当前位置:文档之家› 散热基础理论

散热基础理论

散热基础理论
散热基础理论

本文简述了LED灯散热行业内问题,提出便于实现LED灯模块标准化的技术方案,将散热片划归为灯具中的部件,由LED芯和导热芯构成的灯芯,设计成系列标准,采用圆锥柱面导热芯,有效解决灯芯(导热芯)与散热片(灯具)之间的热传导问题,并认为恒流驱动电源更合理。针对散热片自然对流传热,本文提出了采用对流罩,利用烟囱效应,强化提高散热,并简述了优化理念。经大量实验得出,每瓦散热用铝不到4克的显著结果,LED灯散热将不再是问题。

一引论

LED照明由于其节电、环保、长寿命,而被公认为下一带照明技术,将取代现有的各种照明技术。LED为冷光源,怕热,有80%之多的电能转化为热能,必须有散热措施,虽然LED发光技术已有飞跃发展,有每瓦发光达200lm的报道,但LED散热却是LED照明中非常头痛,但又还没得到有效解决的问题,成了LED照明灯普及发展道路上的拦路虎。

阻碍LED照明应用普及的最大问题是LED灯价格高,虽然上游的LED晶片厂商瓜分绝大部分利润,有大幅度降价空间,但要实现整个社会资源有效配置到LED照明整个产业链中,有效降低造价,便于普通民众购买安装,LED照明灯的模块标准化是必经之路,就像现有照明灯(白炽灯、日光灯/节能灯)那样。LED照明灯模块标准化的阻碍就是散热问题的存在。

散热属于传热中的一部分。人类对传热的研究已有上百年的历史,上世纪60~70年代是人们对传热研究的顶峰时期,其主要动力是人类开发航空航天的需求。那时代,传热技术领域聚集了许多优秀人才,有不少传热研究人员成为知名人士,之后人们对传热研究热情逐渐减小,目前传热学及技术的专业人员非常少。传热学及技术已是非常之成熟,就像似成熟的果子,掉到地上被树叶遮盖,不被现在的人们看见,以致当电子行业,主要是计算机中的CPU发热量突然大增时,人们没有去拔开地面上的树叶,捡起那些熟透的果子,将人类成熟的传热知识移植到电子行业内。而是另起炉灶,创造出不少新名

词:“主动散热”、“被动散热”、“热沉”等听起来不知是什么意思,英文“Sink”在传热学及技术中也是非常罕见的名词。

针对LED灯散热,当前业内缺乏对整个传热过程中的每个传热过程清晰的研究结果,分析出:从LED结点到空气与散热片表面的对流(自然)传热、每个过程中的传热温差(即热阻)所占比例,哪个过程的温差最大,即主要矛盾,以及影响每个传热过程的因素,如何降低其热阻的技术方向,尤其是热阻最大的传热过程,降低其热阻的技术方向更重要。既使有了这些研究结果,还必须被结构工程师所熟知,因为传热最终要通过结构来实现。

导致LED散热简单问题被复杂化的原因有:知识断层,拥有成熟的传热知识的人员参于到LED散热研究的甚少,缺乏专业的LED散热研究机构,给行业内明确正确的指导思想,研讨会非常之多,但学术气氛少,商业味较浓。目前行业内从业的专业散热技术人员,许多是从计算机散热方面转过来的,自然地将那方面常用的技术以及商业行为带过来,比如,热管技术,被大量应用到大功率LED照明灯(比如路灯)中,给那些原来为计算机芯片散热器服务的热管厂商创造了新的商机。甚至还有提出采用回流式热管,如果说LED灯散热采用一般热管像似杀鸡用了杀猪刀,那么采用回流式热管就像似杀鸡举起了宰牛刀。台湾有一家公司发明有?液态沉浸散热技术?,这种缺乏基本对流传热知识的发明,竟还获得国际发明展金奖。国内也有类似的企业,并有一定的知名度,开发LED液冷散热技术,称已申请有30多项专利。这些受汽车水箱启发的发明创造者,并不清楚汽车发动机为什么采用水(液)冷技术的原因,水在散热过程所起的作用。

本文提出了实现LED照明灯模块标准化技术方案,将散热片划归为灯具中的部件,由LED芯和导热芯构成的灯芯,将被设计制造成系列标准,采用圆锥柱面导热芯,有效解决灯芯(导热芯)与散热片(灯具)之间的热传导问题,实现灯芯与灯具可便捷地拆与装,结构非常简单,造价低,是一条实现模块标准化科学之路,并认为恒流驱动电源更合理。自然对流散热,无机械运动,可靠性高,成本低,自然地被LED灯首选。

本文将阐述自然对流散热原理,最大散热量以及优化设计的理念;论述了LED灯散热片的最佳应用结构—太阳花式散热片,提出采用对流罩,利用烟囱效应强化提高散热热量。经大量的实验以及分析研究,得到优化和强化的结果,可实现每瓦散热用铝不到4克的水平,散热成本显著降低,以后将不再用考虑散热所占的成本,总之LED散热并不难,将不再是问题。(本文不涉及LED封装内的传热,这将在以后的文章中阐述并提出有效的解决方案。)

二模块的科学划分

图1、2分别为东芝与夏普推出的LED照明灯,将LED芯片、散热片以及驱动电源合为一体,采用现白炽灯一样的安装接口,这样的结构市面上非常多,虽然这样的设计便于普通民众安装,替换现白炽灯泡,但造价高,还有一致命的缺陷——散热不可靠。将图1、2所示的LED灯,横置、竖立或倒立,三种姿态情况下的散热效果都不一样,如果加有灯罩,其散热效果与灯罩的形状、大小密切相关,如果灯罩封闭,或内外空气流通性差,其散热效果将恶化,光衰将立即表现出,甚至马上出现损毁情况。因而这类LED灯,将不是LED照明发展方向。另外,图1、2所示散热片本身的结构形式并不理想,散热成本也不低。球形白炽灯泡,直管式日光灯是由于此形状便于生产制造,而被采用。历史的积淀使得人们一提到照明灯,马上想到球形灯泡和直灯

管。人们使用灯,目的是需要光明。LED是新型光源,因而LED照明灯的设计,应该从LED光源的特性出发,建立起新的模式。

图3示出了本文提出的LED照明灯模块划分,将散热片以及驱动电源划归为灯具中的部件,由LED芯、导热芯以及灯芯罩组成的灯芯,可便捷地从散热片(灯具)拆下和按装上,将被设计制造成系列独立的标准部件。灯芯与灯具的电的连接,是件容易的事,但灯芯与散热片的热连接(热传导),就不是那么容易的事。图3示出了解决该问题有效而又简单的技术方案:采用圆锥柱接触传热面。园锥柱和圆锥孔,加工容易,精度易保证,加工成本低。采用圆锥柱作为接触传热面的显著优点是保证导热芯和散热片两接触面之间的接触压力足够大:只要小的轴向力,就可得到被放大数倍的接触压力,因而灯芯和散热片之间传热热阻得到有效控制,即两者之间的热传导问题得到解决。以下计算例子进一步说明了这一点:例如,导热芯中间直径Ф=20mm,高h=15mm,与散热片的锥孔面平均间隙△=0.03mm,采用普通导热膏λ=1.0W/m·K,灯芯功率为Q=12W,可计算得出导热芯与散热片根的平均温度差:△t=Q·△/λ·D·л·h=0.38℃,不到0.4℃图3中示出,灯芯与散热片(灯具)的机械连接采用螺扣,电的连接采用同心接插头式,普通操作者,不需任何工具,就可方便地将灯芯正确安装到位。图3所

示结构非常简单,加工制造容易,造价也就低。图3中的灯芯罩的作用:1、保护LED芯;2、便于操作者安装;3、二次光学,设计制造出不同光输灯罩,比如聚光型或散光型,满足不同场所及应用。解决了热连接(热传导)问题,灯芯的通用标准化的实现也就近在直尺,将按标准散热功率来划分不同规格的灯芯,比如:3W、6W、10W、15W、20W,对应着不同规格的标准接口,而不像现灯泡(白炽灯)那样与功率无关,只有两三种

接口。因而LED灯芯的标准接口规格有许多种,但种数还是有限,灯具涉及到装饰,则就千姿百态,但其标准散热量必须达到规定的值,灯具将按其标准散热量划分,其接口与其标准散热量的灯芯接口相对应。设计时可以这样,10W(标准散热功率)的灯芯可以安装到12W的灯具上,但12W的灯芯则不能安装到10W的灯具上,这都可以通过接口中的结构差异来实现。由于每种灯具有其相应的固定安装形式,其散热性能也就稳定,因而不用担心用户安装时,改变其散热性能,即散热稳定可靠。本文所提出的模块划分,使得灯具和灯芯的散热热阻以及导热热阻检测标准以及实验操作制定更为容易,灯具只要实验测定出相对标准的导热芯的散热性能曲线,就可计算出散热热阻;灯芯只要实验测定出,LED结点温度与一标准散热片上的温度差,计算出灯芯的导热热阻即可。有了灯具和灯芯的散热以及导热热阻的检测标准和操作的规程,就容易快速鉴别各种产品的优劣。目前还没有鉴别LED灯散热性能优劣的标准及操作,而是采用非常原始的方法,比如路灯,采用现场工作1000小时,多家企业产品一起进行PK,测定其光衰情况,这种鉴别既不科学,又非常麻烦,比如夏天期间测定结果和冬天期间的结果是不一样,因为冬夏的气温有变化,某些地区变化非常大。依据本文提出的模块划分,以及模块具体的结构,就可容易制定出统一的灯芯与散热片(灯具)的机械接口标准和电的连接接口标准,以及电源标准,这些标准还可形成国际化标准。有了这些统一的标准,灯具厂商将专心地根据不同需求,设计制造出各种各样的灯具;灯芯厂商专心芯片封装,灯芯制造,开发全自动生产设备,提高生产效率,降低成本,研发出内封装热阻更低的

芯片封装结构;晶片厂商专心晶片的研发、生产,更多的投入到如何降低成本,提高光电效率;电源厂商专注电源,专用驱动芯片的开发,提高电源效率,降低产品成本。在LED照明产业链中的各级厂商,分工明确、既紧密配合,又相互独立,构建一完善的现代化产业连,社会资源又将被合理地配置到各个链中,成本价格将显著降低,LED照明灯普及将近在眼前。总之,本文提出LED照明灯的模块划分的科学之处:①散热稳定可靠;②容易实现LED照明灯的模块标准化,以及相应的检测标准和操作规程,完善整个产业链,降低造价。关于电源标准关于电源标准关于电源标准关于电源标准::::本文认为应选用恒流驱动,灯芯中LED芯片采用串联式(局部有并联),如图4所示,每个LED芯片(或并联组)设有旁路保护元件,该元件的作用,一旦所配的LED芯片损坏,成断开路状态,则由于电压过高(比如两倍于LED最高电压),该元件击穿,形成永久性短路,使得不因一两个LED芯片损坏,而使整个灯芯报废。比如一个12W的LED灯,共有12颗LED芯片,如果有两颗损坏,光亮度有下降,则可通电流调节端子,调大电流,补偿降低的亮度,因而灯的可靠性高。

采用恒流驱动电源的优点还有:一、更容易实现统一标准的电源,比如规定标准统一的恒流电流定为350mA。15W的灯芯,额定电压也就是43V。芯片的额定电流与LED芯片中的晶片面积有关,也就容易调整设计出满足统一额定电流标准的晶片,另外,

还可以通过局部芯片并联,比如两三颗LED芯片并联,达到统一额定电流(如350mA);

二、驱动电路简单、元器件少、成本低,电源效率高。由于工作电流低(350mA),开关功率管BG的开关损耗也就小,则电源效率高;采用统一标准恒流(350mA),可将开关功率管BG都集成到驱动IC中(如图4中虚线所示),并且额定功率范围大,从1W到70W (市电为AC220V)范围工作。输出功率越大(LED芯串联越多),电源的输出工作电压也高,因而开关功率管BG承受的开关电压就越小,开关损耗也就越小,电源的效率也就更高。三、自然对流散热原理及优化散热过程最终是热量传到空气中,由空气流动(对流)将热量带走,散热片的辐射传热所占的分量非常低,因而不于考虑。空气流动带走的热量(即散热量)Q:Q=Cp ·M·(T2-T1) (1) Cp——空气的比热,为定值。M——空气流量。(T2-T1)——散热片出口处空气温度T2与进口处空气温度T1的温差,出口处空气温度T2最高不超过散热片的壁面温度Tw,即(T2-T1)有最大可能的数值。

从公式(1)可以分析得出,最有效提高散热量的方向是提高空气流量。自然对流传热过程中,驱动空气流动的动力是:空气受热温度升高,比重下降而产生的浮力F:F=∫V g(ρo- ρa )dv=∫V gρo(1- ) dv (2) g——重力加速度。ρ——空气密度。V——散热器的体积。TO——环境大气温度。Ta——散热器内的空气温度。空气流经散热片,散热片产生的阻力?:?= ∫S α·g ·ρ·u2 ·ds (3) S ——空气流经的表面积,即散热片的散热面积。α——流动阻力系数,与散热片的结构,空气流动形式密切相关。u——空气在散热片内的流动速度,流速u越高空气流量也就越大。散热片的散热量Q还应满足以下公式:Q=∫S h (Tw—Ta) ds (4)h——对流传热系数。(Tw—Ta) ——散热片壁面温度Tw与散热片内的空气温度Ta的差值,散热片的温度Tw受LED芯片结点温度的限制。以上四个公式约束着自然对流散热过程,浮力F应等于流动阻力?再加空气动量增加(ρ2 )(在下一节中有较详细

的阐述)。降低流动阻力?,意味着空气流速u2增加(即流量M增加),以及浮力F要求下降。从公式(1)可以看出,流量M增加,有利于散热量Q的提高,浮力F要求下降,从公式(2)可以分析得出,散热片中的空气温度Ta可降低,又从公式(4)可以看出:有利散热量Q的提高,这说明降低流动阻力,从各方面来讲,都对散热量Q提高有利。

降低流动阻力系数α,能有效降低流动阻力。当散热片的肋片,上下竖立设置,空气由下向上直接穿过散热片时,低温空气直接进入散热肋片,由公式(4),有利于对流传热;空气的流动方向与浮力方向一致,阻力最小。因而散热片应设计成上下贯通的结构,避免空气弯曲流动,涡流出现。依据公式(3),流动阻力与空气在散热片中的流速的平方成正比,因而降低流速能有效降低流动阻力。增大空气在散热片中的流通面积,既能不减小空气流量M,又能降低流速。太阳花式结构散热片,如图5所示,LED芯片将集中在中心导热柱截面上,不仅发热源(LED芯片)离散热肋片根距离近,则导热柱内导热热阻小,而且LED芯片集中,所占的截面积小,即空气的有效流通面积大,因而有利于流动阻力减小。这说明:太阳花式结构的散热片,是LED灯散热的最佳结构。从制造方面讲,采用铝挤出工艺,制造出太阳花铝型材,再裁切就成了散热片,可制造出各种外形的散热片,生产效率高,工序少,造价也就低。由公式(2)分析:如果散热器的体积V一定,所占空间尺寸一定,散热器中的空气温度Ta提高,有利于提高浮力F,

但从公式(4)得出,却不利于散热肋片与空气的对流传热(即散热)。从公式(4)中分析,通过增加散热肋片数量(即肋片密度),来提高散热面积S,有利于提高散热量,但从公式(3)分析,却相应地提高了流动阻力?。以上分析说明:在自然对流传热中,通过增加散热肋片密度(减小肋片之间的间隙)来增加散热面积,以达到提高散热量的目的,但存在着相反、矛盾的因素,因而散热量提高有限,甚至有可能得到降低散热量的相反结果。可以得出结论:当散热片所占空间尺寸一定时,存在一最大自然对流散热量,相对应就有着最佳肋片结构(肋片密度),最大散热量与散热片的流通截面积成正比。本文作者经过大量的实验证实了该结论,并总结有最佳肋片密度的计算经验公式,可以计算出优化的LED灯散热片。

四、自然对流散热强化提高

在散热片的上方设置对流罩,如图6、7所示,利用烟囱的抽吸原理,提高空气流经散热片的流量,来达到散热量的强化提高。

对流罩产生的抽吸力(即浮力),可以通过理论计算来分析,如图8所示,采用控制体积法来分析,根据控制体内动量平衡原理,可以推导出:F=∫V gρo(1- ) dv =ρ2 B +?(5)此说明:抽吸力在增加空气的动量(ρ2 )同时,还要克服流动阻力?。空气动量增加,意味着空气流量增加,由公式(1)可得,有利散热量提高。抽吸力与对流罩内的体积V成正比,提高对流罩内的空气温度,有助于提高抽吸力。进一步的分析还可得出:要有高的抽吸力,散热片应尽可能设置在对流罩最低端,散热片要紧奏。

根据以上得出的结论,对流罩的抽吸力与对流罩内的体积V成正比,因而对于某些情况下,比如由于装饰需要,灯具的高度尺寸有限制,可以通过增加截面积尺寸,达到同等的体积,同等的抽吸力。在产品设计时,可以充分利用灯具上的灯罩作为对流罩,既有装饰作用,又有强化提高散热量的作用。

对于筒灯,自然地将灯筒设计成对流罩。图9所示的LED路灯,散热片为10个等六边形太阳花式散热片,采用蜂窝型结构拼合成,设置有大尺寸的后壳,后壳顶开有通气孔,后壳就构成了对流罩。

对流罩竖立设置时,对流罩的抽吸作用最有效,散热片采用太阳花式,LED芯只能朝上或朝下,如图6、7所示。要解决灯光平射问题,可采用如图10、11所示LED灯,对流罩采用透明材料制成,此时对流罩就是灯罩,LED芯朝上,对流罩内设置有反射镜,从LED芯发出的朝上的光线,经反射镜反射成平射,如果反射镜的反射角可调,就可调动光线的平射角。对于隧道灯,或类似的照明灯,就可采用图10、11所示的结构。

五、实验结果分析比较实验结果

图12是某厂现标称为20W的LED筒灯的散热片的照片,外形直径为?86mm,高65mm,是采用铝挤出工艺制造的散热片型材,经多种机械加工工序才完成,净重250克,散热面S为0.1m2。图13中的实验曲线B为该散热片的散热特性实验结果,纵坐标Q为散热功率,单位为W,实验采用电热片加热,从电功率仪读出发热量;横坐标ΔT为散热片上的导热板(与铝基板相贴)的温度Tw(设置有5个电热偶)与环境空气温度TO的差。图13中的曲线C为该散热片加设有冲孔的网罩的实验结果,孔网的规格为?6mm(孔径)×2mm(孔间隙),加设网罩,增加了空气的流动阻力,因而散热性能有明显下降

图13中的实验曲线A为本专利技术设计的散热片散热特性实验曲线,采用太阳花式铝材散热片,结构尺寸经优化计算设计,采用了高为120mm的对流罩,散热片外径为?88mm,重为80克。与曲线B比较可以看出,当?T(Tw—To)为30℃时,本专利技术设计

的散热片的散热量是现所示产品的1.5倍,可以计算得出,表面对流传热系数h提高了两倍,折算成每瓦散热用铝材为3.6克/瓦。如果按LED灯实际发热量为17.5W计算,采用本专利技术设计的散热片,温度可降低10℃之多。本专利技术设计的散热片成本也就是2元人民币多点(按25元/Kg挤铝型材计算),而现所示产品,要加30%之多的切削耗量,以及烦琐的机械切削工序,生产效率非常低,费用要达到近20元/件。

表1列出了20W筒灯现产品实际照明情况下的散热特性,与本专利技术样品的比较,图14为本专利技术样品照片,图15为本专利技术设计图,所用的LED芯片为Cree Xlamp XP-E,现产品采用了10颗,专利改进一也用10颗,专利改进二用9颗,都采用串联。

总功率——采用功率计实测出的数据,包括了驱动电源的损耗。Tw——Led芯片所焊在铝基板的温度,现产品是采用了6根热电偶,贴在铝基板表面所测温度的平均值,本专利改进则采用了两根热电偶,在铝基板侧钻有Φ1.2mm,深4mm的孔,两热电偶插入孔中测得的温度平均值。从表1可以看出,采用本专利技术设计的LED灯产品,

温度降低了9℃。

图16(a)是某厂现标称为60W的LED筒灯,外径为?185mm,高为130mm,其散热片采用热管加肋片结构,图16(b)示出了其拆除冲孔网罩的内部结构。图17中的散热特性曲线F和E分别为该散热片带网罩和无网罩的实验结果,比较两曲线,可得:网罩对散热量影响是明显的。图17中的曲线D是采用本专利技术的优化计算设计的散热器的散热特性曲线,是由7个等六边形太阳花式散热片拼装成的,最大外径为?185mm,对流罩高为120mm。与现产品比较(曲线F),散热量得到显著提高,当温度差?T(Tw—T o) 为25℃时,散热量提高了50%。现产品(如图16(b)所示),采用热管,结构复杂,生产工序多,生产效率低,其造价需要100多元/件。而本专利设计的散热器,铝材重为285克,按25元/Kg计算,也就是7.5元/件,不到现图14所示产品的十分之一

以上实验结果及分析比较说明:本专利提出的LED灯散热片技术方案,采用太阳花式散热片,经优化处理,散热成本显著下降,可以说:LED灯散热将不是问题,不用再考虑其散热成本。

散热片的基本知识

散热器基础知识 铝型材散热器 目前市场上有大量各种尺寸铝型材散热器模具,并可根据要求开发生产新型材散热产品。铝型材散热器价格低廉,应用广泛,可以根据需要进行进一步的精密机械加工、安装扣具背板、附装界面导热材料以确保有效导热及安装可靠。如图: 热管散热模组 〃热管简介: 热管是一种非常高效的导热元件,其传热效率可达到金属的几十倍。自从热管技术被引入散热器制造行业,以热管为核心,配合热沉、翅片、风扇等构成的热管模组,能够解决因空间狭小或热量过于集中而导致的散热难题,克服了传统散热模式无法克服的发热功率与有效散热能力之间的矛盾。 热管可以在一定限度内被折弯及压扁,以适应不同的结构需要。在热管传热原理的基础上,还衍生出了其它的高效传热器件,如热柱(heat column)、真空冷板(vapor chamber)、回路热管(loop heatpipe)等,可以满足各种专门需要 〃穿接式热管散热模组: 穿接式热管散热模组是在热管的散热端穿接上高密度的散热翅片,翅片材料可以是铜片或铝片,鳍片与热管间通过焊接方式连接。 穿接式热管散热模组可以大幅减小产品体积,同时大大提高散热效率,其在笔记本电脑、通信设备、工控产品等领域均有广泛的应用。 〃埋嵌式热管散热模组 热管埋嵌在散热器底板内,能够起到均衡底板温度提高散热效率的作用。尤其对热源位置集中,散热器底板面积又较大的情况,均温效果非常显著。 从传热学的角度来看,整个散热器的热阻将有效的降低,近而大大改善了散热器的散热效果,使发热元器件的表面温度大幅度下降

焊接型散热器 〃焊接型散热器介绍: 随着电子产品功率的不断增高而产品体积又日益减小,催生了高密度焊接散热器的广泛应用。焊接型散热器一般由底板和翅片焊接而成,底板和翅片材料可选用铜材或铝材灵活组合。采用软钎焊技术加工能够保持材料的物理特性不变,以及满足较高的精度要求。 〃焊接型散热器特点: 鳍片密度高--大幅度增加散热面积 产品重量轻体积小--适应产品的小型或轻型化要求 铜铝混合焊接--兼取铜材传热更佳及铝材重量较轻的优势 特定区域焊接--可以仅在需要散热的区域焊接散热齿片或传热部件 模具费用低--节省大型铝型材昂贵的模具费 底板可精密加工--底板可以加工精密腔体或复杂的避让位 风琴片单折片扣合片 风扇散热模组 将风扇与散热器相组合,可以使散热器在强制对流环境下工作,从而大幅提高整个散热模组的散热效率。无论是型材散热器、焊接型散热器还是热管模组,都能方便的与风扇结合。我们可以根据您的要求选择风扇和设计散热器,并使二者达到最佳匹配。

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

散热基本理论分析

散热基本理论分析 【摘要】文章主要介绍散热基本理论,指出散热的三种主要方式,分别为导热、对流换热和辐射换热。三种散热方式在各行各业中的应用各有侧重,对流换热是计算机中最为主要的散热手段,辐射换热是各种高温热力设备中的重要换热方式,而对于TV背光系统,导热是最主要的散热方式。 【关键词】散热背光导热对流辐射 一、散热基本理论 热量的传递有导热、对流换热和辐射换热三种方式。导热指物体内的不同部位因温差而发生的传热,或不同温度的两个物体因直接接触而发生的传热,是最直接和常用的散热方式;对流换热指流体与温度不同的物体表面接触时,对流和导热联合起作用的传热,我们常见的风扇就是利用对流换热原理加快流体流动速度而进行散热。辐射换热指的是两个互不接触且温度不同的物体或介质之间通过电磁波进行的换热,这是各种工业炉、锅炉等高温热力设备中重要的换热方式。 二、导热 导热--物体内的不同部位因温差而发生的传热,或不同温度的两物体因直接接触而发生的传热。从定义中我们不难看出,无论是物体内部的热量传递还是物体与其他物体之间的热量传递都属于导热,传导过程中传递的热量按照Fourier(傅里叶)导热定律计算:Q=λA( Th-Tc)/ξ。其中λ指的是材料的导热系数,A指的是两个物体的接触面积,Th和Tc分别指的是高温和低温面的温度,ξ为两个面之间的距离。 从公式中不难看出导热的效果与材料的导热系数、接触面积和温差成正比,与两个面之间的距离成反比。 导热系数单位为W/(m*℃)表示了该材料的导热能力的大小,一般来说固体的导热系数大于液体,液体的导热系数大于气体,例如纯铜的导热系数高达400W/(m*℃),纯银的导热系数约为236W/(m*℃),水的导热系数就只有0.6W(m*℃),而空气的导热系数更仅仅为0.025W(m*℃)。铝的导热系数高而且密度低,所以大多数的散热器都使用铝合金材料,当然如果为了提供散热性能,可以在铝条上增加铜成分或者使用铜散热器,但代价相对较大,因为铜的价格相对昂贵。 图1.导热 三、对流换热 对流换热--流体与温度不同的物体表面接触时,对流和导热联合起作用的传热,这是计算机系统设备上应用最为广泛的一种散热模式。根据流动的起因不同,对流换热可分为强制对流换热和自然对流换热。

散热片设计准则(参考)

散热片设计一般准则 一、自然对流散热片设计 —-散热片得设计可就包络体积做初步得设计,然后再就散热片得细部如鳍片及底部尺寸做 详细设计 1、包络体积 2、散热片底部厚度 良好得底部厚度设计必须由热源部分厚而向边缘部份变薄,如此可使散热片由热源部份吸收足够得热向周围较薄得部份迅速传递. 底部之厚度关系底部厚度与输入功率得关系 3、鳍片形状 空气层得厚度约2mm,鳍片间格需在4mm以上才能确保自然对流顺利。但就是却会造成鳍片数目减少而减少散热片面积。 A、鳍片间格变狭窄—自然对流发生减低,降低散热效率。?鳍片间格变大—鳍片变少,表 面积减少。 B、鳍片角度鳍片角度约三度. 鳍片形状 鳍片形状参考值 C、鳍片厚度 当鳍片得形状固定,厚度及高度得平衡变得很重要,特别就是鳍片厚度薄高得情况,会

造成前端传热得困难,使得散热片即使体积增加也无法增加效率 鳍片变薄-鳍片传热到顶端能力变弱?鳍片变厚—鳍片数目减少(表面积减少) 鳍片增高—鳍片传到顶端能力变弱(体积效率变弱)?鳍片变短-表面积减少 4、散热片表面处理 散热片表面做耐酸铝(Alumite)或阳极处理可以增加辐射性能而增加散热片得散热效能,一般而言,与颜色就是白色或黑色关系不大.表面突起得处理可增加散热面积,但就是在自然对流得场合,反而可能造成空气层得阻碍,降低效率。 二、强制对流散热片设计 ——增加热传导系数 (1)增加空气流速这个就是很直接得方法,可以配合风速高得风扇来达成目得, (2)平板型鳍片做横切将平板鳍片切成多个短得部分,这样虽然会减少散热片面,但就 是却增加了热传导系数,同时也会增加压。当风向为不定方向时,此种设计较为适 当.(如摩托车上得散热片) 散热片横切 (3) 针状鳍片设计针状鳍片散热片具有较轻及体积较小得优点,同时也有较高得体积 效率,更重要得就是具有等方向性,因此适合强制对流散热片,如图九所示。鳍片得外型有可分为矩形、圆形以及椭圆形,矩形散热片就是由铝挤型横切而成,圆形则可由锻造或铸造成型,椭圆形或液滴形得散热片热传系数较高,但成型比较不易。?(4)冲击流冷却利用气流由鳍片顶端向底部冲击,这种冷却得方式可以增加热传导性,但就是须注意风得流向配合整体设计。 针状鳍片散热片辐射状鳍片散热片 (3)对于常见得风扇置于散热片上方得下吹设计,由于须配合风扇特性,因此需做更精 确得设计。轴流风扇由于有旋转效应,同时轴得位置风不易吹到,因此许多散热片 设计成辐射状,如图十所示。也有些散热片得顶端设计成长短不一或就是弯曲得形 状用以导风。另外种方式就是采用侧吹得方式,一般而言,侧吹方式得散热片由于气 流可吹过鳍片,而且流阻较少,因此对于高且密得鳍片而言,配合顶端加盖设计以

散热风扇知识

风扇的基础知识 一、作用 用于对POWER的散热,防止POWER内部温度过高而烧坏内部零件,风扇的代号”FAN” 二、结构: 风扇由扇框、扇叶、密封盖、扣环、油圈、磁胶、硅钢片、IC绝缘架、漆包线、PC板、轴承、导线等组成 1.扇框:其形状有双面框、单面框有柱、单面框无柱、圆形等,其材质为PBT+30%GF 94V-0 2.扇叶:我司所使用的扇叶一般分七片,材质是PBT+15%GF 94V-0,扇叶形状前 面开口大,后面小,扇叶薄,其切风性较好。 3.釸钢片:规格是H23,我司所使用中转无端FAN的釸钢片,一般是6片,高转加端 FAN一般为8片 4.漆包线:分红、黄两种颜色,一般中转无端FAN的漆包线直径大约为0.07mm,高 转加端FAN其漆包线直径大约为0.11mm 5.IC:我司现用IC承认规格有276、277、276F、277F、401、M48等 6.PC板:单层印线板94V-0 7.导线:聚乙烯氯化物包铜线94V-0,线型1007#24 AWG分红黑两种颜色,红代表正 极,黑代表负极,线长一般为250±10mm,镀锡长一般为4±0.5mm 三、分类 1.按尺寸分:80*80*25mm 80*80*20mm 60*60*20mm 25*25*10mm

2.按轴承分:含油(sleeve)、单滚珠(one ball)、双滚珠(two ball) 3.按转速分:低转L(low)、中转M(medium)、高转H(high) 4.按线材规格分:加端`(2p)与无端,加大4p端 5.按材质分:阻燃(安规)94V-0、非阻燃(普通) 四、FAN生产制作流程(SLEEVE为例) 注塑机 原材料(塑料) →成型(扇叶、扇框根据客户不同要求)→定子组立(釸钢片无生锈、变形、 插PIN机绕线机 绝缘套无毛边、无残缺、无变形) →插PIN(PIN脚高度、釸钢片正反) →绕线(漆包线 沾锡机 型号、绕线匝数、溢线、松紧度、挂线、排线)→分线(首尾线头、绕线方式) →沾锡(助 阻抗机焊剂液面高度、PIN脚入锡面的深度,焊锡温度、助焊剂的比重、焊渣、沾锡时间) →测阻抗(阻抗值±3Ω)→PC板总成(下绝缘套剪胶部分均要接触PC板)→剪脚(根据需要剪 电源供应 器、示波器 得平整、光滑、高度适当) →电测(测电流与波形)→套PCB总成(PCB总成要放水平, 釸钢片凹槽对准外壳卡框)→压合铜(合铜冲压的高度)→压PCB总成(不可压坏漆包线或点油机 绝缘套) →点油(定量点油0、02克)→装扇叶(扇叶、磁框内需无杂物)→扣线(线入沟槽) 直流电源供应器 →烧机(烧机电压为13、8V,有无漏油现象) →定点检测(测试其异音、死角、间隙、突出平衡、断缘、死机、电流、波形) →测转速→贴标签→包装 五、FAN的电气性能测试 FAN主要测试项目包括:电流、死角、异音、抖动、转速、风速、烧机、外观是否与卷

热设计基础

热设计基础(一):热即是“能量”,一切遵循能量守恒定律 在开发使用电能的电子设备时,免不了与热打交道。“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。下面举例介绍一下非专业人士应该知道的热设计基础知识。 “直径超过13cm,体积庞大,像换气扇一样。该风扇可独立承担最大耗电量达380W的PS3的散热工作”。 以上是刊登在2006年11月20日刊NE Academy专题上的“PlayStation3”(PS3)拆解报道中的一句话。看过PS3内像“风扇”或“换气扇”一样的冷却机构,估计一定会有人感到惊讶。 “怎么会作出这种设计?” “这肯定是胡摸乱撞、反复尝试的结果。” “应该运用了很多魔术般的最新技术。” “简直就是胡来……” 大家可能会产生这样的印象,但事实上并非如此。 PS3的冷却机构只是忠实于基础,按照基本要求累次设计而成。既没有胡摸乱撞,也不存在魔术般的最新技术。

在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。 如果能够依靠这些对策解决问题,那也罢了。但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出现不得不重新进行设计的最糟糕的局面。 而这种局面,如果能在最初简单地估算一下,便可避免发生。这就是“热设计”。正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。也可称之为估计“大致热量”的作业。 虽说如此,但这其实并非什么高深的话题。如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。 第1章从“什么是热”这一话题开始介绍。大家可能会想“那接下来呢”?不过现在想问大家一个问题。热的单位是什么? 如果你的回答是“℃”,那么希望你能读一下本文。 热是能量的形态之一。与动能、电能及位能等一样,也存在热能。热能的单位用“J”(焦耳)表示。1J能量能在1N力的作用下使物体移动1m,使1g的水温度升高0.24℃。

散热风扇知识学习

散热风扇知识学习 本文主要针对散热风扇的原理、分类以及重要参数给予介绍。另介绍一种新型无叶风扇。 一、散热风扇的原理 原理:风扇的工作原理是按能量转化来实现的,即:电能→电磁能→机械能→动能。 二、散热风扇的分类 1. 按送风形式 (1)轴流风扇 轴流风扇的叶片推动空气以与轴相同 的方向流动。轴流风扇的叶轮和螺旋桨有 点类似,它在工作时,绝大部分气流的流 向与轴平行,换句话说就是沿轴线方向。 轴流风扇当入口气流是0静压的自由空气 时,其功耗最低,当运转时会随着气流反 压力的上升功耗也会增加。轴流风扇通常 装在电气设备的机柜上,有时也整合在电 机上,由于轴流风扇结构紧凑,可以节省 很多空间,同时安装方便,因此得到广泛 的应用。图片见右图 其特点:较高的流率,中等风压

(2)离心风扇(涡轮风扇) 2.散热风扇的常见轴承结构 散热风扇的常见轴承有:滚珠轴承,含油轴承,磁悬浮轴承。 (1)滚珠轴承 滚珠轴承(Ball Bearing )改变了轴承的摩擦方式,采用滚动摩擦,两个铁环中间有一些钢球或者钢柱,并辅以一些油脂润滑。这一方式更为有效的降低了轴承面之间的摩擦现象,有效提升了风扇轴承的使用寿命,也因此将散热器的发热量减小,使用寿命延长。所带来的缺点就是工艺更为复杂,导致成本提升,同时也带来更高的工作噪音。滚珠轴承有单滚珠轴承和双滚珠轴承。 单滚珠轴承是对传统油封轴承的改进。它的转子与定子之间用滚珠进行润 离心风扇工作时,叶片推动空气以与 轴相垂直的方向(即径向)流动,进气是 沿轴线方向,而出气却垂直于轴线方向。 大多数情况下,使用轴流风扇就可以达到 冷却效果,然而,有时候如果需要气流旋 转90度排出或者需要较大的风压时,就必 须选用离心风扇。风机严格而言,也属于 离心风扇。图片见右图 其特点:有限流率,高风压

散热在结构设计中的应用

散热在结构设计中的应用___专栏! 包括,散热方式的选择,结构的设计,材料选用等 我先根据个人的一点经验,总结出来随便谈谈。 根据热传导的途径来说,散热相应有以下三种主要方式: 一、散热片导热式散热 1、良好接触面:要求发热件与散热片要有良好接触,尽可能降低接触热阻,所以最好有大的接触面,接触面还需要有较高的光洁度,为了弥补因接触面的粗糙而导致的贴合不良,可以在中间涂抹导热脂,可以有效降低接触热阻; 2、良好的导热材料:铜、铝都有较好的导热性能,铜的导热系数虽然优于铝,但铜有密度太高、价格贵的缺点,所以实际应用中铝材是应用最多; 3、散热片固定方式:这个也是比较重要的一环,如果不能把发热件与散热片良好接触,也是无法有效把热量传导到散热器上的,应用中有直接用螺丝钉紧固的,也有用弹簧片压固的,可以根据需要选择设计,需要说明的是,有些功率器件和散热片之间有绝缘要求,中间选用的绝缘材料就一定要选用低热阻的材料,比如:聚脂薄膜、云母片等,实际安装中还要注意固定位置应使用受力均匀分布; 4、散热片的形状:包括页片与基材的形状尺寸,要有尽可能加大散热表面积,这样散热片的热量才能快速与周围空气对流,比如说增加页片数目、在页片上做波浪纹都是好办法;基材要厚一些比较好,长而薄的散热片效率很差,在远端基本上是不起作用的了; 二、对流散热 1、自然对流:发热器件或者散热片的热量可以是依靠自然对流散热,这样的话,发热件或者散热片最好以长边取为垂直方向为佳,而且要尽量使散热片的横断面与水平面方向平行,因为热空气是上升的,这样才比较有利于空气流通,象单面页片式的散热器就比较适合安装在机体背板以自然对流方式散热; 2、强制对流:采用风扇强制吸、排的方式拉动一个风场来加强空气对流,是比较有效的散热方式,可以根据需要选择合适的风扇规格与数目,在设计上要注意的有这么几点: A、各风扇风场方向要一致,不要互相打架,否则效率肯定大打折扣,对机箱内部来说最好有相应的进风口与出风口,可以参考一下下面的附图,是一块显卡的散热设计; B、采用强制风冷时,对于页片式散热片来说,要使页片方向与风道气流方向一致 c、机箱上要根据风场的需要留出相应的散热孔,散热孔并非越多、越大就越好,首先散热孔的大小根据不同的安规等级有相应限制,还要考虑EMI的要求(可以参考一下附图);另外,重为重要的是:散热孔的分布要与风道气流的流向吻合, 三、辐射散热 这种散热方式给设计者留出的空间相对较少,对于发热器件与散热片来说,表面光洁度越高,辐射效率越差,所以比较廉价而且较有效的一个手段是把铝型材散热器表面做氧化处理,这层氧化层可以大大改善辐射效率(比如,一个表面研磨光洁的散热片,表面辐射率可能在0.1左右,做过氧化处理后,辐射率的值可以升高到1)

电子散热设计基础理论

电子散热设计基础理论

内容 第一节 概述 1 第二节 热传导 1 第三节 热辐射7 第四节 热对流8 第五节 影响对流换热的因素11 5.1 流体运动产生的原因 5.2 流动状态的影响 5.3 流体物性的影响 5.4 温度因素的影响 5.5 几何因素的影响 5.6 其他 第六节 复合换热20 第七节 模拟分析软件ICEPAK在传热设计中的应用 22 附件1,ICEPAK在传热设计中的应用举例

电子散热设计基础理论 第一节 概 述 传热现象在自然界普遍存在,有温差的地方就会有热量传递发生。具体到在工程技术领域中,掌握传热体系内的传热量和温度分布最具有实际意义。一般来说,对于无内热源的稳定传热过程,传热量(Q 或q )和传热温差⊿t 的关系可表示为下列一般形式: Q=qF=⊿t/ R W 或 q=Q/F=⊿t/r W/m 2 式中Q 亦称热流量。q 亦称热流率或热流密度,⊿t[℃]亦称传热推动力,F[m 2]为传热面积,R[℃/W]为热阻,r =RF[m 2. ℃/W]称单位面积热阻. 传热的基本方式有传导、辐射和对流三种,但实际换热过程往往是以一种形式为主的复合换热方式。下面,结合实践经验,对这几种理论分别加以阐述。 第二节 热 传 导 同一物体内部或互相接触的物体之间,当温度 不同但没有相对的宏观位移时的传热方式叫热传导 或导热。微观来看,气体导热基于分子或原子的彼 此碰撞;液体和非导电固体导热的机理是分子或原 子振动产生的弹性波作用;而金属导热则主要靠自 由电子的扩散传播能量[s] 。其微观现象如(图2-1) 热源 所示, 从图中可以看出,热传导是热量从高温部分 (图示最红色)往低温部分均匀传递,温度随之降低。 图2-1 热传导微观示意图

结构设计与热设计

电子电气产品结构设计 在电子行业中的结构设计一般是:在电子设备中,由工程材料按合理的连接方式进行连接,且能安装电子元、器件及机械零、部件,使设备成为一个整体的基础结构,能够实现预定的电气、结构等功能。 而在电子行业中由于各种标准(国家标准、国际标准、行业标准等)对我们的设备提出了不同的要求。如标准YD-T 1095-2000《通信用不间断电源UPS》标准、《UL1778》等。 其中标准要求有: 4.1 环境条件 4.1.1 正常使用条件 环境温度:5°C~40°C;相对湿度≤93%[(40±2)°C,无凝露] 海拔高度应不超过1000m;若超过1000m时按GB/T3859.2规定降容使用。 4.1.2 贮存运输环境及机械条件 温度:-25°C ~ +55°C(不含电池) 振动、冲击条件应符合GB/T 14715-93中的5.3.2规定。 4.2 外观与结构 4.2.1 机箱镀层牢固,漆面均匀,无剥落、锈蚀及裂痕等现象。 4.2.2 机箱表面平整,所有标牌、标记、文字符号应清晰、正确、整齐。 4.2.3 各种开关便于操作,灵活可靠。 4.4 电磁兼容限值 4.4.1传导干扰 在150KHz~30MHz频段内,系统电源线上的传导干扰电平应符合YD/T 983-1998 中5.1表2中规定的限制。 4.4.2 电磁辐射干扰 在30MHz~1000MHz频段内系统的电磁辐射干扰电压电平应符合YD/T 983-1998 中5.2表4中规定的限值。 4.4.3 抗干扰性能要求 应符合YD/T 983-1998中7.3表9中规定的判断准则。 第一讲结构设计与热设计 电子电气行业中的热设计是指,采用适当可靠的方法控制电子设备内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证设备正常运行的安全性和长期运行的可靠性。 在UPS中,主要的热源来自于开关管(IGBT、三极管、二极管等)、磁性元件(变压器、电感等)等。由于开关管体积较小,其热密度较高,开关管的散热主要是采用传导的方式将热量传递到散热器上,再通过对流的方式散发到空气中。磁性元件体积相对较大,其主要的散热方式为对流散热。在UPS的热设计中除了主要考虑开关管、磁性元件外还需要考虑寿命受温度影响很大的电容。 1.结构设计与热设计的关系 1.1开关元件与散热器的安装,安装开关元件与散热器的扭矩应合适,使两者之间有较小的接触热阻:安装扭矩太小不能使元件与散热器良好接触,形成较大的热阻;扭矩过大能导致管荷产生应力和构件产生塑性变形,接触面反而减小,甚至结构破坏。因而在设计安装时应对元件采用厂家或标准中给出的预紧力。在我们产品中开关元件与散热器安装主要有三种方式:

电子产品散热设计方法

产品的热设计方法 介绍 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 介绍 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 风路的设计方法20分钟 产品的热设计计算方法40分钟 风扇的基本定律及噪音的评估方法20分钟 海拔高度对热设计的影响及解决对策20分钟 热仿真技术、热设计的发展趋势50分钟 概述 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 自然冷却的风路设计 设计要点 ?机柜的后门(面板)不须开通风口。 ?底部或侧面不能漏风。 ?应保证模块后端与机柜后面门之间有足够的空间。 ?机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。 ?对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面。对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口。 风路设计方法 自然冷却的风路设计 设计案例 风路设计方法 自然冷却的风路设计 典型的自然冷机柜风道结构形式 风路设计方法 强迫冷却的风路设计 设计要点 ?如果发热分布均匀,元器件的间距应均匀,以使风均匀流过每一个发热源. ?如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件。 ?如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流

散热防热在结构设计中的应用

散热防热在结构设计中的应用 来源:新世纪LED论坛https://www.doczj.com/doc/9114761645.html, 根据热传导的途径来说,散热相应有以下三种主要方式: 一、散热片导热式散热 1、良好接触面:要求发热件与散热片要有良好接触,尽可能降低接触热阻,所以最好有大的接触面,接触面还需要有较高的光洁度,为了弥补因接触面的粗糙而导致的贴合不良,可以在中间涂抹导热脂,可以有效降低接触热阻; 2、良好的导热材料:铜、铝都有较好的导热性能,铜的导热系数虽然优于铝,但铜有密度太高、价格贵的缺点,所以实际应用中铝材是应用最多; 3、散热片固定方式:这个也是比较重要的一环,如果不能把发热件与散热片良好接触,也是无法有效把热量传导到散热器上的,应用中有直接用螺丝钉紧固的,也有用弹簧片压固的,可以根据需要选择设计,需要说明的是,有些功率器件和散热片之间有绝缘要求,中间选用的绝缘材料就一定要选用低热阻的材料,比如:聚脂薄膜、云母片等,实际安装中还要注意固定位置应使用受力均匀分布; 4、散热片的形状:包括页片与基材的形状尺寸,要有尽可能加大散热表面积,这样散热片的热量才能快速与周围空气对流,比如说增加页片数目、在页片上做波浪纹都是好办法;基材要厚一些比较好,长而薄的散热片效率很差,在远端基本上是不起作用的了; 二、对流散热 1、自然对流:发热器件或者散热片的热量可以是依靠自然对流散热,这样的话,发热件或者散热片最好以长边取为垂直方向为佳,而且要尽量使散热片的横断面与水平面方向平行,因为热空气是上升的,这样才比较有利于空气流通,象单面页片式的散热器就比较适合安装在机体背板以自然对流方式散热; 2、强制对流:采用风扇强制吸、排的方式拉动一个风场来加强空气对流,是比较有效的散热方式,可以根据需要选择合适的风扇规格与数目,在设计上要注意的有这么几点: A、各风扇风场方向要一致,不要互相打架,否则效率肯定大打折扣,对机箱内部来说最好有相应的进风口与出风口;

CFD散热基础知识介绍

CFD散热基础知识介绍 人们对手机等电子产品的依赖程度越来越高,长时间用手机聊天、看影视剧、玩游戏,往往会导致手机迅速发热,而手机类电子产品发热温升超过10度,性能往往会下降50%以上,并且手机类电子产品发热严重会导致手机重启或者爆炸等意外事故的发生。如何更好提升手机的散热性能并且预防上述意外事故的发生,需要借助CFD手段在手机类电子产品的研发阶段就“把好关”。 那么,CFD软件如何在手机类电子产品中产生作用? 1电子热设计基础理论 1热传递的方式 热量传递的基本规律是热量从高温区域向低温区域传递,热量的传递方式主要包括三种:传导、对流、辐射。 ?传导 传导是由于动能从一个分子转移到另一个分子而引起的热传递。传导可以在固体、液体或气体中发生,它是在不透明固体中发生传热的唯一形式。对于电子设备,传导是一种非常重要的传热方式。

利用传导进行散热的方法有:增大接触面积,选择导热系数大的材料,缩短热流通路,提高接触面的表面质量,在接触面填导热脂或加导热垫,接触压力均匀等。 ?对流 对流是固体表面和流体表面间传热的主要方式。对流分为自由对流和强迫对流,是电子设备普遍采用的一种散热方式——所谓的自然对流是因为冷、热流体的密度差引起的流动,而强迫风冷是由外力迫使流体进行流动,更多是因为压力差而引起的流动。产品设计中提到的风冷散热和水冷散热都属于对流散热方式。 影响对了换热的因素很多,主要包含:流态(层流/湍流)、流体本身的物理性质、换热面的因素(大小、粗糙程度、放置方向)等。 ?辐射 辐射是在真空中进行传热的唯一方式,它是量子从热体(辐射体)到冷体(吸收体)的转移。 提高辐射散热的方法有:提高冷体的黑度,增大辐射体与冷体之间的角系数,增大辐射面积等。 2增强散热的方式

技术讲座--热设计基础

【技术讲座】热设计基础(一):热即是“能量”,一切遵循能量守恒定律 在开发使用电能的电子设备时,免不了与热打交道。“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。下面举例介绍一下非专业人士应该知道的热设计基础知识。 “直径超过13cm,体积庞大,像换气扇一样。该风扇可独立承担最大耗电量达380W的PS3的散热工作”。 以上是刊登在2006年11月20日刊NE Academy专题上的“PlayStation3”(PS3)拆解报道中的一句话。看过PS3内像“风扇”或“换气扇”一样的冷却机构,估计一定会有人感到惊讶。 “怎么会作出这种设计?” “这肯定是胡摸乱撞、反复尝试的结果。” “应该运用了很多魔术般的最新技术。” “简直就是胡来……” 大家可能会产生这样的印象,但事实上并非如此。 PS3的冷却机构只是忠实于基础,按照基本要求累次设计而成。既没有胡摸乱撞,也不存在魔术般的最新技术。 在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。

如果能够依靠这些对策解决问题,那也罢了。但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出现不得不重新进行设计的最糟糕的局面。 而这种局面,如果能在最初简单地估算一下,便可避免发生。这就是“热设计”。正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。也可称之为估计“大致热量”的作业。 虽说如此,但这其实并非什么高深的话题。如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。 第1章从“什么是热”这一话题开始介绍。大家可能会想“那接下来呢”?不过现在想问大家一个问题。热的单位是什么? 如果你的回答是“℃”,那么希望你能读一下本文。 热是能量的形态之一。与动能、电能及位能等一样,也存在热能。热能的单位用“J”(焦耳)表示。1J能量能在1N力的作用下使物体移动1m,使1g的水温度升高0.24℃。

风冷散热的设计与计算

风冷散热的设计及计算 风冷散热原理: 散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。 散热片材料的比较: 现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。使用铝业也有很多优点,比如重量比较轻,可塑性比较好。因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。 风扇: 单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。从这个来看,风扇的效果有时甚至比散热片还重要。假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。要判断风扇是否够强劲,转速是一个重要的依据。转速越快,风就越强,简单看功率的大小。

轴承: 市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。 强迫风冷设计 当自然风冷不能解决问题时,需要用强迫空气冷却,即强迫风冷。强迫风冷是利用风机进行鼓风或抽风,提高设备的空气流动速度,达到散热目的。强迫风冷在中大功率的电子设备中应用广泛,因为它具有比自然风冷多几倍的热转移能力。与其他形势强迫风冷比较有结构简单,费用低,维护简便等优点。 整机强迫风冷有两种形式:鼓风冷却和抽风冷却。 鼓风冷却特点是风压大,风量集中。适用于单元内热量分布不均匀,风阻较大而元器件较多的情况。当单元内风阻较大,需要单独冷却的元件和热敏元件较多,且各单元间热损相差有较大时,建议用凤管冷却,以便控制各单元风量的需要。

风冷散热的设计及计算

风冷散热的设计及计算 The document was finally revised on 2021

风冷散热的设计及计算 风冷散热原理: 散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。 散热片材料的比较: 现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。使用铝业也有很多优点,比如重量比较轻,可塑性比较好。因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。 风扇: 单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。从这个来看,风扇的效果有时甚至比散热片还重要。假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。要判断风扇是否够强劲,转速是一个重要的依据。转速越快,风就越强,简单看功率的大小。 轴承: 市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。通常在国内厂家轴承制造中,预压前上下轴承套是正对

散热基础理论

本文简述了LED灯散热行业内问题,提出便于实现LED灯模块标准化的技术方案,将散热片划归为灯具中的部件,由LED芯和导热芯构成的灯芯,设计成系列标准,采用圆锥柱面导热芯,有效解决灯芯(导热芯)与散热片(灯具)之间的热传导问题,并认为恒流驱动电源更合理。针对散热片自然对流传热,本文提出了采用对流罩,利用烟囱效应,强化提高散热,并简述了优化理念。经大量实验得出,每瓦散热用铝不到4克的显著结果,LED灯散热将不再是问题。 一引论 LED照明由于其节电、环保、长寿命,而被公认为下一带照明技术,将取代现有的各种照明技术。LED为冷光源,怕热,有80%之多的电能转化为热能,必须有散热措施,虽然LED发光技术已有飞跃发展,有每瓦发光达200lm的报道,但LED散热却是LED照明中非常头痛,但又还没得到有效解决的问题,成了LED照明灯普及发展道路上的拦路虎。 阻碍LED照明应用普及的最大问题是LED灯价格高,虽然上游的LED晶片厂商瓜分绝大部分利润,有大幅度降价空间,但要实现整个社会资源有效配置到LED照明整个产业链中,有效降低造价,便于普通民众购买安装,LED照明灯的模块标准化是必经之路,就像现有照明灯(白炽灯、日光灯/节能灯)那样。LED照明灯模块标准化的阻碍就是散热问题的存在。 散热属于传热中的一部分。人类对传热的研究已有上百年的历史,上世纪60~70年代是人们对传热研究的顶峰时期,其主要动力是人类开发航空航天的需求。那时代,传热技术领域聚集了许多优秀人才,有不少传热研究人员成为知名人士,之后人们对传热研究热情逐渐减小,目前传热学及技术的专业人员非常少。传热学及技术已是非常之成熟,就像似成熟的果子,掉到地上被树叶遮盖,不被现在的人们看见,以致当电子行业,主要是计算机中的CPU发热量突然大增时,人们没有去拔开地面上的树叶,捡起那些熟透的果子,将人类成熟的传热知识移植到电子行业内。而是另起炉灶,创造出不少新名

电子热设计

摘要:本文用传统的热设计理论及经验公式对电源模块内的四个50W 大功率管进行了散热设 计,并应用热分析软件Icepak 对理论计算进行了校核,并对方案进行了优化设计。 关键词:功率管散热,散热器,热分析软件,Icepak 1 引言 电源模块内有四个功率管(在同一平面上,分成两排),其两两间距为60mm,管径Φ20mm,每一功率管的发热功率为50W。周围环境温度:+50℃。要求设计一150mm×200mm 的平板肋片式散热器。 根据热设计基本理论,功率器件耗散的热量为 Pc=Δt/RT (W)(1) 式中,Δt 为功率管结温与周围环境温度之差,℃;RT 为总热阻,℃/W; RTj 为功率管的内热阻,RTp 为器件壳体直接向周围环境的换热热阻,RTc 为功率管与散热器 安装面之间的接触热阻,RTf 为散热器热阻。本文旨在尽量减小RTc 和RTf,使系统热阻降低,保证功率管结点温度在允许值之内。 2 任务分析 功率管的温度控制,主要是控制功率管的结温。生产厂一般将器件的最高结温规定为90 ℃~150℃。可靠性研究表明,对于使用功率元件的电子设备长期通电使壳体温度超过100℃, 将导致故障率大大增加。故要求功率管壳体温度,即散热器底板温度(先忽略安装时的接触 热阻)应低于100℃。以下的计算中暂取100℃。 常用散热器主要有叉指型和型材两种。对于叉指散热器,叉指向上对散热较为有利;而 型材散热器则要求底板竖直放置。本设计中若采用叉指型散热器,则200mm×150mm 的底板 占用水平空间较大,不利于PCB 板的排放,故采用型材散热器。型材散热器按照肋片的形式

可分为矩形肋、梯形肋、三角形类、凹抛物线肋等,其中,矩形肋的加工方法最为简单,应 优先考虑。又考虑到性价比及加工工艺性,故采用铝合金作为散热器的材料。 3 散热器设计 3.1 底板的设计 底板的设计包括底板厚度和底板长高尺寸设计。在底板材料确定的条件下,底板的厚度 会影响其本身的热阻,从而影响散热器底板的温度分布和均匀性。查阅部分国家标准,取散 热器底板厚度为6mm。根据经验公式,底板的高度取为150mm(150 和200mm 的较小者)时换热系数较大。 3.2 肋片厚度的设计 无量纲数毕渥数(Biot)小于1 ,即 为肋片起增强散热的判据;实验证实,对于等截面矩形肋,应满足25 . 0 ≤ i B 。为了使Bi 数较小,肋片以薄为宜,但如果肋片厚度过小,将给加工增加困难,本文取肋片厚度δ=1.5mm。 3.3 肋间距的设计 当散热器尺寸一定时,减小肋片间距,则肋化系数增加,热阻降低;但由于流体的粘滞 作用,肋间距过小将引起换热效果变差。本文取肋片间距为1.2cm。根据这一肋片间距,散热 器上共可布置30 片肋片(分布于两侧)。 3.4 肋片高度的设计 肋片及底板的散热可近似看作自由空间垂直平壁的自然对流换热。定性温度取散热器和 环境温度的平均值75°C, Gr----葛拉晓夫数;

散热设计

一、散热设计的一些基本原则: 从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则: 1. 对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列,如图3示;对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排列。 2. 同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。 3. 在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响。 4. 对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。 5. 设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。整机中多块印制电路板的配置也应注意同样的问题。 二、电子设备散热的重要性 在电子设备广泛应用的今天。如何保证电子设备的长时间可靠运行,一直困扰着工程师们。造成电子设备故障的原因虽然很多,但是高温是其中最重要的因素(其它因素重要性依次是振动Vibration、潮湿Humidity、灰尘Dust),温度对电子设备的影响高达60%。 温度和故障率的关系是成正比的,可以用下式来表示: F = Ae-E/KT 其中: F = 故障率, A=常数 E = 功率 K =玻尔兹曼常量(8.63e-5eV/K) T = 结点温度 三、功率芯片有关热的主要参数 随着芯片的集成度、功率密度的日愈提高,芯片的温度越来越成为系统稳定工作、性能提升的绊脚石。作为一个合格的电子产品设计人员,除了成功实现产品的功能之外,还必须充分考虑产品的稳定性、工作寿命,环境适应能力等等。而这些都和温度有着直接或间接的关系。数据显示,45%的电子产品损坏是由于温度过高。可见散热设计的重要性。 如何对产品进行热设计,首先我们可以从芯片厂家提供的芯片Datasheet为判断的基础依。如何理解Datasheet的相关参数呢?下面将对Datasheet中常用的热参数逐一说明。

相关主题
文本预览
相关文档 最新文档