当前位置:文档之家› 9-1 电磁感应定律 modified

9-1 电磁感应定律 modified

第9章 电磁感应

静电场
真空中: 高斯定理:
静磁场
∫∫ E ? dS = ε ∑ q
S 0 S内
1
i
∫∫ B ? d S = 0
S
环路定理:

S
L
E ? dl = 0

0
L
B ? dl = μ
0
∑I
介质中:
∫∫ D ? dS = ∑ q
S内

L
H ? d l =∑ I 0
2/22

电场 vs. 磁场
电荷 激 发 电场 互相 联系 互相 联系 电流 激 发 磁场
3/22

§9-1
电磁感应 定律

电流→磁场,磁场→电流? 在恒定电流的磁场中,导线中无电流 —法拉第感到迷惑。 经过失败和挫折(1822—1831),法拉第终于 发现:感应电流与原电流的变化有关,而与原 电流本身无关。 电磁感应现象揭示了电与磁之间的联系和 转化,为人类获取电能开辟了道路,引起了一 场重大的工业和技术革命。
5/22

1831年法拉第总结出以下五种情况都可产生 感应电流:变化着的电流(C),运动着的恒 定电流(B),在磁场中运动着的导体(D), 变化着的磁场(A),运动着的磁铁(A)。
A
B
C
D
6/22

电磁感应现象
1、电磁感应现象
当穿过一个闭合导体回路所包围的面积内的磁
通量发生变化时(不论变化由什么原因引起),在 导体回路中就有电流产生——电磁感应现象
回路中所产生的电流,称为感应电流。 相应的电动势,称为感应电动势。
A B
C
D
7/20

楞次定律
2、楞次定律
判断感应电流方向的楞次定律: 闭合回路中感应电流的方向,总是使得 它所激发的磁场,来补偿或反抗引起感应 电流的磁通量的变化。
N
楞 次
S
N
S
8/20

3、法拉第电磁感应定律
通过回路所包围面积的磁通量发生变化时, 回路中产生的感应电动势 εi 与磁通量Φ对时间 的变化率成正比.
dΦ . εi = ? dt
负号“-”:反映感应电动势的方向;与 愣次定律一致
d Φ/ dt : εi 正比于磁通量变化快慢。
11/20

dΦ 讨论:A,利用定律判定电动势方向: ε i = ? . dt ? (1)首先确定一个正绕行方向和正法线方向 en ;
(2)确定磁通量的正负; (3)确定 dΦ/dt 的正负; (4)确定电动势εi 的方向。
Φ > 0,
? en
Φ > 0,
ε i < 0.
dΦ > 0, dt
绕行正方向
N
B
εi
dΦ < 0, dt
? en
B
εi
ε i > 0.
v
绕行正方向
N
v
S
S

B,若回路由N匝导线串联而成: 感应电动势为:
d Φ = ? d( N Φ ) dΨ . εi = ?N =? dt dt dt
其中,Ψ = N Φ ,
磁链数(或全磁通)
表示通过N 匝线圈的总磁通量。

C,回顾 电源电动势
非静电场 E k vs. 电源电动势
B
εi
εi
N
v
- - - - -
εi =

E k ? dl .
- - - - -
S
外电路

dΦ d εi = ? = ? ∫∫ BidS dt dt S d ∴ ∫ Ek ? dl = ? ∫∫ B idS dt S

+ A+ +
+ + +

B

内电路

D,通过回路导体任一截面的感应电量:
设闭合导体回路的总电阻为R, 由欧姆定律,回路中的感应电流:
1 dΦ . Ii = =? R dt R = ? 1 dΦ . ∴ d qi = I i d t R
i
ε
B
εi
R
N
v
设在t1到t2时间内,通过闭合导体回路 的磁通量由Φ1变到Φ2,
S
∴ qi = ∫
t2 t1
1 Φ 2 dΦ = 1 ( Φ ? Φ ) . I i dt = ? ∫ 1 2 Φ1 R R
——磁通计
qi ∝(Φ2 - Φ1)

补充例题 1
例题 矩形框导体的一边ab可以平行滑动,长为l。整个矩 形回路放在磁感强度为B、方向与其平面垂直的均匀磁场 中,如图。 若导线ab以恒定速率 v 向右运动,求闭合回路的感应电动势。 a × × × × × × × × d
解: 建立如图所示坐标 轴。 设t 时刻ab的坐标为x,
O
× × × × ×
× × × × ×
× × × × ×
× × B × × ×
× × × × ×
× × × × ×
l
× × × × × b
× ×v × × ×
X
取逆时针方向为回路的正绕行正方向,
t 时刻穿过回路的磁通量为:
Φ = B i S = ? B ? lx
16/20

Φ = ? B ? lx
当导线匀速向右时,回路 感应电动势为:
d Φ = + Bl d x = + B lv . εi = ? dt dt
正号表示:感应电动势的方向与回路的正方
向一致,即沿逆时针方向。
也可不选定回路绕行方向,而是根据楞次定
O
× d × × × × ×
× × × × × ×
× × × × × ×
× × × B × × ×
× × × × × ×
× × × × × ×
a ×
× × × × × b
l
× × ×v × × ×
X
律判断感应电动势的方向。

例题 9-1
例9-1 一长直导线中通有交变电流 I = I 0 sin ω t ,I0和ω 为常量。在长直导线旁平行放置一矩形线圈,线圈平面 与直导线在同一平面内。已知线圈长l,宽b,线圈近端 与导线距离d。 求:任意瞬时,线圈中的感应电动势。
思路:
εi = ? d Φ
dt
d
b l
step1,求电流I在空间激发的磁场分布; step2,求穿过线圈的磁通量Φ的表达式; I step3,应用电磁感应定律求感应电动势。
18/20

step1,求电流I在空间激发的磁场分布; 建立如图所示坐标轴OX, 长直导线可近似看成无限长, 安培环路定理, ∫ B ? d l = μ
d I
x
b l
μ0 I ∴B = . 2π x
L
0
∑ I.
X x +dx
step2,求穿过线圈的磁通量Φ的表达式; 选取顺时针为矩形线圈的正绕行方向,则面积的 正法线方向:垂直纸面向里。
μ0 I ? l ? dx dΦ = B idS = B ? dS ? cos 0° = 2π x

μ0 I dΦ = ? l ? dx 2π x
穿过线圈的总磁通量Φ为:
d +b
d
b
I
l
μ0 I Φ=∫ ? l ? dx d 2π x x X x + dx μ0 lI d + b μ0 l d + b = ln I 0 sin ω t . = ln 2π d 2π d
step3,应用电磁感应定律求感应电动势。
d Φ = ? μ0 lI 0ω ln d + b cos ω t εi = ? dt 2π d
电动势随时间按余弦规律变化。

作业: Chapter. 9-5
21/20


法拉第电磁感应定律及应用

电磁感应定律的应用(一) 知识点1、感生电动势 例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD ) A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向 B .E 10)那么在t 为多大时,金属棒开始移动? 2 212211,L L k mgR t mg R L kL L kt μμ==? ? 知识点2、动生电动势 例题.如图所示,空间存在两个磁场,磁感应强度大小均为,方向相反且垂直纸面,、为其边界,OO ′为其对称轴。一导线折成边长为的正方形闭合回路,回路在纸面内以恒定速度向右运动,当运动到关于OO ′对称的位置时( ACD ) A .穿过回路的磁通量为零 B .回路中感应电动势大小为2B C .回路中感应电流的方向为顺时针方向 D .回路中边与边所受安培力方向相同 练习1、如图,电阻r =5Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距L =30cm ,导轨上接有一电阻R =10Ω,整个导轨置于竖直向下的磁感强度B =的匀强磁场中,其余电阻均不计。现使ab 棒以速度v =2.0m/s 向右作匀速直线运动,试求: (1)ab 棒中的电流方向及ab 棒两端的电压U ab ; (2)ab 棒所受的安培力大小F ab 和方向。 练习2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为 B 的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是( A ) 知识点3、动生中的图像描绘 例题、匀强磁场磁感应强度 B= T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求: (1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线 (2)画出ab 两端电压的U-t 图线

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

法拉第与电磁感应定律

法拉第与电磁感应定律 摘要:法拉第,在科学史上做出杰出贡献的实验物理学家,他是名副其实的穷二代,凭借高于常人的智商和自己坚持不懈的努力成为了举世闻名的科学家,他不只是在电磁学中引入了电场线和电磁感应线,这使得后人能更清楚、形象地理解电磁场。他最突出的成就就是发现了电磁感应定律,不但促进了科学的发展而且还开创了人类美好生活的新时代,为人类带来了丰富的物质和精神财富。 关键词:法拉第、电磁感应定律、应用、学习、感应电流 0引言 在21世纪的新时代,法拉第电磁感应定律的运用遍及人类生活的很多方面并使我们的生活越来越便捷,享受着这个时代独有的幸福的同时,我们便更想探索法拉第电磁感应定律具体应用在哪些方面,更想知道到底是什么样的天才发现了这样神奇的定律。本篇论文选择了对近代物理学做出了杰出贡献的英国科学家法拉第的生平进行全面的分析,并综述了电磁感应定律在科技史上的地位。文中有历史、人物和科学的发展过程。 1法拉第简介 1.1法拉第的家庭背景 法拉第,一个自学成才的理工男。1971年9月22日这个未来著名的物理学家呱呱坠地,他是家里的第三个儿子,他的家庭贫困,父亲是一个铁匠,靠着自己勤劳的双手养家糊口,收入甚微,入不敷出。所以,“富二代”、官二代“这样的身份注定与他无缘,要想以后出人头地,只能靠他自己的天赋和努力。贫困的家庭连温饱都难以解决,上学接受教育对他来说那只能是梦想。由于穷困,法拉第在人生最灿烂的时候辍学了,那一年他才13岁,是求知欲最强烈的年华。退学后,为生活所迫,他在街上卖报、在书店当学徒挣钱以贴补家用。是金子就一定会发光,是锤子就一定会受伤,法拉第无疑就是一块金子,就算是出生卑微,无学可上也不会阻碍他这块金子熠熠生辉。 1.2法拉第的求学及工作经历 法拉第酷爱学习,任何一个学习机会对于他都是极其珍贵的,他的哥哥注意到了他的天赋,所以愿意资助他学习,他非常幸运地参加了很多科学活动。通过这些活动他开始接触到了科学的神秘世界并且深深地被科学所吸引,这一切为他未来成为科学家铺好了道路。如果你足够好上帝一定不会埋没你,而且总会为你开上一扇窗,法拉第就是被上帝宠爱的那个人才,上帝为他开了一扇窗从而结识了著名的化学家戴维,他被戴维的才华所征服,随即他大胆地写信给戴维讲述了他对一些科学的见解,并表明自己热爱科学、愿意为科学献身。机会总是垂青于有准备的人,法拉第的能力才华深受戴维的赏识,22岁的他就被戴维任命为自己的实验助理。名师出高徒,法拉第以戴维为师,这为他后来的成就铺就了一条康庄大道。而且法拉第聪明、刻苦,很受戴维的器重,所以每次戴维外出考察时总会让法拉第相伴,而每一次外出考察对他来说都是弥足珍贵的学习机会,都会是他增长知识、开拓视野。 法拉第于1815年回到皇家研究所,而且他的启蒙老师戴维非常耐心地指导他做各种研究工作,在他们共同的努力下好几项化学研究都取得了成果。1816年对法拉第来说是不寻常的一年,是他科学道路的新起点,因为在这一年他发表了他人生中的首篇论文。从1818年开始他和J·斯托达特共同钻研合金钢,并且第一次独立创立了著名的金相分析方法。由于法拉第工作兢兢业业,深受研究院的重视,所以1821年被学院提升担任皇家学院总监这一要职。在两年之后的1823年,经过刻苦的钻研他发现了氯气与其余一些气体的液化方法。世界总是公平的,春天种下什么种子秋天就会收获什么果实,而法拉第所付出的努力也是会得到回报的,1824年1月他终于正式成为皇家学会的会员。1825年2月法拉第传承了启蒙老师戴维曾经的职位即被任命为皇家研究所实验室主任。就在这一年,他又有一项伟大的发现-----他发现了有机物苯。

电磁感应定律的验证

电磁感应定律的验证 实验成绩指导老师签名 【实验目的】 (1)通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 (2)了解半波天线感应器的原理及设计方法 (3)研究天线长短与电磁波波长的接收匹配关系 【实验使用仪器与材料】 (1)HD-CB-V电磁场电磁波数字智能实训平台 (2)电磁波传输电缆 (3)平板极化天线 (4)半波振子天线 (5)感应灯泡 【实验原理】 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。 本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称

为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ/4,全长为半波长而得 名。其辐射场可由两根单线驻波天 线的辐射场相加得到,于是可得半波振子(L=λ/4) 的远区场强有以下关系式: │E│=[60Imcos(πcosθ/2)]/R,sinθ=[60Im/R], │f(θ)│式中,f(θ)为方向函数。对称振子归一化方向函数 为│F(θ)│=│f(θ)│/f max=|cos(πcosθ/2)/sinθ|,其中f max 是f(θ)的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在E面的方向图为8字形,最大辐射方向为θ=π/2,且只要一臂长度不超过0.625λ,辐射的最大值始终在θ=π/2方向上;若继续增大L,辐射的最大方向将偏离θ=π/2方向。【实验步骤】 1)测量电磁波发射频率 (1)用N型电缆直接将“输出口2”连接至“功率频率检测 口”。 (2)在液晶界面上同时显示出发射功率及频率。 (3)已知电磁波发射源的频率F,求得波长:λ= V F光,比如,电磁 波发射源频率为900MHz, 则: λ= V F光=3*108/900*106=0.33m 半波天线长L=0.165 m 则两端子分别均为0.165/2=8.25cm (4)电磁波波长也可由液晶界面波长计算公式直接计算得出。 2)制作半波振子天线 (1)剪下一段铜丝,按计算得到尺寸剪下2段铜丝。 (2)将铜丝末端漆刮掉,保持良好导电。 (3)将天线安装到转盘上,这时就完成了半波天线的制作。 (4)其他天线方法同上。 3)验证麦克斯韦电磁理论,电磁场的存在 (1)将“输出口3”与极化天线通过SMA电缆相连,按下发 射开关,电磁波经传输电缆,经天线发射后在空中传输。 (2)灯泡被点亮,验证了电磁场的存在。 【实验心得】

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

法拉第电磁感应定律的应用

法拉第电磁感应定律 2.确定目标 本节课讲解应用法拉第电磁感应定律计算感应电动势问题,会区别感应电动势平均值和瞬时值。 二 精讲精练 (一)回归教材、注重基础 例 (见教材练习题P21 T2)如图甲所示,匝数为100匝,电阻为5Ω的线圈(为表示线 圈的绕向图中只画了2匝)两端A 、B 与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量按图乙所示规律变化。 (1)求电压表的读数?确定电压表的正极应接在A 还是接在B ? (2)若在电压表两端并联一个阻值为20Ω的电阻R .求通过电阻R 的电流大小和 方向? ,面 时间内,匀强磁场平行于线圈轴线向右穿过,则该段时间线圈两12)t B --

变式3.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为 B,用电阻率为ρ、横 截面积为S的导线做成的边长为L的正方形线框abcd水平放置,OO′为过ad、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框 左半部分以OO′为轴向上转动60°,如图中虚线所示。若转动后磁感应强度随时 间按kt 变化(k为常量),求: B B+ = (1)在0到t 0时间内通过导线横截面的电荷量? (2)t0时刻ab边受到的安培力? (三)真题检测,品味高考 1.(2014·新课标全国Ⅰ)如图 (a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2. (2012·福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀 强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B 随时间t 的变化关系如图乙所示(T0为已知量)。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。当t=0T 到t=05.1T 这段时间内的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.求:这段时间内,细管内涡旋电场的场强大小E 。 (四)拓展深挖、把握先机 拓展:如图甲所示,匝数为n 匝,电阻为r,半径为a 的线圈两端A 、B 与电容为C 的电容器 和电阻R 相连,线圈中的磁感应强度按图乙所示规律变化(取垂直纸面向内方向为正方向)。求: (1)流过电阻的电流大小为多少? (2)电容器的电量为多少? 三 总结归纳 1. 应用法拉第电磁感应定律计算感应电动势。 2. 会判断导体两端电势的高低。

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用 1. (法拉第电磁感应定律的应用)(优质试题·北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。磁感应强度B随时间均匀增大。两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响。下列说法正确的是() A.E a∶E b=4∶1,感应电流均沿逆时针方向 B.E a∶E b=4∶1,感应电流均沿顺时针方向 C.E a∶E b=2∶1,感应电流均沿逆时针方向 D.E a∶E b=2∶1,感应电流均沿顺时针方向 ,感应电流产生的磁场方向垂直圆环所在平面向里,由右手定则知,两圆环中电流均沿顺时针方向。圆环的半径之比为2∶1,则面积之比为4∶1,据法拉第电磁感应定律得E=为定值,故E a∶E b=4∶1,故选项B正确。 2.

(法拉第电磁感应定律的应用)如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计)。现加上竖直向下的磁感应强度为0.2 T的匀强磁场。用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则() A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变 D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和 R中的感应电流方向是从M流向P,A错;当金属导体棒受力平衡时,其速度将达到最大值,由F=BIl,I= 可得 总总 ,代入数据解得v m=10 m/s,B对;感应电动势的最大值E m=1 V,a、b F= 总 两点的电势差为路端电压,最大值小于1 V,C错;在达到最大速度以前,F所做的功一部分转化为内能,另一部分转化为导体棒的动能,D错。 3.(法拉第电磁感应定律的应用)(优质试题·海南文昌中学期中)关于电磁感应,下列说法正确的是() A.穿过回路的磁通量越大,则产生的感应电动势越大

电磁感应定律教案

电磁感应定律教案 【篇一:法拉第电磁感应定律教学设计】 4.4法拉第电磁感应定律 ——感应电动势的大小 昌吉市第四中学常志平 【教学依据】 人教版高中物理选修3-2第四章第四节 【教学流程】 1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念 2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用 【教材分析】 本节是选修3-2模块的一个二级主题“电磁感应”的一节内容(另外两个二级主题分别是交变电流和传感器)。本模块的大部分内容都要求通过实验、探究与活动来展现。应让学生尽可能多的经历一些探究的过程,领悟物理学研究的思想和方法。结合这一要求,虽然本节教材没有安排实验,然而我认为在本节教学设计中根据教材前后内容的承接关系及学生的认知能力和特点,还是以实验定性探究来突破重难点和落实三维目标。 由于高中阶段电磁感应定律的定量实验很难完成,因而【新课程标准】没有要求通过定量实验来研究,但应通过定性的实验让学生观察磁通量的变化快慢是影响感应电动势的主要因素,从而直接给出法拉第电磁感应定律和公式。要求学生能应用电磁感应定律解释一些生活和技术中的现象,要会应用电磁感应定律计算有关问题。 第电磁感应定律在特定条件下推导出的表达式.这样做可以让学生在这节课的学习中分清主次,减轻学生认知上的负担,又不降低应用上的要求)可选讲。 【学情分析】 此部分知识较抽象,而现在学生的抽象思维能力还比较弱。所以在这节课的教学中,应该注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简、循序渐进,力求通过引导、启发,使同学们能利用已掌握的旧知识,来理解所要学习的新规律,力求通过明显的实验现象

对电磁感应定律的理解和应用

第18卷 第12期 武汉科技学院学报 Vol.18 No.12 2005年12月 JOURNAL OF WUHAN UNIVERSITY OF SCIENCE AND ENGINEERING Dec. 2005 对电磁感应定律的理解和应用 袁作彬 (湖北民族学院 物理系,湖北 恩施 445000) 摘要:电磁感应定律是电磁学中的一条重要定律,它的两种表述形式,分别反映了电磁感应的宏观表现和微 观机制。对电磁感应定律的理解和运用是电磁学教学的一个重要内容。分析了现行教材中用法拉第电磁感应 定律判定感应电动势方向方法的弊端,提出了一种简便方法,并给出了验证的实例。 关键词:法拉第电磁感应定律;感应电动势;右手定则 中图分类号:O441.3 文献标识码:B 文章编号:1009-5160(2005)-0147-02 电磁感应定律是电磁学教学中的重要内容,结合教学实践,谈谈对于电磁感应定律两种表述及利用法拉第电磁感应定律判断感应电动势的简便方法。 1 电磁感应定律的两种表述 电磁感应定律是电磁学的重要规律,它有两种表述形式。电磁感应定律的第一种表述为: t d d φε?= (1) 式(1) 是电磁感应的宏观表现,它表明当通过闭合回路所围面积的磁通量发生变化时,回路中就产生感应电动势(不论引起磁通量变化的原因是什么)。同时,无论回路的绕行方向怎样选择,ε总与t d d φ的符号相反。 进一步分析引起磁通量变化的原因,有电磁感应定律的第二种表述:[1~3] →→ →→→?????×=∫∫∫S d t B l d B L S )(νε (2) 式(2)中的第一项就是由于导体运动而产生的动生电动势()d L B d l εν→→→ =×?∫,第二项则是由于磁场变化而产生的感生电动势S d t g ∫∫??=ε,式(2)反映出电磁感应的微观机制。由此可以看出,动生电动势和感生电动势的物理过程是有区别的。关于这两种表述表述是否等价的问题,有许多文献讨论,至今仍无定论。[4~6] 2 电磁感应定律的应用 式(2)所示的第二种表述是从微观机理出发揭示电磁感应现象,它不仅揭示了电磁感应现象的微观本质,而且也便于应用。利用式(2),既可以方便地计算由非闭合导体在磁场中做切割磁力线运动而产生的动生电动势,也便于计算静止的闭合导体由于磁场变化而产生的感生电动势,当然也可以计算闭合导体在变化的磁场中运动时产生的感应电动势。 对于第一种表述,现行教材中是这样处理的:在讨论ε的正负之前,将回路的绕向与以回路为边界的曲面法向矢量n r 统一在右手螺旋定则下。在图1所示的四种情形中,一律规定回路的绕向如图中虚线所示,按右手定则,以它为边界的曲面法 收稿日期:2005-08-23 作者简介:袁作彬(1966-),讲师,硕士,研究方向:理论物理.

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

《楞次定律和法拉第电磁感应定律

2016楞次定律和法拉第电磁感应定律(一) 班级姓名 【知识反馈】 1.产生感应电流的条件: 2.楞次定律的内容: 从不同角度理解楞次定律: (1)从磁通量变化的角度: (2)从相对运动的角度: (3)从面积变化的角度: 3.法拉第电磁感应定律的内容: 表达式:,适用 表达式:,适用 【巩固提升】 1、如图所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈 都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是 ( ) A.俯视,线圈顺时针转动,转速与磁铁相同 B.俯视,线圈逆时针转动,转速与磁铁相同 C.线圈与磁铁转动方向相同,但转速小于磁铁转速 D.线圈静止不动 2、如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态。当条形磁铁的N极自右向左插入圆环时,两环的运动情况是( ) A.同时向左运动,两环间距变大; B.同时向左运动,两环间距变小; C.同时向右运动,两环间距变大; D.同时向右运动,两环间距变小。 3.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q 平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下 落接近回路时( ) A.P、Q将相互靠拢 B.P、Q将相互远离 C.磁铁的加速度仍为g D.磁铁的加速度小于g 4.如图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流,各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )

5.如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,a、c两点间的电势差为( ) A.BLv B.BLv sinθ C.BLv cosθ D.BLv(l+sinθ) 6.如图所示,两块水平放置的金属板距离为d,用导线与一 个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中,两板间有一个质量为m、电量为+q的油滴处于静止状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A、正在增加, B、正在减弱, C、正在增加, D、正在减弱, 7.在竖直方向的匀强磁场中,水平放置一圆形导体环。规定导体环中电流的正方向如图11(甲)所示,磁场方向竖直向上为正。当磁感应强度B 随时间t按图(乙)变化时,下列能正确表示导体环中感应电流随时间变化情况的是( ) 8.如图所示,平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0 Ω的定值电阻,导体棒ab长L=0.5 m,其电阻不计,且与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4 T,现使ab以v=10 m/s的速度向右做匀速运动,则以下判断正确的是( ) A.导体棒ab中的感应电动势E=2.0 V B.电路中的电流I=0.5 A C.导体棒ab所受安培力方向向右 D.导体棒ab所受合力做功为零 9. 在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大 线圈M相接,如图所示,导轨上放一根导线ab,磁感线垂 直导轨所在的平面,欲使M所包围的小闭合线圈N产生顺 时针方向的感应电流,则导线的运动可能是()

高中物理4.4法拉第电磁感应定律导学案1新人教版选修3

高中物理4.4法拉第电磁感应定律导学案1新 人教版选修3 法拉第电磁感应定律 【学习目标】 1、知道感应电动势,及决定感应电动势大小的因素; 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、; 3、知道E=BLvsinθ如何推导; 5、会用解决问题。 【重点、难点】 重点:理解法拉第电磁感应定律内容、数学表达式,知道公式E=BLvsinθ的推导过程;难点:知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、。预习案【自主学习】 1、在电磁感应现象中产生的电动势,叫做、产生感应电动势的那部分导体就相当于,导体的电阻相当于、 2、电路中感应电动势的大小,跟穿过这一电路的磁通量成正比,表达式E=(单匝线圈),E=n(多匝线圈)、当导体切割磁感线产生感应电动势时E= (

B、L、v两两垂直),E=(v⊥L但v与B夹角为θ)、3、关于感应电动势,下列说法中正确的是( ) A、电源电动势就是感应电动势 B、产生感应电动势的那部分导体相当于电源 C、在电磁感应现象中没有感应电流就一定没有感应电动势 D、电路中有电流就一定有感应电动势 4、穿过一个单匝线圈的磁通量始终保持每秒钟均匀地减少2 Wb,则( ) A、线圈中感应电动势每秒钟增加2 V B、线圈中感应电动势每秒钟减少2 V C、线圈中无感应电动势 D、线圈中感应电动势保持不变 5、一根导体棒ab在水平方向的匀强磁场中自由下落,并始终保持水平方向且与磁场方向垂直、如图1所示,则有( )图1 A、Uab=0 B、Ua>Ub,Uab保持不变 C、Ua≥Ub,Uab越来越大 D、Ua

专题四:41电磁感应定律及其应用

专题四:4.1电磁感应定律及其应用 一、单项选择题 1.下列说法正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C .线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D .线圈中磁通量变化得越快,线圈中产生的感应电动势越大 [答案] D 2.如图所示,闭合线圈abcd 在磁场中运动到如图位置时,ab 边受到的磁场力竖直向上,此线圈的运动情况可能是( ) A .向右进入磁场 B .向左移出磁场 C .以ab 为轴转动 D .以ad 为轴转动 [答案] B 3.(2012·吉林期末质检) 如图所示,两块水平放置的金属板距离为d ,用导线、开关K 与一个n 匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中.两板间放一台小压力传感器,压力传感器上表面静止放置一个质量为m 、电荷量为+q 的小球,K 断开时传感器上有示数,K 闭合稳定后传感器上恰好无示数,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A .正在增加,ΔΦΔt =mgd q B .正在减弱,ΔΦΔt =mgd nq C .正在减弱,ΔΦΔt =mgd q D .正在增加,ΔΦΔt =mgd nq

[答案] D 5.(2012·海南卷)如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则() A.T1>mg,T2>mg B.T1mg,T2mg [答案] A 二、双项选择题 6.如图所示是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是() [答案]CD 7.(2012·长沙名校模考)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈,通过观察图形.判断下列说法正确的是()

2019-2020年高中物理 第三章电磁感应 第二节、法拉第电磁感应定律教案 新人教版选修1-1

2019-2020年高中物理第三章电磁感应第二节、法拉第电磁感应定律教 案新人教版选修1-1 教学目标: 1、知道什么是感应电动势。 2、了解什么是磁通量以及磁通量的变化量和磁通量的变化率。 3、在实验基础上,了解法拉第电磁感应定律内容及数学表达式,学会用该定律分析与解决一些简单的问题。 4、培养类比推理和通过观察、实验、归纳寻找物理规律的能力。 教学过程: 一、感应电动势 说明:既然在闭合电路中产生了感应电流,这个电路中就一定有电动势。我们把电磁感应现象中产生的电动势叫做感应电动势。在闭合电路里,产生感应电动势的那部分导体相当十电源。在同一个电路中,感应电动势越大,感应电流越大。那么,感应电动势的大小跟什么因素有关呢?请看实验 演示实验: 实验装置:图3 .1-2 和图3.1-3 实验过程: 在图3.1 -2中,使导体捧以不同的速度切割磁感线,砚察电流表指针偏转的幅度。 实验结论:在导线切割磁感线的过程中,切割速度越大,感应电动势越大 实验过程: 在图3.1-3 中,使磁铁以不同的速度插入线圈和从线圈中抽出,观察电流表指针偏转的幅度。 实验结论:在磁铁插入和从线圈中拔出的过程中,插入和拔出的速度越大,感应电动势越大 说明:导体捧以较大的速度切割磁感线,和磁体以较大的速度插入线圈和从线圈中抽出,都使线圈中的磁通量发生变化,且磁通量变化的速度比较大 说明:许多实验都表明,感应电动势的大小跟磁通变化的快慢有关。我们用磁通量的变化率来描述磁通量变化的快慢,它是磁通量的变化量跟产生这个变化所用时间的比值。 问:如果时刻t1的磁通量是Φ1,时刻t2的磁通量变为Φ2。在这段时间里磁通量的变化量是什么?(△Φ =Φ2-Φ1);磁通量的变化率应该表示为什么?【△Φ/t=(Φ2-Φ1)/t】二、法拉第电磁感应定律 说明:精确的实验表明:电路中感应电动势的大小.跟穿过这一电路的磁通量的变化率成正比。这就是法拉第电磁感应定律 问:该定律的数学表达式是什么?(E=△Φ/△t) 问:E的单位是什么?(伏特)磁通量的变化量的单位是什么?(韦伯)和秒(s )

1003法拉第电磁感应定律应用

1003法拉第电磁感应定律应用1 一、电磁感应电路问题的理解和分类 1.对电源的理解:电源是将其他形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类: (1)确定等效电源的正负极,感应电流的方向,电势高低,电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻,路端电压,电功率的问题. (3)根据电磁感应的平均感应电动势求解电路中通过的电荷量: 【针对训练】 1.(2009·广东汕头六都中学质检)如图所示,在磁感应强度B=0.5 T的匀强磁场中,有一等边三角形ABC的固定裸导体框架,框架平面与磁感线方向垂直,裸导体DE能沿着导体框架滑动,且滑动时一直能与框架保持良好的接触.已知三角形的边长为0.2 m,且三角形框架和导体DE的材料、横截面积相同,它们单位长度的电阻均为每米10 Ω,当导体DE以v=4.2 m/s的速度(速度方向与DE垂直)下滑至AB、AC的中点M、N时,求: (1)M、N两点间感应电动势的大小; (2)流过导体框底边BC的电流多大?方向如何? 二、求解电磁感应与力学综合题的思路 思路有两种:一种是力的观点,另一种是能量的观点. 1.力的观点 力的观点是指应用牛顿第二定律和运动学公式解决问题的方法.即先对研究对象进行受力分析,根据受力变化应用牛顿第二定律判断加速度变化情况,最后找出求解问题的方法.2.能量观点 动能定理、能量转化守恒定律在电磁感应中同样适用. 三、电磁感应综合题中的两部分研究对象 电磁感应中的综合题有两种基本类型.一是电磁感应与电路、电场的综合;二是电磁感应与磁场、导体的受力和运动的综合;或是这两种基本类型的复合题,题中电磁现象、力现象相互联系、相互影响和制约. 这类题综合程度高,涉及的知识面广,解题时可将问题分解为两部分:电学部分和力学部分. 1.电学部分思路:将产生感应电动势的那部分电路等效为电源.如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串、并联.分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

相关主题
文本预览
相关文档 最新文档