当前位置:文档之家› 悬架动力学

悬架动力学

悬架动力学
悬架动力学

1悬架:

悬架模块计算了悬架的运动学特性以及作用在弹簧、减震器、稳定杆上的力。

悬架运动学特性的含义是:轮胎中心的相对位置,轮胎方向,弹簧阻尼减震器的全坐标运动(例如,垂直轮胎的左边(q1)和右边(q2)运动)以及转向栏杆对前悬和后悬造成的位移。通过计算弹簧、阻尼器和减震器的运动来确定它们施加的力。

平顺性运动学将由于悬架弹性引起的有限运动描述为关于轮胎力和扭矩的函数。

悬架运动学由8个查询表格或几何连接点配置而成。柔顺性由查询表格配置而成。运动学和柔顺性查询表格由K&C Tester (Kinematics and Compliances Tester)或者一个如ADAMS/Car Suspension Ki t的悬架分析软件生成。几何连接点包含在悬架设计数据中。

悬架在下面描述的更加详细。通过查询System of Coordinates ( ASM Vehicle Dynamics Addendum)可以获取坐标系统的细节描述。

1.1前悬

前悬子系统计算前悬的运动学,平顺性运动学和悬架在弹簧、阻尼器、减震器上的力。

子系统

悬架动力学是通过对称或不对称查询表格或者几何类型来计算的(McPherson Strut)。在这个模型中的每个悬架动力学系统可以由ASM汽车动力学库的中的相关系统替换。要想获取如何替换悬架动力学的详细信息,可以查找How to Change Suspension Kinematics Model (ASM Vehicle Dynamics Model Description)。悬架平顺性子系统计算弹性位移和方向作为轮胎所受力和扭矩的函数。

有5个变量来计算前悬的悬架动力学:通过对称或不对称查询表格(作为两个或三个变量的函数)或者通过几何描述(McPherson strut)。每个悬架动力学系统都要计算车轮中心,车轮方向和弹簧、阻尼器以及减震器的位移。

1.1.1前悬运动学特性(对称)

在这个模块中计算了车轮中心的位置,车轮方向,弹簧,阻尼器和减震器的的位移。

这些运动学由含两个输入量的2维查询表格来描述:转向拉杆位置q St

?

车轮垂直自身方向的位移q FL, q FR

?

这些是用于前悬的自由度。查询表格的输出如下

?轮胎中心x方向的的位移

? 轮胎中心y 方向的的位移 ? α角,绕x 轴旋转 ? β角,绕y 轴旋转 ? γ角,绕z 轴旋转

? z sp ,弹簧在z 方向的位移 ? z d ,阻尼器在z 方向的位移 ?

z st ,减震器在z 方向的位移

例如,对左前轮而言,车轮相对位置的改变可以如下计算:

(,)FL FL FL st q r r q ?=?

总的车轮相对位置可以如下计算:

FL

FLO FL r r r =?+

FLO

r

就是车轮中心在零位置时所测量的运动学位移。

轮胎方向

FL

θ的方程是:

(,)FL

FL

FL

st

q q θθ=

其中

[,,]FL

FL

FL

FL

θαβγ=使车轮万向节的角度。

转动顺序是先绕z 轴,然后是y 轴,然后是x 轴,即:otZY ‘X ’。下面的图示说明了旋转顺序:

这些角度用来计算车轮相对于汽车系统的方向:

()()()FL

Z

FL

y

FL

X

FL

T v T T T γβα=

弹簧、阻尼器和减震器的连接点在运动学上也取决于车轮中心的位移和转向输入。主要依赖于车轮中心的垂直位移。

(,)sp

sp

FL

st

z z q q =,(,)d

d

FL

st

z z q q =,(,)stab

stab

FL

st

z z q q =

这些位移用来计算弹簧,阻尼器和减震器的力。 为了建立这个运动方程,必须对上面所述关系的求偏微分,即车轮中心和方向关于车轮垂直运动和转向输入的变化

1_FL

q Front r ??,2_FL

q Front r ??,FL

stt

r q ??,1_FL Front q ω

??,

2_FL

Front q

ω??,

FL

st

q ω??

同样,为了计算在转向轮中心运动方向的等效力,也必须求下面的微分:

____1_2_1_2_1_2_,

,

,

,

,

sp FL

sp FL

D FL

D FL

stabi

stabi

Front

Front

Front

Front

Front

Front

z

z z z z z q

q

q

q

q

q

????????????

参数

?依据ASM命名传统,以“Map”开头的参数名是查询表格。在前悬运动学中,有

以转向拉杆位移为行,以车轮垂直位移为列的二维查询表格。

?仅仅定义了左侧的运动学表格,右侧通过镜像获得。

相关主题

参考

●132页前悬运动学(不对称的)

1.1.2前悬运动学特性(对称的,3DOF)

这一部分计算了车轮中心点的位置,车轮方向,弹簧、阻尼器和减震器的位移

这些运动学被描述为带有3个输入量的2维和1维查询表格: ? 转向拉杆位置steer q

? 车轮在左侧的垂直位移left q ? 车轮在右侧的垂直位移right q 每个悬架有三个自由度。 查询表格的输出如下:

? 车轮中心在x 方向的位移 ? 车轮中心在y 方向的位移 ? α角,绕x 轴旋转 ? β角,绕y 轴旋转 ? γ角,绕z 轴旋转

? spring z ,弹簧在z 轴方向的位移 ? damper z ,阻尼器在z 方向的位移

? stabi z ,减震器在z 方向的位移

例如,对左车轮来说,车轮相对位置的改变可以如下计算:

(,)()left

left

left

right

left

steer

r r q q r q ?=?+?

总的车轮相对位置可以如下计算:

,0

left

left left

r r r =+?

,0

left r 是车轮中心在0位置时,所测量的运动学位移。

车轮方向

left

θ

的方程是:

left

(,)()left

left

right

left

steer

q q q θθθ=+ [,,]θαβγ= 是车轮万向节的角度。

转动顺序是先绕z 轴,然后是y 轴,最后是x 轴。即RotZY’X’。下面的图示说明了旋转顺序

这些角度用来计算车轮相对于汽车系统的方向:

()()()FL

FL

FL

FL

T z

y

x

v T T T γβα=

弹簧、阻尼器和减震器连接点在运动学上也依赖于车轮中心位移和转向输入。 基本上主要取决于车轮中心的垂直位移和转向拉杆的位移:

(,)()damper

damper

left

right

damper

steer

z z q q z q =+

(,)()spring

spring

left

right

spring

steer

z z q q z q =+

(,)()stabi

stabi

left

right

stabi

steer

z z q q z q =+

这些位移用来计算弹簧、阻尼器和减震器的受力。 为了建立这个运动方程,必须对上面所述关系的求偏微分,即车轮中心和方向关于车轮垂直运动和转向输入的变化:

,,,,,left

left

left

left

left

left

left

right

steer

left

right

steer

r r r q q q q q q

ωωω????????????

另外,为了计算悬架在车轮中心运动方向的等效力,必须计算下面的微分:

,,,,,,,,spring

spring

spring

damper

damper

damper

stabi

stabi

stabi

left

right

steer

left

right

steer

left

right

steer

z z z z z z z z z

q q q q q q q q q

??????????????????

输入 下表表明了输入

参数

?依据ASM命名传统,以“Map”开头的参数名是查询表格。在前悬运动学中,有

以车轮左侧垂直方向位移为行,以车轮右侧垂直方向位移为列的二维查询表格。一维查询表格以转向拉杆位移作为列。

?仅仅定义了左侧的运动学特性表格,右侧通过镜像获得。

1.1.3前悬动力学特性(非对称)

模块实体

在这个子系统中,通过一系列的查询表格分别定义了每个车轮的轮胎动力。这与前悬运动学特性(对称)相比不同,在前悬运动学特性(对称)中,仅仅定义了左侧轮子的表格,右侧是镜像得到的。

这个模块以这种方式来实现:自由度是可配置的而且是广义的。例如,它们不需要时车轮垂直运动和转向。另外,前后悬架可以配置为可转动而且独立的。ModelDesk尚不支持这些特点。仅仅不对称功能可以通过ModelDesk使用。在标准配置中,q1_Front is z_FL_Wheel (左前轮垂直位移)和q2_Front is z_FR_Wheel(右前轮垂直位移)。

运动学特性被描述为有两个输入的二维查询表格。 转向拉杆位置

st

q

? 车轮垂直于自身的位移,FL FR q q

这些是用于前悬的自由度。这些查询表格的输出是: ? 车轮x 方向的位移 ? 车轮y 方向的位移 ? α角,绕x 轴旋转 ? β角,绕y 轴旋转 ? γ角,绕z 轴旋转

?

sp z

弹簧z 轴方向的位移 ?

d z 阻尼器z 轴方向的位移 ?

st z

减振器z 轴方向的位移 例如,左前轮相对位置的的改变可以如下计算:

(,)FL FL FL st q r r q ?=?

总的车轮相对位移可以如下计算:

FL

FLO FL r r r =?+

FLO

r

就是车轮中心在零位置时所测量的运动学位移。

轮胎方向

FL

θ的方程是:

(,)FL

FL

FL

st

q q θθ=

其中

[,,]FL

FL

FL

FL

θαβγ=使车轮万向节的角度。

转动顺序是先绕z 轴,然后是y 轴,然后是x 轴,即:otZY ‘X ’。 这些角度用来计算车轮相对于汽车系统的方向:

()()()FL

Z

FL

y

FL

X

FL

T v T T T γβα=

弹簧,阻尼器,减震器连接点取决于运动学上车轮的中心位移和转向输入。 主要取决于车轮中心的垂直位移。

(,)sp

sp

FL

st

z z q q =,(,)d

d

FL

st

z z q q =,(,)stab

stab

FL

st

z z q q =

这些位移用来计算弹簧、阻尼器和减震器的受力。 为了建立这个运动方程,必须对上面所述关系的求偏微分,即车轮中心和方向关于车轮垂直运动和转向输入的变化

1_FL

q Front r ??,2_FL

q Front r ??,FL

stt

r q ??,1_FL Front q ω

??,

2_FL

Front q

ω??,

FL

st

q ω??

另外了计算在转向轮中心运动方向的等效力,也必须求下面的微分:

____1_2_1_2_1_2_,

,

,

,

,

sp FL

sp FL

D FL

D FL

stabi

stabi

Front

Front

Front

Front

Front

Front

z

z z z z z q

q

q

q

q

q

????????????

输入下表表明了输入

输出下表表明了输出

参数

依据ASM命名传统,以“Map”开头的参数名是查询表格。在前悬运动学中,有以转向拉杆位移为行,以车轮垂直位移为列的二维查询表格。

查询前悬动力学特性(对称)

1.1.4前悬动力学特性(非对称,3DOF)

这一部分计算了车轮中心点的位置,车轮方向,弹簧、阻尼器和减震器的位移。

这些运动学被描述为带有3个输入量的2维和1维查询表格: ? 转向拉杆位置steer q ? 车轮在左侧的垂直位移left q ? 车轮在右侧的垂直位移right q 每个悬架有三个自由度。 查询表格的输出如下:

? 车轮中心在x 方向的位移 ? 车轮中心在y 方向的位移 ? α角,绕x 轴旋转 ? β角,绕y 轴旋转 ? γ角,绕z 轴旋转

? spring z ,弹簧在z 轴方向的位移 ? damper z ,阻尼器在z 方向的位移 ? stabi z ,减震器在z 方向的位移

例如,对左车轮来说,车轮相对位置的改变可以如下计算:

(,)()left

left

left

right

left

steer

r r q q r q ?=?+?

左侧的二维查询表格是

left

q 和right

q 的函数,但是右侧的二维查询表格取决于right

q 和

left

q

(顺序变了),例如:

(,)()left

left

left

right

left

steer

r r q q r q ?=?+?

(,)()right

right

right

left

right

steer

r r q q r q ?=?+?

总的车轮相对位置可以如下计算:

,0

left

left left

r r r

=+?

,0

left r

是车轮中心在0位置时,所测量的运动学位移。

车轮方向

left

θ

的方程是:

left

(,)()left

left

right

left

steer

q q q θθθ=+ [,,]θαβγ= 是车轮万向节的角度。

转动顺序是先绕z 轴,然后是y 轴,最后是x 轴。即RotZY’X’。下面的图示说明了旋转

顺序。

这些角度用来计算车轮相对于汽车系统的方向:

()()()FL

FL

FL

FL

T z

y

x

v T T T γβα=

弹簧、阻尼器和减震器连接点在运动学上也依赖于车轮中心位移和转向输入。 基本上主要取决于车轮中心的垂直位移和转向拉杆的位移:

(,)()damper

damper

left

right

damper

steer

z z q q z q =+

(,)()spring

spring

left

right

spring

steer

z z q q z q =+

(,)()stabi

stabi

left

right

stabi

steer

z z q q z q =+

这些位移用来计算弹簧、阻尼器和减震器的受力。 为了建立这个运动方程,必须对上面所述关系的求偏微分,即车轮中心和方向关于车轮垂直运动和转向输入的变化:

,,,,,left

left

left

left

left

left

left

right

steer

left

right

steer

r r r q q q q q q

ωωω????????????

另外,为了计算悬架在车轮中心运动方向的等效力,必须计算下面的微分:

,,,,,,,,spring

spring

spring

damper

damper

damper

stabi

stabi

stabi

left

right

steer

left

right

steer

left

right

steer

z z z z z z z z z

q q q q q q q q q

??????????????????

输出 下表表明了输出

参数

?依据ASM命名传统,以“Map”开头的参数名是查询表格。在前悬运动学中,有

以车轮左侧垂直方向上升为行,以车轮右侧垂直方向上升为列的二维查询表格。一维查询表格以转向拉杆位移作为列。

?仅仅定义了左侧的运动学特性表格,右侧通过镜像获得。

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

5.2悬挂动力学解析

5.2 汽车悬架动力学 研究目的及意义 悬架是现代汽车最重要的总成之一,它把车轮和车身弹性地连接起来,传递它们之间一切力和力矩,并且缓和由不平路面传给车身的冲击载荷,以保证汽车的平顺性。现代汽车的高速行驶对悬架提出越来越高的要求,不仅具有减振性能,而且具备良好的导向特性,车轮定位参数随车轮跳动和外力而变化对汽车的操纵稳定性有十分重要的影响。此外悬架的合理设计需要对悬架各个构件以及铰接在各种工况下受力变形情况作出分析,以满足强度和刚度的需要。在本项目中由于采用了参考车辆的悬架参数,所以我们有必要对各个定位参数进行分析,选择合理的悬架参考位置坐标。

5.2.1A DAMS软件及其在悬架运动学/动力学中的应用 ADAMS软件的简单介绍 ADAMS (Automatic Dynamic Analysis of Mechanical System) 全称是机械系统自动动力学分析软件,它是目前世界范围内最广泛使用的多体系统仿真分析软件。通过预测和分析多体系统经受大位移运动时的性能,ADAMS可以帮助改进各种多体系统的设计,从简单的连杆机构到广泛使用的车辆系统。 ADAMS软件可以方便地建立参数化实体模型,并应用了多刚体系统动力学原理进行仿真计算。只要用户输入具体多刚体系统的模型参数,ADAMS软件就可以根据多刚体系统动力学原理,自动建立动力学方程,并用数值分析的方法求解这个动力学方程,这就给多体系统的计算带来了方便。而且ADAMS软件建模仿真的精度和可靠性在所有的动力学分析软件中是最好的。国外有人用ADAMS软件对Ford BroncoII进行整车操纵模拟的仿真分析。在车速为20m/s、0.4s内输入阶跃激励下,横摆角速度和侧向加速度曲线的数值仿真结果与实验结果具有很好的一致性。基于这些优点本课题将采用ADAMS仿真分析软件来对悬架运动学和弹性运动学,以及动力学进行初步的计算机仿真分析。ADAMS使用交互式图形环境和部件库、约束库、力库用堆积木方式建立三维机械系统参数化模型,并通过对其运动性能的仿真分析和比较来研究“模拟样机”可供选择的设计方案。ADAMS仿真可用于估计机械系统性能、运动范围、碰撞检测、峰值荷载以及计算有限元的载荷输入。它提供了多种可选模块,核心软件包括交互式图形环境ADAMS View (图形用户界面)和ADAMS Solver(仿真求解器),还有ADAMS FEA(有限元接口),ADAMS IGES(与CAD软件交换几何图形数据)等模块,尤其是它的ADAMS Vehicle(车辆和悬架模块)和ADAMS Tire(轮胎模块)使ADAMS软件在汽车行业中的应用更为广泛。 ADAMS软件在悬架动力学的应用 本课题拟用ADAMS View来对悬架进行建模。ADAMS View中有各种实体建立命令以及各种铰接型式,约束型式,可建立悬架的三维参数化模型。在进行运动

大摆锤动力学分析报告报告材料

大摆锤是常见的游乐设施,通过整体结构分析,得到大摆锤的整体及各个部件的结构应力。然而大摆锤的很多工况是不能简化成静力学的,需有动力学解之。 模态分析是动力学分析的基础,大摆锤的悬臂按照一定周期摆动,需对大摆锤的整体结构进行模态分析,这样在产品设计之前可以预先避免可能引发的共振。 大摆锤的立柱是受压缩的细长杆件,当作用的载荷达到或超过一定限度时就会屈曲失稳,除了要考虑强度问题外,还要考虑屈曲的稳定性问题。 图(a)游乐场中大摆锤示意图图(b)大摆锤整体模型 图1 大摆锤示意图 对大摆锤整体结构强进行动力学评价与分析,分别计算大摆锤转盘在满载和偏载工况下,大摆锤悬臂摆动,对整个结构的影响;以及悬臂的摆角在120°、90°和45°时立柱的结构应力;大摆锤立柱的屈曲分析;悬臂驱动制动分析;整体结构的模态分析。为顺利安全的生产运行提供数据支持。 2 主要工作内容 (1)建立整体的动力学分析模型,计算满载和偏载工况下,立柱的受力情况;(2)计算大摆锤悬臂摆角在120°、90°和45°时立柱的结构应力强度;(3)悬臂驱动制动分析,以及驱动制动对立柱的影响; (4)大摆锤整体的模态分析; (5)大摆锤立柱的屈曲分析。 3 大摆锤的刚体动力学分析 3.1 材料参数 整体结构材料:Q235钢。材料力学参量为:材料密度为 =7.85 t/m3。

3.2 几何模型 使用通用结构分析软件ANSYS Workbench Environment(AWE)14.0多物理场协同CAE仿真软件,对大摆锤的整体进行建模,分别建立立柱、悬臂、大转盘建,并在软件中进行装配,如图3所示。 (a)大摆锤整体结构(b)转盘局部结构 (c)大摆锤悬臂(d)大摆锤立柱 图2 大摆锤整体装配模型 3.3载荷与约束 立柱的底板固定在地方面,因此在立柱底板与地面之间,施加固定(Fixed)约束,模拟底板与地面之间的紧固连接。 在重力作用下,悬臂绕转筒中心轴转动,在悬臂的横臂的内表面和立柱固定筒之间,施加旋转幅(Revolute),模拟悬臂绕横梁转动。 在悬臂摆动的过程中,大转盘同时绕着悬臂的中轴线转动,转动的角速度为1.07rad/s。悬臂与大转盘之间,施加旋转幅(Revolute),模拟大转盘绕悬

汽车悬架系统动力学研究

汽车悬架系统动力学研究 Revised final draft November 26, 2020

(研究生课程论文) 汽车动力学论文题目:汽车悬架系统动力学研究 指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析Theautomobilesuspensionsystemdynam icsresearch CaisiVehicle141 Abstract:Differentkindsofsuspensionsystemsand ofdifferencesinsuspens ionparametersonthevehiclesteeringstabilityandridingcomforthaveimporta ntinfluence.MainlyanalyzedthestructurecharacteristicsofMacphersonsusp ension,andbyusingADAMSsoftwaretoestablish3DmodelofMacphersonsuspensio n,carryonthesimulationanalysis,themethodofoptimaldesignparametersofth esuspension. Keywords:Macphersonsuspension;ADAMS/Car;multi-rigid-bodydynamics;simulationandanalysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架设置会使驾驶者有不同的感受。看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽

撞击动力学实验报告

1.SHPB实验装置、基本原理及用途 1.1实验装置及用途 如图1所示为SHPB的实验装置及数据采集处理系统: 图1 SHPB实验装置 SHPB装置主要由三部分组成:压杆系统、测量系统以及数据采集与处理系统。其中压杆系统是由撞击杆、入射杆、透射杆和吸收杆四部分组成。撞击杆也称之为子弹,一般来说压杆所采用的截面尺寸及材料均相同,因此子弹的长度就决定了入射应力脉冲的宽度λ,一般取λ=2L(L为子弹的长度),吸收杆主要是用来吸收来自透射杆的动能,以削弱二次波加载效应,为保证获得完整的入射及反射波形,入射杆的长度一般要大于子弹长度的两倍,所有压杆的直径应远小于入射应力脉冲的波长,以忽略杆中的惯性效应影响。 测量系统可以分为两个部分,一个是撞击杆速度的测量系统,另一个是压杆上传感器测量系统。对撞击杆速度的测量常采用激光测速法,如图1所示,在发射管与入射杆之间装有一个平行光源,用来发射与接收激光信号,两个光源之间的间距是可测的,当子弹经过平行光源时,会遮挡住光信号而产生一定宽度的脉冲信号,据此可测出子弹通过平行光源的时间即可求出子弹的撞击速度。压杆传感器测量系统则是在压杆相应位置处粘贴电阻应变片,并将应变片经电桥连接至超动态应变测试仪上,据此即可测出压杆中的应变。 数据采集和处理系统主要由TDS5054B数字示波器,CS—1D超动态电阻应变仪,TDS2000B波形存储器,以及微机等组成。其作用是完成对信号的采集、处理和显示。

1.2基本原理 利用应变片技术测量波速的工作原理如图2所示。子弹撞击压杆所产生的应力波(弹性波)先后为应变片1和应变片2所记录。鉴于弹性波在线弹性细长杆中的传播很少有衰减,也不弥散,基本上不失真,因此可根据两个应变片之间的距离及所记录信号的时间差确定波在细长杆中的传播速度。 应变片1应变片2 图 2 应力波波速测量原理图 鉴于弹性波在自由端反射的异号波形具有相同的传播速度,还可以采用如图3所示的更为简单的测试方法。这时,应变片所记录的是拉压相间的应力波,同一相位间隔距离代表应力波行走了一个来回,即杆长的二倍距离,据此也可以确定应力波在细长杆中的传播速度。 图3 应力波波速测量原理图 常规的拉伸(或压缩)实验测得的是材料在低应变率(341010/s -- )下的应力应变曲线。本实验测得的是材料在高应变率(241010/s )下的应力-应变曲线,其原理如图4所示。当枪膛内的子弹以某速度撞击输入杆时,在杆内产生一个入射脉冲i ε,试件在该应力作用下产生高速变形,与此同时,在压杆中分别产生往回的反射脉冲r ε和向前的透射脉冲t ε。

汽车系统动力学习题答案分析解析

1.汽车系统动力学发展趋势 随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容,随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展,主要有三个大的发展方向: (1)车辆主动控制 车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。 (2)多体系统动力学 多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。汽车是一个非常庞大的非线性系统,其动力学的分析研究需要依靠多体动力学的辅助。 (3)“人—车—路”闭环系统和主观与客观的评价 采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就

不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识 2.目前汽车系统动力学的研究现状 汽车系统动力学研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。及行驶动力学和操纵动力学。行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。汽车系统动力学的研究可以分为三个阶段: 阶段一(20世纪30年代) ①对车辆动态性能的经验性的观察 ②开始注意到车轮摆振的问题 ③认识到车辆舒适性是车辆性能的一个重要方面 阶段二(30年代—50年代) ①了解了简单的轮胎力学,给出了轮胎侧偏角的定义 ②定义不足转向和过度转向 ③建立了简单的两自由度操纵动力学方程

汽车悬架系统动力学研究

汽车悬架系统动力学研究 This manuscript was revised by the office on December 22, 2012

(研究生课程论文) 汽车动力学论文题目:汽车悬架系统动力学研究 指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年 1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。 关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析 The automobile suspension system dynamics research Caisi Vehicle141 Abstract: Different kinds of suspension systems and of differences in suspension parameters on the vehicle steering stability and riding comfort have important influence. Mainly analyzed the structure characteristics of Macpherson suspension, and by using ADAMS software to establish 3D model of Macpherson suspension, carry on the simulation analysis, the method of optimal design parameters of the suspension. Key words: Macpherson suspension; ADAMS /Car; multi-rigid-body dynamics;simulation and analysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架

结构动力学读书报告

《结构动力学》 读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1. (1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi (它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: @7710 二送 结构动力学 (1)式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划 分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

汽车悬架系统动力学研究剖析

(研究生课程论文) 汽车动力学 论文题目:汽车悬架系统动力学研究指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析 The automobile suspension system dynamics research Caisi Vehicle 141 1049721402344 Abstract:Different kinds of suspension systems and of differences in suspension parameters on the vehicle steering stability and riding comfort have important influence. Mainly analyzed the structure characteristics of Macpherson suspension, and by using ADAMS software to establish 3D model of Macpherson suspension, carry on the simulation analysis, the method of optimal design parameters of the suspension. Key words:Macpherson suspension; ADAMS /Car; multi-rigid-body dynamics; simulation and analysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架设置会使驾驶者有不同的感受。看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽车的操

基于SIMULINK悬架系统动力学仿真分析

研究生课程论文答题本 科目:汽车动力学 授课教师:乔维高 年级专业: 学生姓名: 学生学号: 是否进修生?是□否■

基于SIMULINK悬架系统动力学仿真分析 (武汉理工大学汽车工程学院) 摘要:汽车行驶平顺性的优劣直接影响到乘员的乘坐舒适性,并影响车辆动力性和经济性的发挥,是 车辆在市场竞争中争夺优势的一项重要性能指标。因而如何最大限度地降低汽车在行驶过程中所产生的 振动,成为汽车行业的研究重点。本文以某轿车为例,对其进行力学分析,建立四自由度半振动微分方程,以不同等级路面和不同车速下的随机路面激励谱作为输入,利用Matlab/Simulink 仿真软件建立了 动态模型,进行计算机仿真,并分析了动力学参数的改变对汽车行驶平顺性影响。 关键词:悬架系统;平顺性;仿真 Suspension System dynamic simulation analysis Based on SIMULINK Abstract: Car Ride will directly affect occupant comfort and affect vehicle dynamics and economy of the play, is a vehicle to compete for advantage in the market competition is an important performance indicators. So how to minimize vibration during driving cars produced, became the focus of the automotive industry research. Taking a car, for example, its mechanics analysis, four and a half degrees of freedom vibration differential equations, random road pavement and different levels of excitation spectra under different speed as the input, using Matlab/Simulink simulation software to establish a dynamic model for computer simulation and analysis of the changing dynamics of the parameters affecting the car ride comfort. Key words: Suspension System;riding comfort; dynamic simulation 1 汽车动力学振动模型的建立 四自由度半车模型既能表征车身的质心加速度和速度的变化,又能表征车身绕其质心轴的俯仰角加速度和角速度的变化,结构也不太复杂,因此其仿真结果具有一定的代表性。四自由度半车模型的建立,必须作如下假设:整个系统为线性系统;前轴与前轮质量之和为前簧下质量;后轴与后轮质量之和为后簧下质量;非悬挂分布质量由集中质量块m1 f、m1r代替,车轮的力学特性简化为一个无质量的弹簧,不计阻尼;汽车对称于其纵轴线,且左、右车辙的不平度函数相等。车身振动的四自由度模型如图1所示。车身质量根据动力学等效的原则分为前轴上后轴上及质心上的三个集中质量m2 f、m2r 、m2c,三个质量由无质量的刚性杆连接。 图1 四自由度汽车模型

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

汽车动力学综述-悬架系统

汽车悬架系统的发展与控制综述 摘要:主要介绍了悬架系统的功能和种类,介绍其主要的动力学分析方法,阐述了汽车悬架系统的发展现状和应用前景。 关键词:悬架、发展、动力学 1.引言 汽车在现在人们的生活中已经的不可或缺,汽车的整车性能不仅影响到驾驶的操纵稳定性、舒适性和经济性,也影响到汽车安全。悬架系统对于整车性能的作用可以说是最重要的。研究悬架系统,就是要使车辆能够满足人们对舒适性、安全性、动力性的要求。 我们都知道悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的振动,以保证汽车能平顺地行驶。悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相矛盾的。比如,为了取得良好的舒适性,需要大大缓冲汽车的振动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定。 悬架的组成部分包括弹性元件、导向机构以及减振器等,个别的还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。减振器的功能是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力。另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命。目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式、单筒充气式和双筒充气式三种。弹性元件的主要功能是支撑垂直载荷,缓和和抑制不平路面引起的振动和冲击。弹性元件主要有钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧和橡胶弹簧等。导向机构的作用是传递力和力矩,同时兼起导向作用。在汽车的行驶过程当中,能够控制车轮的运动轨迹。 2.悬架的发展历史 早在马车的时代,人们就为追求乘坐的舒适性,开始对马车的悬架一一叶片弹簧就行了不断的探索。一直到20世纪30年代,叶片弹簧才逐渐被螺旋弹簧所取代,汽车诞生以后,随着对悬架研究的深入,相继出现了扭杆弹簧、气体弹簧、橡胶弹簧、钢板弹簧等弹性件。1934年出现了第一个被动悬架,它是由螺旋弹簧组成的。被动悬架的参数是根据经验或者

尿动力学项目可行性分析报告范本参考

尿流量仪项目可行性分析报告 规划设计 / 投资分析

摘要 该尿流量仪项目计划总投资5531.84万元,其中:固定资产投资 4217.10万元,占项目总投资的76.23%;流动资金1314.74万元,占项目 总投资的23.77%。 达产年营业收入9735.00万元,总成本费用7660.46万元,税金及附 加101.68万元,利润总额2074.54万元,利税总额2462.36万元,税后净 利润1555.90万元,达产年纳税总额906.45万元;达产年投资利润率 37.50%,投资利税率44.51%,投资回报率28.13%,全部投资回收期5.06年,提供就业职位189个。 本报告是基于可信的公开资料或报告编制人员实地调查获取的素材撰写,根据《产业结构调整指导目录(2011年本)》(2013年修正)的要求,依照“科学、客观”的原则,以国内外项目产品的市场需求为前提,大量 收集相关行业准入条件和前沿技术等重要信息,全面预测其发展趋势;按 照《建设项目经济评价方法与参数(第三版)》的具体要求,主要从技术、经济、工程方案、环境保护、安全卫生和节能及清洁生产等方面进行充分 的论证和可行性分析,对项目建成后可能取得的经济效益、社会效益进行 科学预测,从而提出投资项目是否值得投资和如何进行建设的咨询意见, 因此,该报告是一份较为完整的为项目决策及审批提供科学依据的综合性 分析报告。

总论、背景和必要性研究、项目市场前景分析、建设规划分析、选址 方案评估、项目工程设计研究、工艺方案说明、环境保护概况、职业安全、项目风险说明、节能方案、项目实施计划、项目投资可行性分析、经营效 益分析、结论等。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

行驶动力学建模、仿真及主动悬架控制器设计

目录 1. 计算机仿真系统模型的建立 .......................................................... - 1 - 2. LOG控制器设计 .............................................................................. - 2 - 3. 计算实例........................................................................................... - 3 - 4. MATLAB仿真过程.......................................................................... - 4 - 5. 半车模型建模及仿真 ...................................................................... - 8 - 5.1随机线性最优控制 ................................................................... - 9 - 5.2预瞄控制 ................................................................................. - 11 - 5.3结果比较 ................................................................................. - 12 -

ANSYS动力学分析报告

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振

型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤 模态分析过程由4个主要步骤组成,即建模、加载和求解、扩展模态,以及查看结果和后处理。 (1)建模。指定项目名和分析标题,然后用前处理器PREP7定义单元类型、单元实常数、材料性质及几何模型。必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料性质可以是线性或非线性、各向同性或正交各向异性,以及恒定或与温

相关主题
文本预览
相关文档 最新文档