当前位置:文档之家› 2013中考数学50个知识点专练15 函数的应用

2013中考数学50个知识点专练15 函数的应用

2013中考数学50个知识点专练15 函数的应用
2013中考数学50个知识点专练15 函数的应用

2013中考数学50个知识点专练15 函数的应用

一、选择题

1.(2011·潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的函数图象分别为线段OA 和折线OBCD.下列说法正确的是()

A.小莹的速度随时间的增大而增大

B.小梅的平均速度比小莹的平均速度大

C.在起跑后180 秒时,两人相遇

D.在起跑后50 秒时,小梅在小莹的前面

2.(2011·内江)小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()

A.14分钟B.7分钟C.18分钟D.20分钟

3.(2010·甘肃)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()

A.第8秒B.第10秒C.第12秒D.第15秒

4.(2010·南宁)如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是()

A.6s B.4s C.3s D.2s

5.(2011·株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()

A .4米

B .3米

C .2米

D .1米

二、填空题

6.(2011·桂林)双曲线y 1、y 2在第一象限的图象如图所示,y 1=4x

,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是________.

7.(2011·天津)已知二次函数y =ax 2+bx +c (a ≠0)中自变量x 和函数值y 的部分对应值如下表:

x …… -32 -1 -12 0 12 1 32

…… y …… -54 -2 -94 -2 -54 0 74

8.(2011·黄石)初三年级某班有54名学生,所在教室有6行9列座位,用(m ,n )表示第m 行第n 列的座位.新学期准备调整座位,设某个学生原来的座位为(m ,n ),如果调整后的座位为(i ,j ),则称该生作了平移[a ,b ]=[]m -i ,n -j ,并称a +b 为该生的位置数.若某生的位置数为10,则当m +n 取最小值时,m ·n 的最大值为__________.

9.(2011·扬州)如图,已知函数y =-3x

与y =ax 2+bx ()a >0,b >0的图象交于点P ,点P 的纵坐标为1,则关于x 的方程ax 2+bx +3x =0的解为__________.

10.(2011·武汉)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过________分钟,容器中的水恰好放完.

三、解答题

11.(2011·宜昌)某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y与x之间的关系如图所示.

(1)求y与x之间的关系式;

(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?

12.(2011·金华)某班师生组织植树活动,上午8时从学校出发,到植树地点植完树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:

(1)求师生何时回到学校?

(2)如果运送树苗的三轮车比师生迟半个小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;

(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回学校,往返平均速度分别为每小时10 km、8 km.现有A、B、C、D四个植树点与学校的路程分别是13 km,15 km、17 km、19 km,试通过计算说明哪几个植树点符合要求.

13.(2010·潍坊)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.

(1)要使铺设白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?

(2)如图铺设白色地面砖的费用为每平米30米,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多

少?

14.(2011·南充)某工厂在生产过程中要消耗大量电能,消耗每千度电产生的利润与电价是一次函数关系,经过测算,工厂每千度电产生的利润y(元/千度)与电价x(元/千度)的函数图象如图:

(1)当电价为600元/千度时,工厂消耗每千度电产生的利润是多少?

(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度.为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生的利润最大是多少元?

初三数学几何知识点归纳总结

初三数学几何知识点归纳总结 除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数学几何知识点归纳总结,希望对大家的学习有一定帮助。 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 初中几何公式:三角形

15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

中考数学函数知识点汇总

2012广州中考数学二次函数知识点 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

2013年云南中考数学试题及解析

云南省八地市2013年中考数学试卷 一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分) 1.(3分)(2013?云南)﹣6的绝对值是() A.﹣6 B.6C.±6 D. 2.(3分)(2013?云南)下列运算,结果正确的是() A.m6÷m3=m2B.3mn2?m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n2 3.(3分)(2013?云南)图为某个几何体的三视图,则该几何体是() A.B.C.D. 4.(3分)(2013?云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为() A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元5.(3分)(2013?云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是() A.S?ABCD=4S △AOB B.A C=BD C.A C⊥BD D.?ABCD是轴对称图形 6.(3分)(2013?云南)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是() A.相离B.外切C.相交D.内切 7.(3分)(2013?云南)要使分式的值为0,你认为x可取得数是() A.9B.±3 C.﹣3 D.3 8.(3分)(2013?云南)若ab>0,则一次函数y=ax+b和反比例函数y=在同一坐标系数中的大致图象是()

A. B.C.D. 二、填空题(本大题共6个小题,每小题3分,满分18分) 9.(3分)(2013?云南)25的算术平方根是. 10.(3分)(2013?云南)分解因式:x3﹣4x=. 11.(3分)(2013?云南)在函数中,自变量x的取值范围是. 12.(3分)(2013?云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π). 13.(3分)(2013?云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=. 14.(3分)(2013?云南)下面是按一定规律排列的一列数:,,,,…那么第n 个数是. 三、解答题(本大题共9个小题,满分58分) 15.(4分)(2013?云南)计算:sin30°+(﹣1)0+()﹣2﹣. 16.(5分)(2013?云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个). (1)你添加的条件是. (2)添加条件后,请说明△ABC≌△ADE的理由. 17.(6分)(2013?云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上. (1)把“鱼”向右平移5个单位长度,并画出平移后的图形. (2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.

中考数学必备知识点

中考数学必备知识点 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、定理线段垂直平分线上的点和这条线段两个端点的距离相等 10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 12、定理1关于某条直线对称的两个图形是全等形 13、13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 初中几何公式定理:角 16、同位角相等,两直线平行17、内错角相等,两直线平行 18、同旁内角互补,两直线平行19、两直线平行,同位角相等 20、两直线平行,内错角相等 21、两直线平行,同旁内角互补 22、定理1在角的平分线上的点到这个角的两边的距离相等 23、定理2到一个角的两边的距离相同的点,在这个角的平分线上 24、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式定理:三角形

25、定理三角形两边的和大于第三边 26、推论三角形两边的差小于第三边 27、三角形内角和定理三角形三个内角的和等于180° 28、推论1直角三角形的两个锐角互余 29、推论2三角形的一个外角等于和它不相邻的两个内角的和 30、推论3三角形的一个外角大于任何一个和它不相邻的内角 31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式定理:等腰、直角三角形 33、等腰三角形的性质定理等腰三角形的两个底角相等 34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 35、等腰三角形的顶角平分线、底边上的中线和高互相重合 36、推论3等边三角形的各角都相等,并且每一个角都等于60° 37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 38、推论1三个角都相等的三角形是等边三角形 39、推论2有一个角等于60°的等腰三角形是等边三角形 40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 41、直角三角形斜边上的中线等于斜边上的一半 初中几何公式定理:相似、全等三角形 42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

中考数学复习50个知识点专题专练:15 函数的应用

中考数学50个知识点专练15 函数的应用 一、选择题 1.(2011·潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是() A.小莹的速度随时间的增大而增大 B.小梅的平均速度比小莹的平均速度大 C.在起跑后180 秒时,两人相遇 D.在起跑后50 秒时,小梅在小莹的前面 2.(2011·内江)小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是() A.14分钟B.7分钟C.18分钟D.20分钟 3.(2010·甘肃)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是() A.第8秒B.第10秒C.第12秒D.第15秒 4.(2010·南宁)如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是() A.6s B.4s C.3s D.2s 5.(2011·株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()

初中数学函数知识点汇总

函数及其图像 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 2、坐标轴上的点的特征 在x 轴上纵坐标为0 , 在y 轴上横坐标为, 原点坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)到x 轴的距离等于y (2)到y 轴的距离等于x (3)到原点的距离等于22y x + 三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数的三种表示法(1)解析法(2)列表法(3)图像法 3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线 4、自变量取值范围 四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。 特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。

2013年中考数学试题

数学试题 第1页(共4页) 2013年十堰市初中毕业生学业考试 数学试题 注意事项: 1.本卷共有4页,共有25小题,满分120分,考试时限120分钟. 2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码. 3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.2-的值等于( ) A .2 B .1 2- C .12 D .-2 2.如图,AB ∥CD ,CE 平分∠BCD ,∠DCE =18°,则∠B 等于( A .18° B .36° C .45° D .54° 3.下列运算中,正确的是( ) A .235a a a += B .6 3 2a a a ? C .426()a a = D .235a a a = 4.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是( ) 5.已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( ) A .4 B .-4 C .1 D .-1 6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知 AC =5cm ,△ADC 的周长为17cm ,则BC 的长为( ) A .7cm B .10cm C .12cm D .22cm 7.如图,梯形ABCD 中,AD ∥BC ,AB=DC=3,AD=5,∠C=60°,则下底BC 的长为( ) A .8 B .9 C .10 D .11 A . B . C . D . 第6题 B 第2题 第7题 正面

中考数学重点知识点及重要题型

中考数学重点知识点及重要题型 知识点1:一元二次方程的基本概念 1.一元二次方程3x 2+5x-2=0的常数项是-2. 2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A (3,0)在y 轴上。 2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=2 1-x 的值为1. 3.当x=-1时,函数y=3 21-x 的值为1. 知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 2 1-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(2 12+-=x y 的顶点坐标是(1,2). 7.反比例函数x y 2 = 的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4. 3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°= 2 3. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2.

中考数学复习50个知识点专题专练:1 实数及其运算

中考数学50个知识点专练1 实数及其运算 一、选择题 1.(2012·金华)下列各组数中,互为相反数的是( ) A .2和-2 B .-2和12 C .-2和-12 D.12和2 2.(2012·台州)在12 、0、1、-2这四个数中,最小的数是( ) A.12 B .0 C .1 D .-2 3.(2012·温州)计算:(-1)+2的结果是( ) A .-1 B .1 C .-3 D .3 4.(2012·日照)观察图中正方形四个顶点所标的数字规律,可知数2012应标在( ) A .第502个正方形的左下角 B .第502个正方形的右下角 C .第503个正方形的左上角 D .第503个正方形的右下角 5.(2012·襄阳)下列说法正确的是( ) A .(π2)0是无理数 B.33 是有理数 C.4是无理数 D.3-8是有理数 二、填空题 6.(2012·杭州)写出一个比-4大的负无理数________. 7.(2012·宁波)实数27的立方根是________. 8.(2012·连云港)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核 素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________. 9.(2012·乐山)数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点 C 表示的数为_________. 10.(2012·常德)先找规律,再填数: 11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156 , …… 则12011+12012-__________=12011×2012 .

初中数学一次函数知识点总复习附答案

初中数学一次函数知识点总复习附答案 一、选择题 1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂重物的质量x (kg )有下面的关系,那么弹簧总长y (cm )与所挂重物x (kg )之间的关系式为( ) A .y=0.5x+12 B .y=x+10.5 C .y=0.5x+10 D .y=x+12 【答案】A 【解析】 分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式. 详解:由表可知:常量为0.5; 所以,弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式为y=0.5x+12. 故选A . 点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式. 2.已知过点()2?3, -的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( ) A .352 s -≤≤- B .362 s -<≤- C .362 s -≤≤- D .372 s -<≤- 【答案】B 【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0 {0 23 a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--. 由230b a =--≤得399333662222a a a ≥- ?-≤?--≤-=-,即32s ≤-. 由0a <得3036066a a ->?-->-=-,即6s >-. ∴s 的取值范围是362 s -<≤- .

2013年中考数学试题(含答案)

2014 年中考数学试题 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2的值等于 ( ) A 、2 B 、-2 C 、2 D 、2 2、函数31+-= x y 中,自变量x 的取值范围是 ( ) A 、1>x B 、1≥x C 、1≤x D 、1≠x 3、方程 03 12=--x x 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x 4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,16 5、下列说法中正确的是 ( ) A 、两直线被第三条直线所截得的同位角相等 B 、两直线被第三条直线所截得的同旁内角互补 C 、两平行线被第三条直线所截得的同位角的平分线互相垂直 D 、两平行线被第三条直线所截得的同旁内角的平分线互相垂直 20. 已知圆柱的底面半径为 3cm ,母线长为 5cm ,则圆柱的侧面积是 ( ) A 、30cm 2 B 、30πcm 2 C 、15cm 2 D 、15πcm 2 7、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A 、35° B 、140° C 、70° D 、70°或 140° 8、如图,梯形 ABCD 中,AD ∥BC ,对角线 A C 、BD 相交于 O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、 21 B 、41 C 、81 D 、16 1 1、如图,平行四边形 A BCD 中,AB :BC=3:2,∠DAB=60°,E 在 A B 上,且 A E :EB=1:2,F 是BC 的中点,过 D 分别作 D P ⊥AF 于 P ,DQ ⊥CE 于 Q ,则 D P ∶DQ 等于 ( ) A 、3:4 B 、3:52 C 、13:62 D 、32:13 10、已知点 A (0,0),B (0,4),C (3,t +4),D (3,t ). 记 N (t )为□ABCD 内部(不含边界) 第7题图 第8题图 第9题图

初中数学中考必考的21个知识点

初中数学中考必考的21个知识点 以下是为大家整理的初中数学中考必考的21个知识点的相关范文,本文关键词为初中,数学,中考,必考,21个,知识点,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。 初中数学中考必考的21个知识点 一、数轴 1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 数轴的三要素:原点,单位长度,正方向。 2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数) 3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 二、相反数

1.相反数的概念:只有符号不同的两个数叫做互为相反数。 2.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 3.多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。 4.规律方法总结:求一个数的相反数的方法就是在这个 -1- 数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 三、绝对值 1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。 ①互为相反数的两个数绝对值相等; ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。 ③有理数的绝对值都是非负数。 2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定: ①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零。即|a|={a(a>0)0(a=0)﹣a(a<0)四、有理数大小比较 1.有理数的大小比较:

中考数学复习50个知识点专题专练:44 分类讨论型问题

中考数学50个知识点专练44 分类讨论型问题 一、选择题 1.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能是( ) A .(4,0) B .(1,0) C .(-2 2,0) D .(2,0) 2.若函数y =? ???? x 2+2(x ≤2), 2x (x >2),则当函数值y =8时,自变量x 的值是( ) A .±6 B .4 C .±6或4 D .4或- 6 3.如图,在平面直角坐标系xOy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4),连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形,那么所有满足条件的点P 的坐标是( ) A .(8,4) B .(8,4)或(-3,4) C .(8,4)或(-3,4)或(-2,4) D .(8,4)或(-3,4)或(-2,4)或??? ?-7 6,4 4.矩形一个内角的平分线分矩形一边长为1 cm 和3 cm 两部分,则这个矩形的面积为多少cm 2?( ) A .4 B .12 C .4或12 D .6或8 5.若正比例函数y =2kx 与反比例函数y =k x (k ≠0)的图象交于点A (m,1),则k 的值是( ) A .-2或 2 B .-22或2 2 C.2 2 D. 2 二、填空题 6.一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为______________. 7.如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =AB =6,BC =14,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C →D →A →B 的路线运动,运动到点B 停止.在点P 的运动过程中,使△PMC 为等腰三角形的点P 有________个.

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是全体 a≠,而b c 实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: =+的性质: y ax c 结论:上加下减。

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结:

1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2 245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

2013年广州市中考数学试卷及答案(解析版)

2013年广州市初中毕业生学业考试 第一部分 选择题(共30分) 一、选择题: 1.(2013年广州市)比0大的数是( ) A -1 B 1 2- C 0 D 1 分析:比0 的大的数一定是正数,结合选项即可得出答案 解:4个选项中只有D 选项大于0.故选D . 点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数 2.(2013年广州市)图1所示的几何体的主视图是( ) (A ) (B) (C) (D)正面 分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解:从几何体的正面看可得图形. 故选:A . 点评:从几何体的正面看可得图形. 故选:A .. 3.(2013年广州市)在6×6方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是( ) A 向下移动1格 B 向上移动1格 C 向上移动2格 D 向下移动2格 分析:根据题意,结合图形,由平移的概念求解 解:观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D . 点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置. 4.(2013年广州市)计算: () 2 3m n 的结果是( ) A 6 m n B 62 m n C 52 m n D 32 m n

分析:根据幂的乘方的性质和积的乘方的性质进行计算即可 解:(m 3n )2=m 6n 2 .故选:B . 点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题 5、(2013年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 抽样调查,24 分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可 解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D . 点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据 6.(2013年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( ) A 1032x y y x +=??=+? B 1032x y y x +=??=-? C 1032x y x y +=??=+? D 1032x y x y +=??=-? 分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得: .故选:C . 点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键. 7.(2013年广州市)实数a 在数轴上的位置如图4所示,则 2.5 a -=( ) A 2.5a - B 2.5a - C 2.5a + D 2.5a -- 分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案 解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B . 点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大. 8.(2013年广州市)若代数式1x x -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且 分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 解:根据题意得: ,解得:x≥0且x ≠1.故选D . 点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数 9.(2013年广州市)若5200k +<,则关于x 的一元二次方程2 40x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断 分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况 解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选A 点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 10.(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且 ,4,6,AB AC AB AD ⊥==则tan B =( )

最新推荐中考数学总复习知识点总结(最新版)

最新推荐中考数学 复习资料

第一章 实数 考点一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π +8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性: -a (a <0) a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。 2、科学记数法 把一个数写做n a 10?±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。 考点五、实数大小的比较 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

中考数学复习50个知识点专题专练:26 圆的基本性质

中考数学50个知识点专练26 圆的基本性质 一、选择题 1.(2011·上海)矩形ABCD中,AB=8,BC=3 5,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( ) A. 点B、C均在圆P外 B. 点B在圆P外、点C在圆P内 C. 点B在圆P内、点C在圆P外 D.点B、C均在圆P内 2.(2011·凉山)如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB 的度数为( ) A.50° B.80°或50° C.130° D.50°或130° 3.(2011·重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( ) A.60° B.50° C.40° D.30° 4.(2011·绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是( ) A.16 B.10 C.8 D.6 5.(2011·嘉兴)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为( ) A.6 B.8 C.10 D.12 二、填空题 6.(2011·扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=__________度.

7.(2011·安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________________. 8.(2011·杭州)如图,点A 、B 、C 、D 都在⊙O 上,CD 的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________. 9.(2011·威海)如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =4 2,则∠AED =___________. 三、解答题 11.(2011·上海)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与A B 相交于点M 、N. (1)求线段OD 的长; (2)若tan ∠C =1 2 ,求弦MN 的长. 12.(2011·江西)如图,已知⊙O 的半径为2,弦BC 的长为2 3,点A 为弦BC 所对优

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,

点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -= 已知A ),(11y x 、B ),(22y x AB|= 2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。 函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的 值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域: 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。

相关主题
文本预览
相关文档 最新文档