当前位置:文档之家› 瓦斯浓度测定

瓦斯浓度测定

瓦斯浓度测定
瓦斯浓度测定

矿内空气瓦斯和二氧化碳浓度测定

一、实验目的

学习并掌握光学瓦斯检定器的构造,原理和使用方法。 二、实验设备、材料及工具

CJG100型光学瓦斯检定器 三、实验课时及分组情况

6课时 每小组5 人 四、实验原理

煤矿井下普遍使用CJG100型光学瓦斯检定器测CH4和CO2的浓度,它的外形和内部构造见图1-1。

检定器根据光干涉原理制成,它的关学原理如图1-2所示。灯泡

1发出的一束白光,经光栅2和透镜3

变成一束平行光射到平行平面

镜4后,分成两束光线。其中一束自平面镜的a点反射,经右空气室,大三棱镜和左空气室回到平行平面镜,再经镜底反射镜面的b点,另一束在a点折射进入镜底后反射出来,往返经过瓦斯室也回到平面镜,于b点反射后与第一束光一同进入三棱镜6再经90度反射进入望远镜。这两束光由于光程差(光程为光线通过的路程和所遇过的介质的折射率的乘积),在透镜7的焦点平面上就白色光特有的干涉条纹(通常称“光谱”)条纹中有两条黑纹和若干条彩纹。光通过气体介质的折射率与气体密度有关,如果以空气和瓦斯室都充满新鲜空气时干涉条纹的位置为基准(即为零点),当含CH4的空气进入瓦斯室时由于气体密度的变化,光程也随之发生变化,于是干涉条件产生位移,位移量的大小与CH4浓度的高低成线性关系。所以根据干涉条纹中任一条纹(通常为黑色条纹)的移动距离的大小,就能直接测出空气中的CH4浓度。

仪器使用前要进行下列准备:

(1)充填吸收剂水分吸收管中装入氯化钙(或硅胶),二氧化碳吸收管中装入石灰,吸收剂颗粒过大不能充分起吸收作用,过小则阻塞气路,吸收管两端填以脱脂棉,以免煤尘及吸收剂进入仪器内部,吸收剂变质时应及时更换。

(2)气密性检查,堵住进气口,用手捏扁吸气球,然后放松,球体不起表明仪器不漏气,放开进气口,球体即膨起,表明气路畅通可以使用。

(3)光路系统检查,装好电池后,按下光源电门8,由目镜观察

并转动目镜筒,调整到分划板刻度清晰时,再看干涉条纹是否清晰,如不清晰可转动光源电门7,由微读数观测窗看微读数电源是否接通。

`

图1-2检定器的光学系统

1-光源2-光栅3-透镜4-平行平面镜5-大三棱镜6-三棱镜7-物镜

8-测微玻璃9-分划板10-场镜11-目镜12-目镜保护玻璃13-空气室

14-瓦斯室

CH4浓度测定:

首先,在新鲜风流中对零:按压微读数电门7,逆时针转动微调螺旋3,将微读数调到零点,捏放橡皮球5~6次,使瓦斯室内充满新鲜空气,按压下光源电门8,由目镜观察干涉条纹的同时,转动主调螺旋2,使条纹中的某一黑线正对分划板的零点,盖紧主调螺旋盖

15,就可以进行测定了。

测定时,在测定地点捏放橡皮球5~6次,将待测气体吸入瓦斯室,按下光源电门8,读出黑基线位移后的整数值,再转动微调位螺旋3,使黑线遇到和该读数重合,由微调读数盘上读数读出小数,例如,位移的整数为2,微读数为0.46,则CH4浓度为2.46%。

该仪器还可以用来测定其它气体,但是必须加装专门的吸收管并进行测定结果校正。

CO2浓度的测定,空气中同时存在CH4和CO2时,先测出CH4浓度浓度,然后取下吸收管,测出CH4浓度和CO2的混合浓度。因为CO2的折射率(1.000418)与CH4浓度的折射率(1.000411)相差不大,一般测定时,后一读数减去前一读数即为CO2浓度。精度测定时,还要乘以校正系数k,kCO2=0.952。

五、实验内容和方法

在掌握了仪器的构造,原理和使用方法以后,分别由瓦斯缸内取样测缸内浓度各二次,取其平均值。

六、实训报告册填写要求

1.报告册用钢笔或中性笔填写,要求字迹工整,不得任意涂改。

2.实验目的明确,内容充实,步骤清晰,总结客观到位。

3.心得体会要反映出通过本次实训的收获(例如:对相关章节内容的理解和认识,进而对相关课程的认识,对生产实际的认识

等)

4.报告册中不得写入与实训主题无关的内容。

瓦斯压力测定标准修订稿

瓦斯压力测定标准 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

[1]AQ 1047-2007—2007 煤矿井下煤层瓦斯压力的直接测定方法[S]. 煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯 含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防 治等工作均具有十分重要的意义。在治理矿井瓦斯的长期实践 中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些 测定方法中,多数准确度高、易操作,但也有不少的测定方法其 准确度低、可靠性差。因此,有必要对煤层瓦斯压力的测定方法 进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的 行业标准。 本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已 使用的程度,同时考虑瓦斯压力测定的最新科研成果。 本标准遵循煤炭工业部颁布的《煤矿安全规程》和《防治煤与 瓦斯突出细则》等文件的有关规定。 本标准由煤炭工业部科技教育司提出。 本标准由煤矿安全标准化技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院。 本标准主要起草人:许英威、杜子健。 本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分 会负责解释。 1 范围 本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求。

本标准适用于煤矿井下直接测定煤层瓦斯压力(简称瓦斯压力测定)。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局 防治煤与瓦斯突出细则 1995—05—01 煤炭工业部 气瓶安全监察规程 1989—12—22 劳动部 3 测定原理 通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力。 4 方法分类 4.1 按测压方式分 4.1.1 主动测压法 钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法。补偿气体可选用高压氮气(N2),高压二氧化碳气体(CO2)或其他惰性气体。补偿气体的充气压力应略高于预计煤层瓦斯压力。 4.1.2 被动测压法

煤层瓦斯含量直接测定方法

2 煤层瓦斯含量直接测定方法 2、1 国内外概况 直接测定煤层瓦斯含量方法最初就是由法国贝尔塔等人在1970年提出,主要用来估算井下水平钻孔煤芯的含气量。1973年美国矿业局将贝尔塔方法进行了改进,用于地面垂直钻井取芯的瓦斯含量测定,并规范采样操作过程。因此,该方法又称为美国矿业局直接法,并得到推广应用。 国内直接法测定煤层瓦斯含量技术方法沿用了美国矿业局直接法,采用了真空残余脱气方法(沈阳分院),但带来不可控的漏气误差。重庆分院研发人员在实验室内进行了1000多组不同粒径与吸附平衡压力的煤样瓦斯解吸规律实验,得到了煤样破坏类型与解吸特征,开发了DGC型瓦斯含量直接测定装置,见图1。但对含水煤样的瓦斯解吸规律缺乏深入的实验研究。 图1 重庆分院DGC型瓦斯含量直接测定装置

2010~2012年中国矿业大学在做淮南矿区瓦斯项目时,通过大量现场解吸实验,得到原始煤层水分条件下的钻孔煤屑瓦斯解吸2小时以内的规律,创立了全钻孔全煤芯取样解吸瓦斯实验技术,用于直接测定煤层瓦斯含量与瓦斯压力,见图2。 图2 中国矿业大学瓦斯含量直接测定装置与在线分析气体成分分析系统2、2测定方法 煤层瓦斯含量直接测定法依据国家标准GB/T 23250-2009 煤层瓦斯含量井下直接测定方法。直接、准确测定煤层瓦斯含量,用于矿井采掘部署、开拓延伸设计、煤层瓦斯赋存规律、瓦斯涌出量预测、瓦斯抽采效果评价、煤层气资源评价、突出危险性区域预测及区域验证等方面。 煤层瓦斯含量直接测定法中瓦斯含量由5部分组成:煤样损失瓦斯量X 、井 下解吸瓦斯量X 1、煤样粉碎前解吸瓦斯量X 2 、煤样粉碎后解吸瓦斯量X 3 、大气压 下不可解吸瓦斯量X 4 。 煤样损失瓦斯量为煤体暴露至装入煤样罐损失的解吸瓦斯量。 不可解吸瓦斯量为大气压下煤样粉碎后仍残存在煤体中的瓦斯量,常压下不可解,对突出没有贡献,也无法抽采利用。

DGC型瓦斯含量测定技术标准(探究)

DGC型瓦斯含量测定技术标准(探究) 1 范围 本标准基于自身公司经历及行业有关标准总结归纳,标准规定了井下直接测定煤层瓦斯含量、可解析瓦斯含量所采用的装置仪器、测定方法、测定过程和资料管理。 本标准适用于DGC型井下瓦斯含量测定装置对煤层瓦斯含量、可解析瓦斯含量的测定,开额应用与瓦斯涌出量预测、区域突出危险性预测、区域措施效果检验、预抽瓦斯效果评价及瓦斯地质图编制等。 本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。 2规范性引用文件 下列文件对本文件的应用时必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T23250-2009 煤层瓦斯含量井下直接测定方法 AQ 1026-2006 煤矿瓦斯抽采基本指标 3定义 DGC型装置 实验室结合井下使用的用于矿井采掘部署、开拓延伸设计、煤层瓦斯赋存规律研究、瓦斯涌出量预测、瓦斯抽采效果评价、煤层气资源评价、突出危险性区域预测等方面的煤层瓦斯含量测定的成套实验测定设备。 4测定工艺流程 DGC型瓦斯含量直接装置工艺流程可见图1。 5技术要求 采用DGC型瓦斯含量直接装置测定煤层瓦斯含量应符合《煤层瓦斯含量井下直接测定方法》(GB/T23250-2009)的有关技术要求。 6其他要求 6.1 井下采样工作应由现场队组人员协助测定人员完成,瓦斯含量测定之前应采取临时支护措施,清理工作面浮煤。 6.2 工作面进行瓦斯含量测定时,所在工作面(独头巷以里或影响其安全出口的开路横川)不准从事扰动煤体作业(如:割煤、爆破等)。 6.3 工作面安全防护设施必须确保完好齐全,并能正常使用,否则工作面不准进行测定钻孔施工。 6.4 每取一个煤样均应由井下测定人员和现场施工负责人对施工过程进行监督,确保钻孔施工质量,施工完毕后由双方共同在采样原始记录表上签字确认,原始记录表应存档(采掘作业完毕后保存时间不少于一年)。 6.5 井下测定人员取样后应将原始采样记录填写在附录A中,并将取样和测定过程中发生的各种情况(如漏气、煤样混有夹矸、打钻异常等)详细记录于附录A的备注中。 6.6 地面实验室应由实验专用章,实验室测定人员应将煤样的实验过程和结果认真填写与附录B和附录C中并签字,实验结果报告附实验室测定数据记录表由通风科长和总工程师审查签字并盖章后建档永久保存。

煤层瓦斯压力测定套件

JD-WCY-1型煤层瓦斯压力测定套件 煤层瓦斯压力测定套件煤层瓦斯压力是重要的瓦斯参数之一,瓦斯压力越大,煤层的瓦斯含量越大,煤与瓦斯突出危险性越大。煤层瓦斯压力测定时煤矿瓦斯治理的重要工作之一。准确测定煤层瓦斯压力,对保证矿井安全生产具有重要意义,对有效制定矿井瓦斯防治方案与措施,准确预测预报煤与瓦斯的突出危险性具有重要意义。 目前采取水泥封孔测压是测定煤层瓦斯压力最常用的方法,根据现有瓦斯压力测定的方法的步骤、工序,经过长期的实践和摸索,研发了适合封孔测压发的主动式测压套件,使得瓦斯压力测定过程更加规范,也更加简单,进而确保了瓦斯压力测定结果的准确性。 产品构成: 根据测压钻孔的倾角,JD-WCY-1型煤层瓦斯压力测定套件可分为仰角封孔测压套件和俯角封孔测压套件。仰角封孔测压套件主要由1/4钢管、高压回浆管、三通、球阀、高压胶管、压力控制专用组合、耐震压力表等组成。俯角封孔测压套件主要有1/4钢管、花管、高压胶管、三通、球阀、高压胶管、压力控制专用组合、耐震压力表等组成。 性能特点: 1.设备轻便,方便井下携带运输。 2.操作简单并且成本较低。 3.配合本公司研发的速凝膨胀封孔剂,大大提高了测定瓦斯压力的准确性。 4.能够实现主动性测压,测压周期明显缩短。 使用方法: 根据钻孔角度分为仰角连接和俯角连接法。 仰角连接方法: 钻孔钻毕数小时后,用压风清理钻孔。根据钻孔深度确定测压管、回浆管的长度,连接回浆管同时将侧压管用12号铁丝每隔2米绑定在回浆上并使测压管顶端稍高于回浆管0.5米,然后送入钻孔,回浆管距最顶端2-4米处用三通(回浆用)连接,其余回浆管连接处用直通连接,并在连接均匀涂抹专用胶水,保证连接可靠,将注浆管从孔口处放入,用较稠速速凝膨胀封孔剂封堵孔口0.5-0.7米,固定好孔口,并保证三个管外露藏毒不小于0.3米。回浆管最低端接PVC球阀,注浆管底端接不锈钢球阀,开始俩球阀均处于开启状态。待速凝膨胀封孔剂凝固,固定好孔口后,用注浆泵注入配置好的速凝膨胀封孔剂浆液进行封孔,待PVC 球阀流出浑浊浆液时后10s左右停止注浆并关闭不锈钢球阀,待回流量明显变小后再关闭PVC球阀。待速凝膨胀封孔剂凝固后(一般8h),按照安装方法装配

井下钻屑解吸法以及种取样过程中的瓦斯损失量公式

附件1:井下钻屑解吸法,以及常见的8种计算取样过程中的瓦斯损失量公式 1.1井下钻屑解吸法 井下钻屑解吸法的原理:通过井下采集新鲜原始煤样,实测煤样瓦斯解吸量,根据负指数函数(kt 0V V e -=)规律推算取样过程煤样的损失瓦斯量,然后在实验室测定煤样的残存瓦斯量,最后根据煤样的取样过程中损失瓦斯量、井下瓦斯解吸量、残存瓦斯量和煤样重量计算煤层瓦斯含量。 井下钻屑解吸法测定步骤如下: (1)在新暴露的采掘工作面煤壁上,用煤电钻垂直煤壁打一个∮42mm 的钻孔,当钻孔钻预定位置时开始取样,并记录采样开始时间t 1; (2)将采集的新鲜煤样装罐并记录煤样装罐后开始解吸测定的时间t 2,用 FHJ-2型瓦斯解吸速度测定仪(图1-1)测定不同时间t 下的煤样累计瓦斯解吸量Q t ,一般测定2个小时,解吸测定停止后拧紧煤样罐以保证不漏气,送实验室测定 煤样残存瓦斯量。 (3)损失量计算 将不同解吸时间下测得资料按下式换算成标准状态下的体积Q oi : w s i 0i 5273.2*p h p Q 1.013*10273t =+0(-9.81-)*Q *() (1-1) 式中 Q 0i —算成标准状态下的解吸瓦斯体积,ml ; Q i —不同时间解吸瓦斯测定值,ml ; P o —大气压力,Pa ; h w —量管内水柱高度,mm ; Ps —h w 下饱和水蒸汽压力,Pa ; t w —量管内水温,℃。 把不同时间的煤样累计解吸量Q t 换算为不同时间的瓦斯解吸速度V t ,对全部 测点[(t 0+t),V i ]进行回归计算,求出k 和V 0,再由0-kt 02Q (1-e )V k =计算取样过程中的漏失瓦斯量。 (4)将解吸测定后的煤样连同煤样罐送实验室测定其残存瓦斯量、水分、灰分等; (5)根据换算成标准状态下的煤样损失瓦斯量、解吸瓦斯量、残存瓦斯量和煤的质量,可求出煤样的瓦斯含量。 众所周知,瓦斯含量由取样过程中损失瓦斯量、井下解吸瓦斯量和残存瓦斯

煤层瓦斯含量井下直接测定方法

煤层瓦斯含量井下直接测定方法1、范围 本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。 本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。 本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。 2、仪器设备 a)煤样罐:罐内径大于60mm,容积足够装煤样400g以上,在1.5MPa气压下保持气密性; b)瓦斯解吸速度测定仪(简称解吸仪,如图1所示):量管有效体积不小于800cm3,最小刻度2cm3; c)空盒气压计:(80~106)Kpa,分度值0.1kPa; d)秒表; e)穿刺针头或阀门; f)温度计:(-30~50)℃; g)真空脱气装置或常压自然解吸测定装置; h)球磨机或粉碎机; i)气相色谱仪:符合GB/T13610要求; j)天秤:秤量不小于1000g,感量不大于1g; k)超级恒温器,最高工作温度(95~100)℃。 3、采样

1)采样前准备 (1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至 表压1.5MPa以上,关闭后搁置12h,压力不降方可使用。禁止在丝扣及胶垫上涂润滑油。 (2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图1),放置10min量管内水 面不动为合格。 2)煤样采集 (1)采样钻孔布置 同一地点至少应布置两个取样钻孔,间距不小于5m。 (2)采样方式 在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯 管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。 (3)采样深度 采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度 应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离 应视岩性而定,但不得小于5m。测定残余瓦斯含量时,取样不受此限制。 (4)采样时间 采样时间是指用于瓦斯含量测定的煤样从割芯(或钻屑)到被装入煤样罐密封所用的实际时间。采

MT 638-1996 煤矿井下煤层瓦斯压力的直接测定方法(AQ 1047-2007代替)

煤矿井下煤层瓦斯压力的直接测定方法 MT/T 638—1996 中华人民共和国煤炭工业部1996—12—30批准1997—11—01实施 前言 煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防治等工作均具有十分重要的意义。在治理矿井瓦斯的长期实践中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些测定方法中,多数准确度高、易操作,但也有不少的测定方法其准确度低、可靠性差。因此,有必要对煤层瓦斯压力的测定方法进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的行业标准。 本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已使用的程度,同时考虑瓦斯压力测定的最新科研成果。 本标准遵循煤炭工业部颁布的《煤矿安全规程》和《防治煤与瓦斯突出细则》等文件的有关规定。 本标准由煤炭工业部科技教育司提出。 本标准由煤矿安全标准化技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院。 本标准主要起草人:许英威、杜子健。 本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释。 1 范围 本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求。 本标准适用于煤矿井下直接测定煤层瓦斯压力(简称瓦斯压力测定)。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局 防治煤与瓦斯突出细则1995—05—01 煤炭工业部 气瓶安全监察规程1989—12—22 劳动部 3 测定原理 通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力。 4 方法分类 4.1 按测压方式分 4.1.1 主动测压法 钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法。补偿气体可选用高压氮气(N2),高压二氧化碳气体(CO2)或其他惰性气体。补偿气体的充气压力应略高于预计煤层瓦斯压力。 4.1.2 被动测压法 钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法。 4.2 按封孔材料分 4.2.1 黄泥、水泥封孔测压法

煤层瓦斯含量井下直接测定方法

煤层瓦斯含量井下直接测定方法

煤层瓦斯含量井下直接测定方法 1、范围 本标准规定了井下直接测定煤层瓦斯含量的采 样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。 本标准适用于煤矿井下利用解吸法直接测定煤 层瓦斯含量。 本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。 2、仪器设备 a)煤样罐:罐内径大于 60mm,容积足够装煤样400g 以上,在 1.5MPa 气压下保持气密性;b)瓦斯解吸速度测定仪(简称解吸仪,如图 1 所示):量管有效体积不小于 800cm3,最小刻度 2 cm3; c)空盒气压计:(80~106)Kpa,分度值 0.1kPa; d)秒表;

e)穿刺针头或阀门; f)温度计:(-30~50)℃; g)真空脱气装置或常压自然解吸测定装置; h)球磨机或粉碎机; i)气相色谱仪:符合 GB/T 13610 要求; j)天秤:秤量不小于 1000g,感量不大于 1g;k)超级恒温器,最高工作温度(95~100)℃。3、采样 1)采样前准备 (1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至 表压 1.5MPa 以上,关闭后搁置 12h,压力不降方可使用。禁止在丝扣及胶垫上涂润滑油。(2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图 1),放置 10min 量管内水 面不动为合格。

2)煤样采集 (1)采样钻孔布置 同一地点至少应布置两个取样钻孔,间距不小于5m。 (2)采样方式 在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯 管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。 (3)采样深度 采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度 应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离 应视岩性而定,但不得小于5m。测定残余瓦斯含量时,取样不受此限制。

瓦斯含量测定报告单

瓦斯含量测定记录表 基本信息矿井名称晴隆县中营镇仁禾煤矿 取样地点10403运输巷取样时间2014-4-16 煤样编号10403运输巷掘进面 井下大气压(kPa) 79 实验室大气压力(kPa) 81 井下环境温度(℃) 16 实验室环境温度(℃)17 煤样重量(g) 568.6 取样方式水排渣 煤样水份(%) 1.400 煤样自然含水量(%) 1.800 W1 测定打钻结束时间2014-4-16 10:05 取芯开始时间2014-4-16 10:22 取芯结束时间2014-4-16 10:45 解吸开始时间2014-4-16 10:52 煤的破坏类型Ⅴ量管初始体积0.0 30 分钟井下解吸量(ml) 时间解吸量时间解吸量时间解吸量时间解吸量 2500 2000 1500 1000 500 012345 解吸曲线:W=267.747t-697.688 R2=0.9762 x轴--时间 y轴=解吸量W 1 70 9 220 17 300 25 365 2 120 10 225 18 305 26 380 3 150 11 226 19 310 27 400 4 160 12 230 20 306 28 420 5 180 13 250 21 31 6 29 435 6 200 14 260 22 320 30 450 7 210 15 270 23 330 8 211 16 290 24 350 W2 测定井下测定瓦斯解吸量(ml) 450 实验室测定瓦斯解吸量428 W3 测定 第一份煤样瓦斯解吸量(ml) 374 第一份煤样重量105 第二份煤样瓦斯解吸量(ml) 374 第二份煤样重量105 备注钻孔类型:顺层,方位91 o,钻孔倾角00o,取样深度30m; 实验结果 W1(m3/t) 0.7913 W2(m3/t) 0.7527 W3(m3/t) 3.5695 Wa(m3/t) 5.1135 Wc(m3/t) 3.692 P(MPa) 0.4600 W(m3/t) 8.8055 井下测试人员实验室测试人员 井下测试时间2014-4-16 实验室测试时间2014-4-16

煤层瓦斯含量井下直接测定方法

煤层瓦斯含量井下直接测定方法 1、范围 本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。 本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。 本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。 2、仪器设备 a)煤样罐:罐内径大于60mm,容积足够装煤样400g 以上,在1.5MPa 气压下保持气密性; b)瓦斯解吸速度测定仪(简称解吸仪,如图1 所示):量管有效体积不小于800cm3,最小刻度2 cm3; c)空盒气压计:(80~106)Kpa,分度值0.1kPa; d)秒表; e)穿刺针头或阀门; f)温度计:(-30~50)℃; g)真空脱气装置或常压自然解吸测定装置; h)球磨机或粉碎机; i)气相色谱仪:符合GB/T 13610 要求; j)天秤:秤量不小于1000g,感量不大于1g; k)超级恒温器,最高工作温度(95~100)℃。 3、采样 1)采样前准备 (1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至 表压1.5MPa 以上,关闭后搁置12h,压力不降方可使用。禁止在丝扣及胶垫上涂润滑油。(2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图1),放置10min 量管内水 面不动为合格。

2)煤样采集 (1)采样钻孔布置 同一地点至少应布置两个取样钻孔,间距不小于5m。 (2)采样方式 在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯 管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。 (3)采样深度 采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度 应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离 应视岩性而定,但不得小于5m。测定残余瓦斯含量时,取样不受此限制。 (4)采样时间 采样时间是指用于瓦斯含量测定的煤样从割芯(或钻屑)到被装入煤样罐密封所用的实际时间。采 样时间越短越好,但不得超过30min。 (5)取出煤芯后,对于柱状煤芯,采取中间含矸石少的完整的部分;对于粉状及块状煤芯,要剔除 矸石、泥石及研磨烧焦部分。不得用水清洗煤样,保持自然状态装入密封罐中,不可压实,罐口保留约 10mm 空隙。 (6)煤样罐密封前,先将穿刺针头插入罐盖上部的密封胶垫,以避免造成煤样罐憋气现象,然后再 用扳手拧紧罐盖,再将排气管与穿刺针头连接来测定瓦斯解吸速度。 (7)参数记录 采样时,应同时收集以下有关参数记录在附录A: a) 地质参数:取样地点、煤层名称、埋深(地面标高、煤层底板标高)、采样深度、钻孔方位、 钻孔倾角;

2017矿井瓦斯和二氧化碳涌出量测定工作方案

矿井瓦斯和二氧化碳涌出量测定工作方案 常村矿通风科 2017-08-1 矿井瓦斯和二氧化碳涌出量测定工作方案一、瓦斯等级鉴定组织准备工作 为保证瓦斯等级鉴定工作的顺利进行,结合我矿生产实际情况,决定在井下生产正常、瓦斯涌出量较大的八月份进行。 1、矿成立鉴定工作领导小组 组长:矿长 副组长:总工通风副总 成员:通风科科长通风科副科长生产科科长地测科科长 职责:组长、副组长负责瓦斯和二氧化碳涌出量测定的指导工作,成员负责瓦斯和二氧化碳涌出量测定的组织实施。 2、时间安排 鉴定时间分别选在八月份上、中、下旬的5、15、25日三天进行,每天在0点班(第一班)、8点班(第二班)、4点班(第三班)进行测定,每班测定三次,每次间隔时间为两个小时左右,三次测定的平均值即为该班涌出量。 3、测点布置及人员分配 全矿井下共布置十个测点,分别为: 测点1:南山回风; 测点2:21220回采工作面; 测点3:21170备采面;

测点4:21162下巷掘进面; 测点5:21162上巷掘进面; 测点6:210731回风集中巷掘进工作面; 测点7:21000工作面; 测点8:+340m东回风; 测点9:+330m东回风; 测点10:+330m西回风。 测点11:进风斜井; 测点12:行人斜井; 测点13:副斜井; 测点14:主斜井。 14个测点按照工作地区划分为八组,其中测点1为第一组;测点2为第二组;测点3为第三组;测点4为第四组;测点5为第五组;测点6为第六组;测点7为第七组;测点8、9、10、11、12、13、14为第八组,每组分别安排一名测风工、一名瓦斯检查工。 4、所需仪器 测定前,通风科将所需的8块风表准备好,仪器发放室将8部光学瓦斯鉴定器调校准确,保证参加测定工作的每部仪器灵敏、可靠。

煤层瓦斯含量直接测定方法

2 煤层瓦斯含量直接测定方法 2.1 国外概况 直接测定煤层瓦斯含量方法最初是由法国贝尔塔等人在1970年提出,主要用来估算井下水平钻孔煤芯的含气量。1973年美国矿业局将贝尔塔方法进行了改进,用于地面垂直钻井取芯的瓦斯含量测定,并规采样操作过程。因此,该方法又称为美国矿业局直接法,并得到推广应用。 国直接法测定煤层瓦斯含量技术方法沿用了美国矿业局直接法,采用了真空残余脱气方法(分院),但带来不可控的漏气误差。分院研发人员在实验室进行了1000多组不同粒径与吸附平衡压力的煤样瓦斯解吸规律实验,得到了煤样破坏类型与解吸特征,开发了DGC型瓦斯含量直接测定装置,见图1。但对含水煤样的瓦斯解吸规律缺乏深入的实验研究。

图1 分院DGC型瓦斯含量直接测定装置 2010~2012年中国矿业大学在做矿区瓦斯项目时,通过大量现场解吸实验,得到原始煤层水分条件下的钻孔煤屑瓦斯解吸2小时以的规律,创立了全钻孔全煤芯取样解吸瓦斯实验技术,用于直接测定煤层瓦斯含量和瓦斯压力,见图2。

图2 中国矿业大学瓦斯含量直接测定装置与在线分析气体成分分析系统2.2测定方法 煤层瓦斯含量直接测定法依据国家标准GB/T 23250-2009 煤层瓦斯含量井下直接测定方法。直接、准确测定煤层瓦斯含量,用于矿井采掘部署、开拓延伸设计、煤层瓦斯赋存规律、瓦斯涌出量预测、瓦斯抽采效果评价、煤层气资源评价、突出危险性区域预测及区域验证等方面。 煤层瓦斯含量直接测定法中瓦斯含量由5部分组成:煤样损失瓦斯量X0、井下解吸瓦斯量X1、煤样粉碎前解吸瓦斯量X2、煤样粉碎后解吸瓦斯量X3、大气压下不可解吸瓦斯量X4。 煤样损失瓦斯量为煤体暴露至装入煤样罐损失的解吸瓦斯量。 不可解吸瓦斯量为大气压下煤样粉碎后仍残存在煤体中的瓦斯量,常压下不可解,对突出没有贡献,也无法抽采利用。

煤层瓦斯压力测定方法

附录A煤层瓦斯压力测定方法 A.0.1煤层瓦斯压力的测定方法按测压方式,即:测压时是否向测压孔内注入补偿气体,可分为主动测压法和被动测压法;按测压钻孔封孔的材料不同可分为胶囊(胶圏)—密封粘液封孔测压法和注浆封孔测压法。 A.0.2打设测压孔应遵守下列规定: 1 在距测压煤层不少于5m(垂距)的开挖工作面钻孔,孔径一般宜为65~95mm,钻孔长度应保证测压所需的封孔深度。 2 钻孔宜垂直煤层布置。 3 从钻孔进入煤层开始,应不停钻直至贯穿煤层。然后清除孔内积水和煤(岩)屑,放入一根钢性导气管,立即进行封孔。 4 在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在 煤层中长度、钻孔开钻时间、见煤时间及钻毕时间。 A.0.3测压钻孔施工完后应在24h内完成钻孔的封孔工作,应在完成封孔工作24h 后进行测定工作。 A.0.4采用主动测压时,只在第一次测定时向测压钻孔充入补偿气体,补偿气体的充气压力宜为预计的煤层瓦斯压力的1.5倍;采用被动测压法时,不进行气体补偿。 A.0.5采用环形胶圈、黏液或水泥砂浆等封孔测压时,可按下列步骤进行: 1 在钻孔内插入带有压力表接头的紫铜管,管径为6~20mm,长度不小于7 m。岩石硬而无裂隙时封孔长度不宜小于5m,岩石松软或裂隙发育时应增加。 2 将经炮泥机挤压成型的特制柱状炮泥送入孔内,柱状翻土末端距紫铜管末端 0.2~0.5m,每次送入0.3~0.5m,用堵棍捣实。 3 每堵lm黏土柱打入1个木塞,木塞直径小于钻孔直径10~15mm。打入木塞时应

保护好紫铜管,防止折断。 A.0.6观测与测定结果的确定应符合下列规定: 1 采用主动测压法时应每天观测一次测定压力表,采用被动测压法应至少3d观测一次测定压力表。 2 将观测结果绘制在以时间(d)为横坐标、瓦斯压力(MPa)为纵坐标的坐标图上,当观测时间达到规定时,如压力变化在3d内小于0.015MPa,测压工作即可结束;否则,应延长测压时间。 3 在结束测压工作、撤卸表头时(应制定相应的安全措施),应测量从钻孔中放出的水量,如果钻孔与含水层、溶洞导通,则此测压钻孔作废并按有关规定进行封堵;如果测压钻孔没有与含水层、溶洞导通,则需对钻孔水对测定结果的影响进行修正,修正方法可根据测量从钻孔中放出的水量、钻孔参数、封孔参数等进行。 4 测定结果按式A.0.6-1确定: P= P0+ P’ (A.0.6-1)式中: P——测定的煤层瓦斯压力值(MPa); P0——测定地点的大气压力值(MPa);大气压力的测定应采用空盒气压计进行测定,空盒气压计应遵循标准QX/T 26的相关规定; P’——测压孔内的煤层瓦斯压力(修正)值(MPa)。 5 同一测压地点以最髙瓦斯压力测定值作为测定结果。 条文说明:本附录主要参照《煤矿井下煤层瓦斯压力的直接测定方法》(AQT 1047)。

测定瓦斯含量概述

瓦斯含量概述: 煤层可解吸瓦斯含量(Wa)是指单位质量的煤在标准状况下直接测定和计算出的煤层自然解吸瓦斯含量,不包括常压吸附瓦斯含量(即不包括“常压吸附残存量”),单位为m3/t,其表达基准为原煤基。 瓦斯含量(W)包括煤层可解吸瓦斯含量(Wa)和常压吸附瓦斯含量(Wc)。 煤层可解吸瓦斯含量的直接快速测定法为快速测定煤层可解吸瓦斯含量提供一种有效的方法,直接快速地测定和计算出煤层可解吸瓦斯含量,为矿井瓦斯治理提供准确的依据。可用于煤层突出危险性工作面及区域预测、预抽瓦斯效果评价以及矿井煤层瓦斯涌出量预测等。 煤层瓦斯含量直接测定法中可解吸瓦斯含量(Wa)的值包括“损失量瓦斯含量”(W1)、“常压解吸瓦斯含量”(W2)和“粉碎解吸瓦斯含量”(W3)。 损失量瓦斯含量(W1)值概述: )是指单位质量的煤芯从原始位置开始脱离煤体到被“损失瓦斯含量”(W 1 装入煤样筒之前这段时间内,在钻孔和巷道中所解吸出的瓦斯量换算为标况下的体积,该损失瓦斯含量需通过瓦斯解吸规律推算。其推算方法为:通过记录煤芯从钻孔煤层深部取出到封入煤样筒中的时间,结合在井下及时测量煤样筒中煤芯的瓦斯解吸速度及瓦斯解吸量,来推算煤芯封入煤样筒之前的损失瓦斯含量。常压解吸瓦斯含量(W2)值概述: )是指单位质量的煤芯从装入煤样筒开始到被粉碎“常压解吸瓦斯含量(W 2 之前,所解吸出的瓦斯含量换算为标况下的体积。其测定方法为:将煤样筒带到地面实验室后,测量从煤样筒中的煤芯泻出瓦斯量,与井下测得的瓦斯解吸量一起计算出煤芯瓦斯解吸量。 粉碎解吸瓦斯含量(W3)值概述: “粉碎解吸瓦斯含量”(W3)是指在常压下单位质量的煤芯在粉碎过程中和粉碎后一段时间内所解吸出的瓦斯量换算为标况下的体积。其计算方法为:称取

煤层瓦斯压力测定施工安全技术措施标准版本

文件编号:RHD-QB-K9105 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 煤层瓦斯压力测定施工安全技术措施标准版本

煤层瓦斯压力测定施工安全技术措 施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 根据中华人民共和国安全生产行业标准 AQ/T1047-2007文件规定:煤层原始瓦斯压力是指煤层未受采动、瓦斯抽采及人为卸压等影响的煤层瓦斯压力。为保证瓦斯测压钻孔施钻工作安全顺利进行,结合矿井实际情况,特制定以下施工安全技术措施。 一、钻孔位置确定 1、结合矿井的采掘工程平面图,测点确定在 2、布置图见附图一。

二、施工人员 班组长: 安全员: 瓦检员: 电工: 作业人员: 三、地质条件 四、测压施工要求 1、施钻人员必须熟悉钻机使用说明、性能及测压钻孔的技术要求,方可上岗。 2、测压钻孔直径为65~95㎜、钻孔深度应保证测压所需深度50m。

3、施工结束后应立即用压风或清水清洗钻孔,清除钻屑,保证钻孔畅通。 4、在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度、钻孔在煤层中的长度、钻孔开钻时间、见煤时间及钻毕时间。 5、钻孔施工完毕后,应在24小时内完成钻孔的封孔工作;在完成封也工作24小时后进行测定工作。 6、必须设专人负责瓦斯压力的测定工作;在瓦斯压力测定过程中,应做好各种参数及施工情况的记录。 7、观测频率应保证一天一次,如果在观测中发现瓦斯压力值在开始测定一周内变化较大时,应缩短观测时间间隔。 8、由于测点处瓦斯压力较大,观测期间在测点

瓦斯涌出量的计算

1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量由开采层(包括围岩)和邻近层两部份组成,计算公式如下: q 采=q 1+q 2 式中:q 采——回采工作面相对瓦斯涌出量,m 3/t; q 1——开采层相对瓦斯涌出量,m 3/t ; q 2——邻近层相对瓦斯涌出量,m 3/t ; 1、开采层瓦斯涌出量 )(q 03211c W W M m K K K -?? ??= 式中:K 1——围岩瓦斯涌出系数; K 2--回采工作面丢煤涌出系数,其值为回采率的倒数; K 3-—顺槽掘进预排系数,后退式回采,K 3=(B —2b )/ B ; B ——回采工作面长度,m ; b -—顺槽瓦斯预排宽度,m ; m ——开采层厚度,m ; M ——工作面采高,m ; W 0——煤层原始瓦斯含量,m 3/t ; W c -—煤层残存瓦斯含量,m 3/t. 2、邻近层瓦斯涌出量 )(q 012ci i i n i i W W M m -??=∑ =η 式中:q 2—— 邻近层相对瓦斯涌出量,m 3/t ; i η——邻近层瓦斯排放率,%; W 0i -—各邻近层原始瓦斯含量,m 3/t ; W ci —-各邻近层残存瓦斯含量,m 3/t ; m i —-各邻近层煤厚,m ; 其余符号意义同前。 2、掘进面瓦斯涌出量计算

掘进工作面瓦斯涌出来源包括两部份,一是暴露煤壁涌出瓦斯,二是破落煤块涌出瓦斯,其涌出量计算公式如下: q 掘=q 3+q 4 q 3=D×V×q 0×(2 1V L -) q 4=S×V×γ×(W 0-W c ) 式中:q 掘——掘进面绝对瓦斯涌出量,m 3/min ; q 3——掘进巷道煤壁绝对瓦斯涌出量,m 3/min ; q 4——掘进巷道落煤绝对瓦斯涌出量,m 3/min ; D ——巷道断面内暴露煤壁面周边长度,m ; V ——巷道平均掘进速度,m/min; L —-掘进煤巷长度,m; q 0——掘进面煤壁瓦斯涌出初速度,m 3/(m 2·min); q 0=0.026 [ 0。0004×(V r )2+0.16 ] ×W 0 式中:V r —-掘进煤层原煤挥发份,% S--掘进煤巷断面积,m 2 ; γ-—原煤容重,t/m 3; 其余符号意义同前. 3、采区瓦斯涌出量计算 1 i 1A 1440K ? ?? ??+=∑∑==n n i i i i q A q q 掘采‘ 区 式中:q 区——生产采区相对瓦斯涌出量,m 3/t ; K′——生产采区内采空区瓦斯涌出系数; q 采i ——第i 个回采工作面相对瓦斯涌出量,m 3/t ; A i ——第i 个回采工作面的日产量,t; q 掘i ——第i 个掘进工作面绝对瓦斯涌出量,m 3/min ; A o ——生产采区平均日产量,t; 4、矿井瓦斯涌出量

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计 算公式 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1- 1)计算。 21q q q +=采式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取1.2; K 2—工作面丢煤瓦斯涌出系数,取1.18; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取0.83; m 一开采层厚度,6m ; M 一工作面采高,3.5m ; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b.未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =???(1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为6.27m ;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2?min),如无实测值可参考式(1-2)计算。 q 0=0.026[0.0004(Vr )2 +0.16]W 0 (1-2) 式中: q 0—巷道煤壁瓦斯涌出量初速度,m 3/(m 2?min): V r —煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为11.49%。 W 0—煤层原始瓦斯含量,m 3/t 。 b.掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c )(1-3) 式中:q 4——掘进巷道落煤的瓦斯涌出量,m 3/min; S ——掘进巷道断面积,m 2; υ——巷道平均掘进速度,m/min ; γ——煤的密度,t /m 3; W 0——煤层原始瓦斯含量,m 3/t; W c ——运出矿井后煤的残存瓦斯含量,m 3/t 。

煤与瓦斯突出矿井突出鉴定要求规范-AQ1024-2006

突出煤层鉴定规范 煤与瓦斯突出是煤矿井下最严重的灾害之一。对新建矿井和原来非突出的生产矿井中所发生的煤与瓦斯动力现象进行科学的定性,准确地鉴定煤层和矿井是否具有煤与瓦斯突出的危险,是对矿井按突出危险实施管理,保证安全生产的前提条件。制定突出矿井鉴定方法的行业标准,对规范突出矿井的鉴定方法与鉴定程序,保证对突出矿井给予及时、准确的定性,提高行业管理水平有重要意义。 突出矿井鉴定规范的编制主要是依据能源部92年颁发的《煤矿安全规程》及其执行说明和煤炭工业部95年颁发的《防治煤与瓦斯突出细则》。 本标准的附录A和B为标准的附录。 本标准由煤炭工业部科技教育司提出。 本标准由煤矿安全标准化技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院。 本标准主要起草人:孙重旭。 本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释。

1 范围 本标准规定了煤与瓦斯突出矿井的鉴定方法及审批程序。 本标准适用于全国井工开采煤矿进行煤与瓦斯突出矿井的鉴定。 2 定义 本标准采用下列定义。 2.1 煤与瓦斯突出 coal and gas outburst 在地应力和瓦斯压力的共同作用下,破碎的煤和瓦斯由煤体内突然喷出到采掘空间的动力现象。 2.2 煤与瓦斯突出煤层 coal and gas outburst seam 在采掘过程中发生过煤与瓦斯突出的煤层。 2.3 煤与瓦斯突出矿井 coal and gas outburst mine 开采煤与瓦斯突出煤层的矿井。

3 煤与瓦斯突出的基本特征 煤与瓦斯突出分为煤与瓦斯突然喷出(简称突出)、煤的压出伴随瓦斯涌出(简称压出)和煤的倾出伴随瓦斯涌出(简称倾出)三种类型,其基本特征如下。 3.1 突出的基本特征 a)突出的煤向外抛出距离较远,具有分选现象; b)抛出的煤堆积角小于煤的自然安息角; c)抛出的煤破碎程度较高,含有大量碎煤和一定数量手捻无粒感的煤粉; d)有明显的动力效应,破坏支架,推倒矿车,损坏和抛出安装在巷道内的设施; e)有大量的瓦斯涌出,瓦斯涌出量远远超过突出煤的瓦斯含量,有时会使风流逆转; f)突出孔洞呈口小腔大的梨形、舌形、倒瓶形、分岔形以及其他形状。 3.2 压出的基本特征 a)压出有两种形式,即煤的整体位移和煤有一定距离的抛出,但位移和抛出的距离都较小;

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计算 公式 Prepared on 22 November 2020

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取; m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D =2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min ),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min ): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min ; S —— 掘进巷道断面积,m 2; υ —— 巷道平均掘进速度,m /min ; γ —— 煤的密度,t /m 3; W 0 —— 煤层原始瓦斯含量,m 3/t ; W c —— 运出矿井后煤的残存瓦斯含量,m 3/t 。

相关主题
文本预览
相关文档 最新文档