外。吸收酒精的过程相当于酒精进入体液(中心室)的过程,全过程可以简化为下图:

建模过程:

0D ——短时间内进入胃的酒精;

01k ——为胃室(吸收室)进入中心室的转移速率系数(由人体机能确定的常数);

)(0t x ——是t 时刻胃室的酒精;其微分方程为:

()()()?

??=-='0000100D x t x k t x (1)

)(1t x ——是t 时刻进入中心室的酒精,其微分方程为:

()()()()()?

??=+-='t Vc t x t f t x k t x 1101101

(2)

酒精进入中心室的速率为:)(0010t x k f = (3)

将方程(1)的解代入(3)得: ()t k e k D t f 010100-= (4)

房室模型Ⅱ(在较长一段时间内喝酒)

假设在较长的一段时间内喝下的酒是匀速进入胃室,则简化如下图:

in f 常数

建模过程:

in f ——为酒精进入胃的速率: t

D f in ?=

0,t ?为喝酒时间。

out f ——为酒精从中心室排除体内的速率 0f ——为酒精进入中心室的速率

01k ——为胃室进入中心室的转移速率(由人体机能确定的常数) 10k ——为是酒从中心室向外排除的速率系数。 )(0t x ——是t 时刻胃室的酒精,微分方程为:

()()?

?

?=+-='00)(00010

x f t x k t x in (5) )(0010t x k f = (6)

)(1t x ——是t 时刻进入中心室的酒精 将方程(5)的解代入(6)得:

()()

t k in

e k

f t x 01101

0--=

(7)

()()

t k in e f t f 0110--= (8)

静态排除模型Ⅰ’

与房室模型I 配套的静态酒精排除模型Ⅰ‘

)(1t c ——中心室的血酒浓度; V ——人体体液量和人体血液量;

酒精进入中心室的速率: ()t k e k D t f 010100-=

)(1t x ——中心室的酒精量;微分方程为:

()()()

()()?

??=+-=t Vc t x t f t x k t x 110110'1 (9)

10k ——酒精从中心室向体外排除的速率系数(由人体机能确定的常数)

由方程(9)得: ()()

V

t f t c k t c 0110'1+

-= (10) 对应的通解为:()()???

??+=?--c dt e V t f e t c t k t k 101001

微分方程的解为: ()()??

? ??+=?--c dt e V t f e

t c t k t

k 101001()??

?

??+=?--c dt e V k D e

t k k t

k 011010010 ()???? ??+-=

--c e k k e V k D t k k t k 01101001100101???

? ??+-=--t k t k ce e k k V k D 100101100101 令 0)0(1=c 得:10

011

k k c -=

.

()()

t k t k e e k k V k D t c 100101

1001011

----=

.

根据参考数据表——1,已知:短时间内进入胃的酒精0D ,人体体液量V 和一批实验数据(i t ,)(1i t c )(231≤≤i )。用交叉常数拟合原理在VB 环境中编写程序[]2,利用该程序算出两个重要系数01k 和10k ,给出模型的状态函数.

若初始值设为)0(00≠c c ,则01

1001001

k k k D V c c --

=

()???

? ??++-=

---t k t k t k e c e c e k k V k D t c 10010100011001011 动态排除模型Ⅱ'

与房室模型Ⅱ配套建立动态酒精排除模型Ⅱ'.

)(1t c ——中心室的血酒浓度; V ——人体体液量和人体血液量; 酒精进入中心室的速率:

()()

t k in e f t f 0110--=

)(1t x ——中心室的酒精量;微分方程为:

()()()

()()?

?

?=+-=t Vc t x t f t x k t x 110110'1 (11) ()()t Vc t x 11= (12)

10k ——酒精从中心室向体外排除的速率系数(由人体机能确定的常数). 由方程(11)得: ()()

V

t f t c k t c 0110'1+

-= (13) 对应的通解为:()()??

?

??+=?-c dt e V t f e t c t k t k 101001.

将0)0(1=c 及()()

t k in e f t f 0110--=代入得:

()??

???????? ??--+--=--t k t

k in

e k k k e k k k V

f

t c 100110011001101011111(240≤≤t ) (14) 四、 酒过程的描述

1、在短时间内喝下酒精量为0D 用静态排除模型Ⅰ'描述:()()

t k t k e e k k V K D t c 100101

1001011

----=.

2、在较长一段时间内喝酒0D

用动态排除模型Ⅱ'描述喝酒的过程,用静态排除模型Ⅰ'描述酒后的过程.

即先用状态函数

()??

???????? ??--+--=--t k t

k in

e k k k e k k k V

f

t c 100110011001101011111 描述喝酒的过程,然后用状态函数

描述酒后的过程.

3、天天喝下酒精量为0D

用动态排除模型Ⅱ'描述第一天喝酒(喝一小时)的过程,用静态排除模型Ⅰ'描述酒后23小时内的的过程,用动态排除模型Ⅱ'描述第二天喝酒(喝一小时)的过程,用静态排除模型Ⅰ'描述第二天酒后23小时内的的过程,再用动态排除模型Ⅱ'描述第三天喝酒(喝一小时)的过程,用静态排除模型Ⅰ'描述第三天酒后23小时内的的过程……

()??

???????? ??--+--=

--t k t

k in e k k k e k k k V

f t c 100110011001101011111???→?第一天 ???

? ??+---t k t k ce e k k V k D 100101100101???→?第二天()()

t

k t k e e k k V K D t c 100101

1001011----=

()??

???????? ??--+--=

--t k t

k in e k k k e k k k V

f t c 100110011001101011111???→?第二天 ???

? ??+---t k t k ce e k k V k D 100101100101???→?第三天……

五、参数的选择

一瓶啤酒的酒精量[]4:)24192%8.4(8.0)(6300mg ml D ()比重=??=. 人体体液:()())

()(百毫升比重体重4301.1%5.67)(701

=??=-kg V 速率系数

[]

5:???==2.083

.110

01k k

两小时内慢慢喝下两瓶啤酒的输入率:

??? ??=?=h mg f in 241922

224192 六、拟合效果.

中心室中酒精含量(毫克/百毫升)浓度状态函数)(1t c 拟合效果图

效果图显示拟合程度极高,说明参数的选择与客观情况相符合.

七、问题分析

问题1的分析:

大李在中午喝了一瓶啤酒下午6点检查时,利用静态排除模型:

()()()()???

??

?

????

?==???? ??+-=---.;1110001100101

011001t Vc t x e D t x ce e k k V k D t c t k t k t k ;

???

??==<=.6.5483)6(1.81801

)6(/20/0234.19)6(1

01毫克毫克;百毫升(标准);

毫克百毫升毫克x x c 由浓度状态函数在6=t 时的浓度:200234.19)6(1〈=c ,可知大李此时符合新的驾车标准.

紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家.检测时距晚饭喝的那瓶啤酒已过了八小时,其胃中酒精及体液中的酒精含量分别为:

()()()???

??==>=毫克);毫克);

百毫升(标准);毫克(33.89888(6.54838x /209031.2081

01x c 由浓度状态函数百毫升(标准)毫克/209031.20)8(1>=c 可知,检查时被定为饮酒驾车.

之所以被定为饮酒驾车,关键是此时方程()()()

V

t f t c k t c 0110'1+-=中的初始条件()0234.190'1=c 而不是第一次喝酒的()00'1=c .

问题2的分析:

在很短时间内喝了3瓶啤酒,问多长时间内驾车就会违反新的驾车标准. 根据静态排除模型Ⅰ’:

3瓶啤酒的酒精量:毫克)(725760=D ;

浓度状态函数为 ()()

t k t k e e k k V k D t c 100101

1001011

----=

.

代入数据得:()()

t t e e t c 83.120.0149076.189---=. (15)

若违反新的驾车标准,则:()??? ?

?>百毫升毫克201t c ,根据人体体液酒精浓度

曲线图可知,喝酒后约在t=0.07小时(42秒)与t=11.24小时之内驾车会违反新标准。将t=0.07,t=11.24分别代入方程(15)检验得出:

()()??

?>=>=200122.2024.1120

1490.2007.01

1c c 通过验证,证明观测值基本接近实际值。

问题3的分析:

在较长一段时间(比如2小时)内喝3瓶啤酒,多长时间内驾车就会违反新标准.

假设匀速喝酒,则t

D f in ?=

此过程分两阶段:(1)在喝酒过程中,多少时间后驾车会违反新标准。

(2)喝酒之后,多长时间内驾车会违反新标准。

根据动态模型‘

Ⅱ:

()??

???????? ??--+--=--t k t

k in

e k k k e k k k V

f

t c 100110011001101011111 ??

???????? ??--+--?=

--t k t

k e k k k e k k k t V D 100110010101101001111 (16)

(1) 由人体体液酒精浓度曲线观测出:当t (20≤≤t )大于0.62小时(约

37.2分钟)时,体液酒精浓度大于()201>t c 毫克,把已知酒精数据

(毫克725760=D ,2.0,83.11001==k k ,),(百毫升430=V 代入方程(15)检验得:

()20125.2062.01>=c

通过数据验证,证明观测值基本接近实际值。

(2)由阶段(1)的已知数据算出,当t=2小时(即停止喝酒时)人体酒精为:

()百毫升

毫克7371

.10521=c

此时,根据胃里剩余的酒精方程:()t k e D t x 0100-= 得出: )(38638)2(0mg x =

以2小时作为零时刻,设状态初始值为0c ,则取()210c c =,此时静态排除模型为:

()()???

? ?????? ??--+-=

--t k t

k e k k k D V c e k k V k D t c 10010110010101100101121 根据此模型,可得曲线:

可观测出:当()201=t c 时,t(t>2)的值约在11.67附近。再将t=11.67代入()t c 1进行检测得:

()0228.2067.111=c (毫克/百毫升)

通过数据验证,证明观测值基本接近实际值。

结论:若连续2小时均匀喝下3瓶啤酒,则在0.62与13.67小时之内驾车会违反新标准。

问题4的分析:

估算出血液中酒精含量何时达到峰值。

最高值的估计要分两种情况讨论:???一段时间喝完)据动态排除模型(很长喝完的情况)据静态排除模型(一次

1、据静态排除模型(一次喝完的情况)

酒精进入机体之前,胃里的酒精浓度为0,当喝酒后,胃里的酒精浓度逐渐增大,因为存在着酒精进入中心室的过程,根据人体机理可知,out in f f >。当胃里的酒精浓度等于中心室的酒精浓度时,out in f f =,此时血液中酒精含量达到最高值。

由静态排除模型得:()()

t k t k e e k k V k D t c 100101

1001011

----=

若要使()t c 1的值达到最高,则要求()0'1=t c 即:

()()

()

010011001011001

0'1=+--=

-t k t k e k e k k k V k D t c

代入已知数据得:

t

t e D e D t c 2.0083.10'

1

9

.700366.043063.183.183.1)(---?-?-=

算出:t=1.36小时

即:喝酒1.36小时后,血液中酒精含量最高。

(1) 根据动态排除模型(酒是在很长一段时间内喝完)

喝酒时,由于酒量在不断的增加,根据人体机理可知,胃中的酒精浓度始

终是大于中心室的酒精浓度,即out in f f >,易知血液中的酒精浓度()t c 1是一个递增的函数。那么在这阶段中,血液的酒精含量的最高值为停止喝酒时血液中的酒精含量。

运用动态排除模型:

()??

???????? ??--+--=--t k t

k in

e k k k e k k k V

f

t c 100110011001101011111 可计算出最值。

喝完酒后,胃中的酒精浓度仍然大于中心室的酒精浓度,此时,out in f f >.随着时间的推移,胃中的酒精浓度在不断的减少,而血液的酒精浓度不断增加,这就使得当out in f f =时,血液的酒精浓度达到最高值(即()0'1=t c ),若代入具体数据就可算出最大值。

问题5的分析:

根据我们建立的模型论证:如果天天喝酒,是否还能开车?天天喝一瓶酒的数学模型见图

一个人天天喝酒,如果每天只喝一瓶啤酒第二天即12个小时后体内的血酒浓度()t

远远小于20毫克/百毫升所以仍能开车;

c

1

天天喝两瓶酒的数学模型见图:

一个人天天喝酒,如果每天只喝两瓶啤酒第二天即12个小时后体内的血酒浓度()t c 1远远小于20毫克/百毫升所以仍能开车;

天天喝三瓶酒的数学模型见图:

如果每天喝三瓶啤酒,12小时后体内的血酒浓度为18.920毫克/百毫升,比新的国家标准低但很接近,此时仍可以开车却比较危险

注:据资料表明人体酒精浓度达到200(毫克/百毫升)—300(毫克/百毫升) 会使人昏迷,一般人喝五瓶啤酒(含酒精量120960毫克)后,(据静态排出模型)在一小时左右浓度达到213.6729毫克/百毫升已使人昏迷,因而研究五瓶啤酒以上的酒精量已没有意义。

结论:每天喝三瓶以下的啤酒第二天不违反新的国家标准仍可以开车,而喝四瓶到五瓶就不能再开车了,五瓶以上大多数人都会昏迷

问题6的分析:

通过以上论述,特给爱喝点酒的司机提个醒,希望他们能平安。

科学研究表明,人体内每百毫升血液中酒精含量达到20毫克,会出现头晕脑胀、兴奋健谈;达 60~80毫克时,感情容易冲动,步态不稳;达120~160毫克时,神经进入抑制状态,开始昏睡;达200~400毫克时,意识朦胧,呈木僵状态,如果达400~500毫克时,就可能导致脑损伤和呼吸麻痹,从而死亡。

根据状态函数与静态排除模型的分析方法可得出:

喝完一瓶啤酒经5.74小时后,血液的酒精浓度仍为20.0383,超过新的驾车标准,为了安全,建议司机饮酒八小时后驾车。.

喝完两瓶啤酒经9.2小时后,血液的酒精浓度仍为20.063,饮酒的司机在11小时内不宜驾车。

喝完四瓶啤酒经12.66小时后,血液的酒精浓度仍为20.086,饮酒的司机在14个小时内不宜驾车。

综上所述,为安全起见,对于爱饮酒的司机,每天的饮酒量不宜超过两瓶啤酒。若饮酒量超过四瓶,第二天司机不宜驾车。

八、模型评价

1、本模型绘出状态函数后,极好的解决了喝酒过程的全程数学描述,定量的解

决了所提出的问题。

2、本模型微分方程的待定系数求解方案没有利用现成的方法。而是自行编程解

决,给此类模型提供了一个利用的程序。

3、本模型通俗易懂,为大学生所接受,但反复运用状态函数,很有特色,尤以

初值问题多次循环反复,妙用至极。

4、有了本模型,人们对喝酒过程有一个较为精确的定量认识。从事有一定危险

工作的人们应该如何正确的喝酒的依据。

5、本模型可推广到有毒物质在人体的分布与排除。这对在有毒物场所工作的人

起到一定的提醒作用。

参考文献:

1、[ISBN 7-04-004505-2 ] 姜启源,《数学模型》(第二版),北京:高等教育出版社,

1993年8月

2、[ISBN 7-04-011943-9] 徐全智杨晋浩,《数学建模》,北京:高等教育出版社,2003年七月

附件

常数拟合流程图

说明:ε是精度,D是酒精量,V是人体体液量,M是实验的酒精含量数

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

大学生数学建模竞赛组队方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):成都纺织高等专科学校 参赛队员(打印并签名) :1. XXX(机电XXX) 2. XXX国贸XXX) 3. XXX(电商XXX) 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

目录 一、问题的重述 (1) 1.1 背景资料与条件 (1) 1.2 需要解决的问题 (1) 二、问题的分析 (2) 2.1 问题的重要性分析 (2) 2.2问题的思路分析 (3) 三、模型的假设 (4) 四、符号及变量说明 (4) 五、模型的建立与求解 (4) 5.1建立层次结构模型 (4) 5.2构造成对比较矩阵 (5) 5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6) 5.4一致性检验 (7) 5.5层次分析模型的求解与分析 (8) 5.5.1 构造成对比较矩阵 (8) 5.5.2计算25优秀大学生的综合得 (9) 六、模型的应用与推广 (11) 七、模型的评价与改进 (12) 7.1模型的优点分析 (12) 7.2模型的缺点分析 (12) 7.3模型的进一步改进 (12) 八、参考文献 (13) 附件一 (14) 附件二 (16)

2013全国数学建模大赛a题优秀论文

车道被占用对城市道路通行能力的影响 摘要 随着城市化进程加快,城市车辆数的增加,致使道路的占用现象日益严重,同时也导致了更多交通事故的发生。而交通事故发生过程中,路边停车、占道施工、交通流密增大等因素直接导致车道被占用,进而影响了城市道路的通行能力。本文在视频提供的背景下通过数据采集,利用数据插值拟合、差异对比、车流波动理论等对这一影响进行了分析,具体如下: 针对问题一,首先根据视频1中交通事故前后道路通行情况的变化过程运用物理观察测量类比法、数学控制变量法提取描述变量(如事故横断面处的车流量、车流速度以及车流密度)的数据,从而通过研究各变量的变化,来分析其对通行能力的影响。而视频1中有一些时间断层,我们可根据现有的数据先用统计回归对各变量数据插值后再进行拟合,拟合过程中利用残差计算值的大小来选择较好的模型来反应各变量与事故持续时间的关系,进而更好地说明事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。 针对问题二:沿用问题一中的方法,对视频2中影响通行能力的各个变量进行数据采集,同样使用matlab对时间断层处进行插值拟合处理,再将所得到的的变化图像与题一中各变量的变化趋势进行对比分析,其中考虑到两视频的时间段与两视频的事故时长不同,从而采用多种对比方式(如以事故发生前、中、后三时段比较差值、以事故相同持续时间进行对比、以整个事故时间段按比例分配时间进行对比)来更好地说明这一差异。由于小区口的位置不同、时间段是否处于车流高峰期以及1、2、3道车流比例不同等因素的影响,采用不同的数据采集方式使采集的变量数据的实用性更强,从而最后得到视频1中的道路被占用影响程度高于视频2中的影响程度,再者从差异图像的变化波动中得到验证,使其合理性更强。 针对问题三:运用问题1、2中三个变量与持续时间的关系作为纽带,再根据附件5中的信号相位确定出车流量的测量周期为一分钟,测量出上游车流量随时间的变化情况,而事故横断面实际通行能力与持续时间的关系已在1、2问中由拟合得到,所以再根据波动理论预测道路异常下车辆长度模型的结论,结合采集数据得到的函数关系建立数学模型,最后得出事故发生后,车辆排队长度与事故横断面实际通行能力、事故持续时间以及路段上游车流量这三者之间的关系式。 针对问题四:在问题3建立的模型下,利用问题4中提供的变量数据推导出其它相关变量值,然后代入模型,估算出时间长度,以此检验模型的操作性及可靠性。 关键词:通行能力车流波动理论车流量车流速度车流密度

全国大学生数学建模竞赛的准备方法

全国大学生数学建模竞赛的准备方法 全国大学生数学建模竞赛于每年9月上旬(今年是9月7日)举行。但是在此之前,需要做好哪些准备,让各个参赛队员在竞赛中做到有备无患呢?在总结过去多年培训指导各种数学建模竞赛的基础上,仅就个人观点,介绍一些关于如何准备数学建模竞赛的经验和体会,仅供参考。在这里主要向大家介绍竞赛的基本情况,包括如何组队、如何选题以及在竞赛中如何合理分配时间。通过本次学习,希望大家能够了解数学建模竞赛的基本情况,为全国大学生数学建模竞赛以及其他各类数学建模竞赛做好准备。 一、如何组建优秀数学建模队伍 进入大学阶段参加各种科技竞赛,可以体会到一种和中学竞赛不同的感受,这种感受来自团队合作。以前的各项赛事都是以个人为单位参加竞赛,它们都是考查个人的能力。但是在大学中,由于难度和任务量的加重以及对团队合作精神的关注,因此大部分的赛事都是以团队为单位参加的。竞赛在考查个人能力的同时,还考查团队成员的合作精神。在数学建模竞赛中,团队合作精神是能否取得好成绩的最重要的因素,一队三个人要分工合作、相互支持、相互鼓励。从历年的统计数据可以看出,竞赛成绩优秀的队员往往并不是每个人在各个方面都特别擅长的队伍,而是团队相处得最融洽的队伍。从这一点也可以看出团队合作的重要性。 在竞赛的过程中,切勿自己只管自己的那一部分,一定要记住这是一个集体的竞赛。很多时候,往往一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚。因此无论做任何事情,三个人一定要齐心才行,只靠一个人

的力量,要在3天之内写出一篇高水平的论文几乎是不可能的。让三人一组参赛一方面是为了培养合作精神,其实更为重要的原因是这项工作确实需要多人合作,因为一个人的能力是有限的,知识掌握也往往是不全面的。一个人做题,经常会走向极端,得不到正确的解决方案。而三个人相互讨论、取长补短,可以弥补一个人所带来的不足。 在队伍组建的时候,需要强调“队长”这个名词概念。虽然在全国大学生数学建模竞赛中并没有设立队长,作为队长在获得的证书上也没有特别标注。但是在队内设立“队长”是非常有必要的。因为在比赛中可能会碰到各种突发状况,队长是很重要的,他的作用就相当于计算机中的CPU,是全队的核心。如果一个队的队长不得力,往往影响一个队的正常发挥。竞赛是非常残酷的,在3天3夜(72h)的比赛中,大家睡眠时间都得不到保障,怎样合理安排团队时间就是队长需要做的事情。在比赛过程中,由于睡眠不足,大家脾气都会很急躁。在这种情况,往往会为了一些小事而发生争吵,如果没有适当的处理,有些队伍将会放弃比赛,而队长就应该在这个时候担起责任。 在明确“队长”这个概念后,接下去谈谈怎样科学选择队友。在数学建模竞赛中,题目要求完成的工作量是很大的,因此这项任务是必须分工完成的,各有侧重、相互帮助,这样才能获得好成绩。而科学地选择队友则显得非常重要,也是走向成功的第一步。一般情况下选择队友可以从以下几个方面考虑着手: 1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。

原创!!全面大学生数学竞赛试题

2011年数学竞赛练习题C_3解答 1. 设数列{}n x 满足: 11 sin (2)sin 11 n n x n n n <<+++, 则1 1lim 1n k n k x n →∞==+∑_______。 11 sin (2)sin 111 n n n x n x n n <<+∴→++解 ; Q 1 1 1 1lim lim lim lim 1111n n k k n k k k n n n n k x x n n x n n n n n ==→∞→∞→∞→∞ =∴=?=?=+++∑∑∑ 2.设曲线()y f x =与sin y x =在原点相切, 则极限lim n ________。 (0)0,(0)1n n f f '===已知有: 2. 设(1n n a b =+, 其中,n n a b 为正整数,lim n n n a b →∞=__ 2224 113 (1) 1)3)(13)3) )()3) ) n n n n n n n C C C C C C =+++ =+++++ 224 41133(1(1)() n n n n n C C C C =++-++ (1=+(1=n n n n n n a b a b a b -所以,若则解得:

lim =n n n n n a b →∞∴= 3. 设()f x 有连续导数且0 () lim 0x f x a x →=≠, 又20 ()()()x F x x t f t dt =-?, 当0x →时()F x '与n x 是同阶无穷小, 则n =________。 2020 ()()()()()x x x F x x t f t dt x f t dt tf t dt =-=-? ?? 20 ()2()()()x F x x f t dt x f x xf x '=+-? 0() lim 0x F x x →'=显然 20 2 02()()() lim x x x f t dt x f x xf x x →+-?考虑: 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim 0x x x f t dt f x x x →→=-+?0a =-≠ 2n ∴= 5. ()f x ∞设在[1,+)上可导,下列结论成立的是:________。 +lim ()0()x f x f x →∞ '=∞A.若,则在[1,+)上有界;

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

全国大学生数学竞赛简介资料

全国大学生数学竞赛 第一届 2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。 第二届 2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。 竞赛用书 该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 1.竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 1.竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 1.集合与函数 2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性 定理、闭区间套定理、聚点定理、有限覆盖定理. 3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足22 ()3()d 2f x x f x x =--? ,则()f x =. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且 1≠'f ,则=22d d x y . 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()() g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)??-=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5d d π?≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定 c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求 函数项级数∑∞ =1 )(n n x u 之和.

美国大学生数学建模竞赛优秀论文翻译

优化和评价的收费亭的数量 景区简介 由於公路出来的第一千九百三十,至今发展十分迅速在全世界逐渐成为骨架的运输系统,以其高速度,承载能力大,运输成本低,具有吸引力的旅游方便,减少交通堵塞。以下的快速传播的公路,相应的管理收费站设置支付和公路条件的改善公路和收费广场。 然而,随着越来越多的人口密度和产业基地,公路如花园州公园大道的经验严重交通挤塞收费广场在高峰时间。事实上,这是共同经历长时间的延误甚至在非赶这两小时收费广场。 在进入收费广场的车流量,球迷的较大的收费亭的数量,而当离开收费广场,川流不息的车辆需挤缩到的车道数的数量相等的车道收费广场前。因此,当交通繁忙时,拥堵现象发生在从收费广场。当交通非常拥挤,阻塞也会在进入收费广场因为所需要的时间为每个车辆付通行费。 因此,这是可取的,以尽量减少车辆烦恼限制数额收费广场引起的交通混乱。良好的设计,这些系统可以产生重大影响的有效利用的基础设施,并有助于提高居民的生活水平。通常,一个更大的收费亭的数量提供的数量比进入收费广场的道路。 事实上,高速公路收费广场和停车场出入口广场构成了一个独特的类型的运输系统,需要具体分析时,试图了解他们的工作和他们之间的互动与其他巷道组成部分。一方面,这些设施是一个最有效的手段收集用户收费或者停车服务或对道路,桥梁,隧道。另一方面,收费广场产生不利影响的吞吐量或设施的服务能力。收费广场的不利影响是特别明显时,通常是重交通。 其目标模式是保证收费广场可以处理交通流没有任何问题。车辆安全通行费广场也是一个重要的问题,如无障碍的收费广场。封锁交通流应尽量避免。 模型的目标是确定最优的收费亭的数量的基础上进行合理的优化准则。 主要原因是拥挤的

中国大学生数学竞赛竞赛大纲(数学专业类).

中国大学生数学竞赛竞赛大纲(数学专业类) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性 定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

为什么要参加大学生数学建模竞赛

为什么要参加大学生数学建模竞赛 大学生数学建模竞赛是培养学生创新能力和竞争能力的极好的、具体的载体。 1.对于学校的领导(校长、教务处长等)来说,全心全意把学校搞好(高质量的教学、高百分比的就业率、高水平的教师队伍以及提高知名度等)肯定是他们追求的办学目标而且会采取各种措施。但是就选派学生参加大学生数学建模竞赛来说,不少领导(甚至数学教师)会非常犹豫:我们数学课时少,教学任务重,即使参加了,拿不到奖的话,不但不能提高学校的知名度,甚至会招致一些负面的议论等等。实际上,领导们有三个问题考虑不够,它们是: ⑴对数学的极端重要性要有充分的认识。学生将来的发展和成就是和他们坚实的数学基础密切相关的。但是现在的数学教学确实有许多不足之处有待改革,特别是怎么做到不仅教知识,而且要教知识是怎样用来解决实际问题的能力是有待加强的。让部分师生参加到数学建模活动,特别是大学生数学建模竞赛肯定是有利于推动教学改革的。 ⑵ 办好学校的关键之一是提高教师的教学水平。怎样提高呢?鼓励教师组织学生参加大学生数学建模竞赛等数学建模活动,既可以帮助教师进一步了解怎样用数学来解决实际问题,更有助于数学教师到其他专业系科了解他们要用什么样的数学以及怎样用这些数学,互相学习,进行切磋,从而对怎样提高自己的教学水平,数学教学怎样更好为其他专业后继课,甚至对专业课题研究服务产生具体的想法,提出切实可行的措施,最终能够提高教师的专业水平和教学水平,从而也就提高了学校的水平。 ⑶ 学生要求参加大学生数学建模竞赛的积极性是很高的,关键是怎样组织好,培训好。实际上,即使是高职高专院校,也一定有一部分学生的数学基础是相当坚实的,他们之间又有一部分对数学,特别是用数学来解决实际问题有强烈的兴趣。为什么不组织他们参赛呢?培养一些数学基础好对应用又有能力的高职高专院校的学生,今后他们在工作中做出好成绩的可能性肯定会比较大。毕业生事业有成者多也标志了学校办得好、有水平。此外,对于怎样贯彻因材施教也会产生一些很好的想法。 2.对于数学教师来说,组织、指导学生参加大学生数学建模竞赛对自己也会有极大的好处。

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

2014年数学建模国家一等奖优秀论文设计

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等) 与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或 其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文 引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违 反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3.

指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

相关主题
文本预览
相关文档 最新文档