当前位置:文档之家› 环境地球化学

环境地球化学

环境地球化学
环境地球化学

华东师范大学地理科学学院研究生课程论文

论文题目:土壤环境与人体健康---土壤重金

属与人体健康

课程名称: 环境地球化学

学期: 2015-2016学年第1学期

任课教师: 王东启老师

研究生学号: 51153901067

研究生姓名: 吴诗雪

完成年月:2015年12月

课程类别:学位专业课(选修)学分:2分

土壤环境与人体健康---土壤重金属与人体健康

吴诗雪

(华东师范大学地理科学学院, 上海 200241)

摘要:随着城市化步伐的日益加快,土壤重金属污染成为当前重要的世界性环境问题之一。由于重金属污染地区及范围的日益扩大,其对人体健康的影响机制及影响结果,同时如何有效安全的修复土壤重金属污染并利用受污染土壤已成为世界亟需解决的环境和社会问题。本文通过对土壤中重金属污染的特点、来源、危害、迁移转化的生物效应及评价方法和污染修复等近几年来的研究进展进行综述, 以期为相关研究、环境决策和环境管理提供参考。

关键词:土壤;重金属;人体健康;治理;修复

Soil Environment and Human Health - Soil Heavy Metals

and Human Health

WU Shixue

(College of Geographical Sciences, East China Normal University, Shanghai 200241,

China )

Abstract:With quickening the pace of urbanization, the soil heavy metal pollution becomes one of the important global environmental problems. Due to widening of heavy metal pollution areas, not only its mechanism and impact to human health, but also how to effectively repair and use the contaminated soil have became the environmental and social problems of the whole world.This article illuminated the characteristics of soil heavy metal pollution, harm, source, effects of migration into the biological and evaluation method and pollution repair in recent years, in order to provide the reference to related research, environmental policymaking and environmental management.

Key words: Soil; Heavy metals; Human health; Management; Repair

0 前言

土壤是发育于地球陆地表面具有一定肥力且能够生长植物的疏松表层,是人类赖以生存的自然环境和农业生产的重要自然资源。随着工业的发展和农业生产现代化的推进,大量的重金属污染物进入土壤环境,对人类生活环境及人体健康产生重要影响,日益引起人们的关注。土壤重金属污染是指由于人类活动将重金属引入到土壤中,致使土壤中重金属含量明显高于原有含量,并造成生态环境恶化的现象[1]。土壤重金属污染日益严重,成为影响人类健康和环境质量的主要问题之一。这些重金属元素在土壤中的积累不仅影响农作物生产,并通过大气、水体或食物链而直接或间接地通过食物链进入人体[2-3],危害暴露区人体健康[4],导致一些慢性病、畸形、癌症等发生[5],威胁着人类的健康甚至生命[6]。从20世纪50年代开始,发达国家相继发生了由化学污染引起的严重公害事件,重金属的分析技术应运而生,并迅速发展起来。随着我国人口增加及经济的迅猛发展,我国的土壤污染情况日趋严重,土壤环境安全问题也逐渐突出。在这样的形势下,

土壤重金属污染问题成为环境和土壤学工作者的研究热点,因此,研究城市土壤的重金属污染的来源、迁移转化及其污染的修复具有重要的意义。

1 土壤重金属污染现状

据统计,1980年我国工业“ 三废” 污染耕地面积66.7万hm2,1988年增加到66.7万hm2,1992年增加到100万hm2。目前,全国遭受不同程度污染的耕地面积已接近200万hm2,约占耕地面积的1/ 5。农业部调查表明:我国污灌区面积约140万hm2,遭受重金属污染的土地面积占污染总面积的64. 8% ,其中轻度污染面积占46.7%、中度污染占9.7%、严重污染占8.4%,以Hg和Cd的污染面积最大。Cd污染耕地1.3 万hm2,涉及11个省市的25个地区;Hg污染3.2 万hm2,涉及15个省市的21 个地区;粮食含Pb 量大于1.0 mg/kg的产地有11个;有6 个地区生产的粮食含As量超过0.7 mg/kg[7].我国每年因重金属污染导致的粮食减产超过1000万t,被重金属污染的粮食多达1200万t ,合计经济损失至少200亿元。

1.1土壤重金属污染特点

1.1.1 隐蔽性

通常土壤重金属污染与大气、水体等环境不同,土壤重金属污染需要通过对土壤样品进行分析化验和对农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤重金属从产生污染到出现问题通常会滞后较长的时间,一般会经过很长时间才被人们发现并重视[8],其污染具有隐蔽性。

1.1.2 持久性

由于土壤系统具有与大气、水体生态系统不同的特性,重金属污染物在其中的扩散和稀释缓慢,迁移难度大。因此,重金属很容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。

1.1.3 间接危害性

土壤环境中的重金属通常会通过生物链累积到动植物体内及人体内,对动植物及人体健康产生重要影响。

1.2土壤重金属污染来源

1.2.1 自然来源

土壤是由岩石风化而来,成土母岩决定了土壤中化学元素的最初含量,影响着土壤中重金属元素的环境背景值[9];同时母岩在形成土壤过程中的影响因素和自然界中土质污染也影响着土壤重金属的含量,如在矿床附近矿化地层发育的土壤,土壤重金属含量往往异常地高。

除此之外,火山爆发、森林火灾、风力扬尘等过程使很多含重金属尘漂浮在

空中,空气中的重金属元素部分被植物吸收,部分通过尘降进入水体、土壤[10]。

1.2.2 人类活动

重金属多为有色金属,在人类生产生活上应用广泛,主要分为四类:1.农业,人类过度使用化肥造成磷过剩及Cd污染,杀虫剂、除草剂及家禽抗菌药物造成As污染,在东南亚地区,当地居民使用污水灌溉使得地下水As含量异常增高;

2.工业,如采矿业与冶炼业引起当地Cd、As、Pb等重金属污染,并通常以两种或两种以上重金属的复合型污染出现,电镀、电池、颜料及油漆等工业分别造成Cr、Cd等重金属污染;

3.市政,如垃圾填埋;

4.军事,如打靶场和军火库造成Pb和Cu污染。

1.3土壤重金属污染危害

1.3.1 对植物的危害

土壤中的重金属会对植物产生一定的毒害作用,引起株高、主根长度、叶面积等一系列生理特征的改变[11]。主要是因为吸收到植物体内的重金属能诱导其体内产生某些对酶和代谢具有毒害作用和不利影响的物质,引起大量营养的缺乏和酶有效性的降低,较高浓度的重金属含量有抑制植物体对Ca、Mg等矿物质元素的吸收和转运的能力,造成根系生理代谢失调,生长受到抑制,反过来,受害根系的吸收能力减弱,导致植物体营养亏缺[12]。

1.3.2 对土壤动物的危害

土壤重金属含量对蚯蚓、线虫等无脊椎动物数目、丰富度、生物数量和群体构成等有直接影响[13,14],Vandecasteele Bart等[15]调查了疏浚底泥土壤的蚯蚓数和移植率,将调查结果与冲积平原土壤进行比较,发现沙质平原土壤蚯蚓数量明显高于受重金属污染的疏浚底泥土壤的蚯蚓数。重金属污染不同程度地对土壤动物构成危害,土壤动物群落的组成与数量随着污染的加重而减少,在重污染的土壤中,优势类群与常见类群的种类明显减少;重金属对土壤动物群落的多样性指数、均匀性指数、密度类群指数都有减少的趋势[16]。

1.3.3 对人体的危害

土壤重金属在植(作)物体中积累,并通过食物链富集到人体和动物体中,危害人畜健康,引发癌症和其他疾病等。土壤尤其是表层土壤中的重金属极易进入人体,直接对人体健康造成威胁,主要有以下几种影响[17]:(1)当人体摄入或吸入过量的Cd,会引起身体各器官一系列的病变,可引发以骨矿密度降低和骨折发生机率增加为特征的骨效应;(2)Pb能导致包括人类在内的各种生物的生殖功能下降、机体免疫力降低,当人体内血铅质量比达到600μg/g-800μg/g时会表现为头晕、头疼、记忆力减退和腹疼等一系列症状;(3)长期食用含Cr的食物,人体会出现不同程度的皮肤和呼吸道系统病变,并且出现溃疡和炎症;(4)

长期吸入Ni可以引起鼻癌、肺癌,并且可以引起接触性皮炎、肺炎等病症;(5)当金属Hg进入人体后,可与体内酶或蛋白质中许多带负电的基团如巯基等结合,使能量生成、蛋白质和核酸合成受到影响,从而影响细胞正常的功能和生长。1.4土壤重金属污染物的迁移转化

1.4.1汞(Hg)的迁移转化

土壤中汞的重要特点是能以零价(单质汞)形式存在,还有无机化合态汞和有机化合态汞。除甲基汞、HgCl2、Hg(NO3)2外,大多数为难溶化合物。甲基汞和乙基汞的毒性在含汞化合物中最强。土壤中金属汞的含量甚微,但可从土壤中挥发进入大气环境,而且会随着土壤温度的升高,其挥发的速度加快。土壤中的金属汞可被植物的根系和叶片吸收。土壤中的胶体对汞有强烈的表面吸附(物理吸附)和离子交换吸附作用。从而使汞及其他微量重金属从被污染的水体中转入土壤固相。

1.4.2镉(Cd)的迁移转化

由于土壤的强吸附作用,镉很少发生向下的再迁移而累积于土壤表层。在降水的影响下,土壤表层的镉的可溶态部分随水流动就可能发生水平迁移,进入界面土壤和附近的河流或湖泊而造成次生污染。土壤环境中的镉容易迁移转化至生物体内,土壤中镉的含量稍有增加,就会使植物体内镉的含量相应增高。在被镉污染的水田中种植的水稻其各器官对镉的浓缩系数按根>杆>枝>叶鞘>叶身>稻壳>糙米的顺序递减。镉在植物体内可取代锌,破坏参与呼吸和其他生理过程的含锌酶的功能,从而抑制植物生长并导致其死亡。

1.4.3 铅(Pb)的迁移转化

铅在土壤中主要以二价态的无机化合物形式存在,极少数为四价态。多以Pb(OH)2、PbCO3或Pb3(PO4)2等难溶态形式存在,故铅的移动性和被作物吸收的作用都大大降低。植物吸收的铅是土壤溶液中的可溶性铅。绝大多数积累于植物根部,转移到茎叶、种子中的很少,植物除通过根系吸收土壤中的铅以外,还可以通过叶片上的气孔吸收污染空气中的铅。

1.4.4 铬(Cr)的迁移转化

土壤中铬通常以四种化合形态存在,两种三价铬离子Cr3+和CrO2-,两种六价铬阴离子Cr2O72-和CrO42-,由于土壤中的铬多为难溶性化合物,其迁移能力一般较弱,而含铬废水中的铬进人土壤后,也多转变为难溶性铬,故通过污染进入土壤中的铬主要残留积累于土壤表层。铬在土壤中多以难溶性且不能被植物所吸收利用的形式存在,因而铬的生物迁移作用较小,植物从土壤溶液中吸收的铬,绝大多数保留在根部,而转移到种子或果实中的铬则很少[18]。

1.4.5 砷(As)的迁移转化

砷主要以正三价和正五价存在于土壤环境中。其存在形式可分为水溶性砷,吸附态砷和难溶性砷。三者之间在一定的条件下可以相互转化。砷主要累积于土壤表层,难于向下移动[19]。一般认为,砷不是植物、动物和人体的必需元素。但植物对砷有强烈的吸收积累作用,其吸收作用与土壤中砷的含量、植物品种等有关。砷在植物中主要分布在根部,在浸水土壤中生长的作物,砷含量较高。

2 土壤重金属污染评价方法

2.1 单因子质量指数法

单因子污染指数法[20]是以土壤元素背景值为评价标准来评价重金属元素的累积污染程度,表达式为:P i = C i /S i ,其中P i 为土壤中污染物i 的环境质量指数;C i 为污染物i 的实测浓度;S i 为i 种重金属的土壤环境质量标准(GB15618-1995)中II 类标准的临界值。若P i ≤ 1.0,则重金属含量在土壤背景值含量之内,土壤没有受到人为污染;若P i > 1.0,则重金属含量已超过土壤背景值,土壤已受到人为污染,指数越大则表明土壤重金属累积污染程度越高。该模型只能分别反映各个污染物的污染程度,不能全面、综合地反映土壤的污染程度,因此这种方法仅适用于单一因子污染特定区域的评价,但单因子指数法是其他环境质量指数、环境质量分级和综合评价的基础。

2.2 内梅罗综合污染指数法

当评定区域内土壤质量作为一个整体与外区域土壤质量比较,或土壤同时被多种重金属元素污染时,需将单因子污染指数按一定方法综合起来应用综合污染指数法进行评价。综合污染评价采用兼顾单元素污染指数平均值和最大值的内梅

罗综合污染指数法[21,22]。该方法计算公式为:P 综合

= I 2 I 2,其中P 综合为土壤综合污染指数;P I 为土壤中各污染物的指数平均值;max ?(P I )为

土壤中单项污染物的最大污染指数。若P 综合≤ 1为非污染;若1

3为重污染。该方法突出了高浓度污染物对土壤环境质量的影响,能反映出各种污染物对土壤环境的作用,将研究区域土壤环境质量作为一个整体与外区域或历史资料进行比较。但是没有考虑土壤中各种污染物对作物毒害的差别,只能反映污染的程度而难于反映污染的质变特征。

2.3 环境风险评价法

Rapant 等人于2003 年提出环境风险指数法对污染环境进行环境风险表征,该方法规定了相应的环境风险的划分标准,可以定量地度量重金属污染的土壤或沉积物中样品的环境风险程度大小[23]。计算公式为:I ERI = AC

I RC I ?1;I ER = I ERI n I =1式中I ERI 为超临界限量的第i 中元素的环境风险指数;AC i 为第i 种元素

的分析含量(mg/kg);RC i为第i 种元素的临界限量(mg/kg);IER为待测样品的环境风险。如果ACi < RCi,则定义I ERI的数值为0。Rapant 等应用环境风险指数法对斯洛伐克共和国的环境进行了风险分级,分析了各种重金属对环境污染的贡献程度和对环境污染贡献最大的重金属元素。该方法在国内土壤重金属污染评价方面目前暂未见研究者应用。环境风险指数法能定量反映重金属污染风险程度的大小,能用数值来反映污染物对环境现状的危害程度,但这种方法不能反映出重金属污染在这个时间和空间的变化特征。

2.4 健康风险评价方法

土壤健康风险评价是近几年应用较多的一种土壤重金属污染评价方法[24-27]。健康风险评价的内容主要包括估算污染物进入人体的数量、评估剂量与负面健康效应之间的关系。污染场地健康风险评价方法基本包括3个步骤4方面内容:数据收集和分析、暴露评估、毒性评估和风险表征[28]。毒性评估,是利用场地目标污染物对暴露人群产生负面效应的可能证据,估计人群对污染物的暴露程度和产生负面效应的可能性之间的关系,污染物毒性有急性和慢性之分,在土壤重金属健康风险评价时研究的是长期暴露于小剂量化学污染物引起的致癌和非致癌风险。风险估算,以致癌风险和非致癌危害指数表示,通常采用单污染物风险和多污染物总风险以及多暴露途径综合健康风险方式表示。综合健康风险就是各暴露途径总风险之和。

土壤环境风险评价,为土壤环境风险管理提供可能引起不良环境效应的信息,为环境决策提供依据。到目前为止,在土壤重金属环境风险评价方面,还没有一种公认的可广泛接受的模型或方法,因而在实际运用中,应结合评价矿区土壤重金属含量、生物中重金属含量、评价目的以及可参照值,来选择适当的评价方法。

3 土壤重金属污染治理

3.1 物理修复

物理修复主要包括电动修复、电热修复和土壤淋洗三种修复技术。电动修复技术的原理类似于电池,在通电的情况下使得重金属离子定向移动,从而把它们从土壤中去除的技术。这种技术对土壤环境的要求比较高,难以广泛的、大规模的应用。

电热修复技术是利用一些重金属在高温下快速挥发的特性,用高频电压加热土壤,重金属受热挥发,离开土壤以达到修复土壤重金属污染的目的。但是,在高温加热的同时也对土壤本身造成了严重的破坏。

土壤淋洗是应用最早,也是应用最多、技术最成熟的物理修复方法。土壤淋洗是利用淋洗液把土壤固相中的重金属转移到土壤液相中去,再把富含重金属的废水进一步回收处理的土壤修复方法。研究发现EDTA可明显降低土壤对Cu的

吸收率与解吸率,其值与加入的EDTA量的对数呈显著负相关[29]。

3.2 化学修复

3.2.1 固定修复

在土壤中,金属元素的溶解度和可迁移性较差,使得土壤中重金属更易被固定下来,因此重金属化学固定修复在污染土壤治理过程中有着不可替代的作用。通过向土壤中加入有机质、沸石、污泥、生物固体和磷酸盐等外源添加物[30],调节和改变重金属在土壤中的物理化学性质,使其产生沉淀、吸附、离子交换、腐殖化和氧化还原等一系列反应,这种外源物质与土壤中金属离子结合后,极大地限制了其在土壤中的迁移性和被植物所吸收的可能性,从而减少这些重金属元素对动植物的毒性[31,32]。Mashi[33]研究发现酸性的降雨会使得这种平衡打破,造成二次污染。因此在实际应用此方法进行土壤重金属污染的治理时,必须考虑如何监测土壤中重金属元素的生物有效性变化以及如何保持外源物长时间的固定效果。

3.2.2 淋洗修复

土壤淋洗是利用清水或化学溶剂或其他可能把污染物从土壤(轻质土或砂质土)中淋洗出来的的流体,甚至可能是气体,冲洗土壤[34]。通过离子交换、沉淀、吸附和螯合等作用,把土壤固相中的重金属转移到土壤液相中,再把含重金属的淋洗液进一步处理,回收重金属并循环淋洗液。目前所用的淋洗剂分为无机淋洗剂、螯合剂和表面活性剂三类。

酸、碱、盐等无机淋洗剂的作用机制主要是通过酸解、络合或离子交换作用破坏土壤表面官能团与重金属形成络合物,将重金属交换解吸下来从而从土壤溶液中溶出。Tampouris[35]等通过土柱实验研究了以HCl+CaCl2溶液作为淋洗剂去除污染土壤中的重金属,结果表明,该淋洗剂对Pb、Zn和Cd的去除率分别为94%、78%和70%,具有较高的去除率;螯合剂主要分为人工螯合剂和天然有机螯合剂,其中天然螯合剂对土壤中重金属有一定的去除能力,且其生物降解性较人工螯合剂好,对环境污染小;表面活性剂按来源可分为人工合成表面活性剂和天然表面活性剂,其中后者较前者具有低成本、低毒性、高生物降解性、高选择和对盐度和温度适用范围更广的特点,按其所带电荷不同可分为阳离子表面活性剂和阴离子表面活性剂,其中阳离子表面活性剂生物降解性差且易造成二次土壤污染。

3.3 生物修复

3.3.1 植物修复

所谓重金属污染植物修复主要是指利用超富集植物的提取作用去除土壤中的重金属,即通过重复种植和收获超富集植物将污染土壤中的重金属浓度降低到

可接受的水平[36]。目前重金属超富集植物修复重金属污染的作用机制可分为络合作用机制、区域化作用机制和较强的富集吸收能力机制。

植物去除土壤重金属是因为少数生长在重金属含量较高土壤中的植物产生了适应重金属胁迫的能力,能够大量吸收重金属元素并保存在体内,同时植物仍然生长,现有研究表明,一些牧草、香草、芥菜、棉麻作物和柳树等具有大量吸收重金属的能力,如亚麻能强烈从土壤中吸收和积累重金属,大麻和棉花次之,亚麻和大麻的栽培,适于在工业污染区生长,它们能通过根去除土壤中大量重金属,能作为潜在作物清除土壤中重金属[37]。

3.3.2 微生物修复

微生物修复是利用土壤中的某些微生物对一种或多种重金属具有吸收、沉淀、氧化和还原等作用来降低土壤重金属的毒性或者通过微生物来促进植物对重金属的吸收。细菌产生的特殊酶能还原重金属,如Citrobacter sp. 产生的酶能使Pb、Cd形成难溶磷酸盐;用铬还原细菌可将六价高毒铬离子还原成低毒形态[38]。Siegel等[39]的研究表明,真菌可以通过分泌氨基酸、有机酸以及其他代谢产物来溶解重金属及含重金属的矿物。

4 结论

随着耕地资源的日益减少,重金属污染事件频发,对人体健康产生重要影响,污染土壤的修复工作愈发重要。由于我国重金属污染修复起步较晚,与欧美国家相比存在如修复技术单一、技术装备落后、技术规范缺乏和管理经验不足等问题。为了解决日益严重的污染问题,土壤修复技术应朝多方向发展,如绿色、环境友好的生物修复、联合杂交综合修复、基于环境功能修复材料(纳米)的修复、基于设备化的快速场地修复以及土壤修复决策支持系统及修复后评估技术,同时结合GIS和地统计学方法的应用有效的为土壤质量控制和环境监控提供依据,加强重金属在城市土壤-大气-水系统中的行为研究。在理论上可以探索并建立有关重金属迁移、转化规律与风险评价的系统研究方法;在应用上可以为土壤环境质量管理及其合理利用,并解决由于土壤重金属污染而导致的生态环境问题提供有效的理论依据、基础信息和技术支撑。

参考文献:

[1] Adriano D.C. Trace elements in terrestrial environments; in Biogeochemistry,

Bioavailability and Risks of Metals. New York, Springer, 2001, 2nd Ed.

[2]Kaiser J. Toxicologists shed new light on old poisons[J].

Science,1998,279:1850-1851.

[3] Markus J A, Mcbranthey A B. A review of the contamination of soil with lead(Ⅱ):

spatialdistribution and risk assessmentof soil lead[J].Environment International, 2001,27:399-411.

[4] Abrabams P W. Soils: Their implicantions to human health[J]. The Science of the

Total Environment, 2002,291:1-32

[5] James R L, Gene E L, John W F, et al. Cadmium toxicity among wildlife in the

Colorado Rocky Mountaion[J]. Nature,2000,406(13):181-183

[6] 康玲芬,李锋瑞.不同土地利用方式对城市土壤质量的影响[J].生态科

学,2006,25(1): 59-63.

[7]王松良, 郑金贵.土壤重金属污染的植物修复与重金属超富集植物及其遗传工

程研究[J].中国生态农业学报, 2007,15 (1): 190-193.

[8] 夏来坤, 郭天财, 康国章, 等. 土壤重金属污染与修复技术研究进展[J].河南

农业科学,2005,(5): 88- 91.

[9] 陶澍, 曹军, 李本纲, 等. 深圳市土壤微量元素含量成因分析[J].土壤学报,

2001, 38(2):248-255.

[10]罗强, 任永波,郑传刚. 土壤重金属污染及防治措施[J].世界科技研究与发展,

2004, 26(2):42-46.

[11] 王圣瑞, 颜昌宙, 金相灿, 等. 关于化肥是污染物的误解[J].土壤通报,

2005,36(5):799-801.

[12] 王凯荣, 张格丽. 农田土壤镉污染及其治理研究进展[J].作物研究,

2006,4:359-364.

[13] Dai Jun, Thierry Becquer, James Henri Rouiller, et al. Heavy metal accumulation

by two earthworm species and its relationship to total and DTPA-extractable metals in soils[J].Soil Biology and Biochemistry, 2004,36(1):91-98.

[14] Paseual Santiago and Elvira Abollo. Whaleworms as a tag to map zones of

heavy-metal pollution[J].Trends in Parasitology,2005,21(5):204-206.

[15] Vandecasteele Bart, Jurgen Samyn, Panl Quataert, et al. Earthworm biomass as

additional in formation for risk assessment of heavy metal biomagnifieation:a case study for dredged sediment-derived soil and polluted flood plain soils [J].Environmental Pollution,2004,129(3):363-375

[16] 孙贤斌, 李玉成, 张小平, 等. 淮南市重金属污染对土壤动物群落和多样性

影响研究[J].生态学杂志, 2005,24(10):1163-1166

[17] 史贵涛, 陈振楼, 李海雯, 等. 城市土壤重金属污染研究现状与趋势[J].环境

监测管理与技术, 2006,18(6):9-13.

[18] 陈程, 陈明. 环境重金属污染的危害与修复[J].环境保护, 2010, 3:35-36.

[19] 房存金. 土壤中主要重金属污染物的迁移转化及治理[J].当代化

工,2010,39(4):458-460

[20]郑国璋著.农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出

版社,2007:101-104.

[21]徐争启,倪师军,张成玖,等.应用污染负荷指数法评价攀枝花地区金沙江水系

沉积物中的重金属[J].四川环境,2004,23(3):64-67.

[22] 郭朝晖,肖细元,陈同斌,等.湘江中下游农田土壤和蔬菜的重金属污染[J].地理

学报,2008,63(1):3-11.

[23] RAPANT S, KORDIK J. An environmental risk assessment map of the slovak

republic: application of data from geochemical atlases[J].Environmental Geology, 2003,44:400-407.

[24] 黄勇,杨忠芳,张连志,等.基于重金属的区域健康风险评价——以成都经济区

为例[J].现代地质,2008,22(6):990-997.

[25] 李静,俞天明,周沽,等.铅锌矿区及周边土壤铅、锌、镉、铜的污染健康风险

评价[J].环境科学,2008,29(8):2327-2330.

[26] 周宜开,刘雯君.土壤汞污染人群健康风险评价[J].湖北预防医学杂

志,2008,19(1):1-5.

[27] 李剑,马建华,宋博.郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价

[J].植物生态学报,2009,33(3):624-628.

[28] 陈鸿汉,谌宏伟,何江涛,等.污染场地健康风险评价的理论和方法[J].地学前

缘,2006,13(1):216-223.

[29] Singh BR, Oste L. In situ immobilization of metals in contaminated or naturally

metal-rich soils. Environ Rev, 2001,9:81-97

[30]郭观林, 周启星, 李秀颖. 重金属污染土壤原位化学固定修复研究进展[J].应

用生态学报,2005,16(10):1990-1996

[31] 于颖.污染土壤化学修复技术研究的进展[J].环境污染治理技术与设

备,2005,10(7):121-125

[32] Gomes PC, Fontes MPF, Silva AG, Mendonca ES and Netto AR. Selectivity

sequence and competitive adsorption of heavy metals by Brazilian soil[J].Soil Sci Soc AM J,2001,65:1115-1121

[33] Mashi S A. and Alhassan M M. Effects of wastewater discharge on heavy metals

pollution in fadama soils in Kano city, Nigeria[J].Biomedical and Environmental Sciences,2006,20:70-77

[34] Sleep B E, McClure P D. Removal of volatile and semivolatile organic

contamination from soil by air and stream flushing[J]. Contam Hydrol,2001,50(1-2):21-40

[35] Tampouris S, Papassiopi N I. Removal of contaminant metals from fine grained

soil using agglomeration chloride solutions and pile leaching techniques[J].Haz Mat,2001,B84:297-319

[36]刘金林. 水生维管束植物对重金属的吸收和超级累的研究[J].中国环境科

学,1985,5(2):24-28

[37]Angelova V., R. Ivanova, V. Delibaltova, et al. Bioaccumulation and distribution

of heavy metals in fibre crops(flax, cotton and hemp)[J].Industrial Crops and Products,2004,19(3):197-205

[38] 殷捷, 陈玉成. 土壤重金属污染的全过程控制[J].四川环境,2009,19(1):27-30

[39] Siegel S M, Keller P, Siegel B Z, et al. Metal Speciation, Separation and

Recovery, Proc Interm Srmp, Chicago[M].Kluwer Academic Publishers,1986,77-94

东华理工大学水文地球化学试卷

2006-2007第一学期《水文地球化学》期末试卷(B)-参考答案班级()学号()姓名() 一、名词解释(每题3分,共21分) 1、盐效应:矿物在纯水中的溶解度低于矿物在高含盐量水中的溶解度,这种含盐量升高而使矿物溶解度增大的现象。 2、阳离子交替吸附作用:在一定条件下,岩石颗粒吸附地下水中的某些阳离子,而将其原来吸附的某些阳离子转入水中,从而改变了地下水的化学成分,这一作用即为阳离子交替吸附作用。 3、氧化垒:在还原条件被氧化条件激烈交替的地段上所形成的地球化学垒。 4、侵蚀性CO2:当水中游离CO2大于平衡CO2时,水中剩余部分的CO2对碳酸盐和金属构件等具有侵蚀性,这部分即为侵蚀性CO2。 5、TDS:指水中溶解组分的总量,它包括溶于水中的离子、分子及络合物,但不包括悬浮物和溶解的气体。 6、硅质水与硅酸水:SiO2含量大于50mg/L的水称为硅质水(1.5分);在阴离子中,HSiO3-占阴离子首位(按mol%计算)的水称为硅酸水(1.5分)。 7、硬度:是以水中Ca2+和Mg2+来量度,其计算方法是以Ca2+和Mg2+的毫克当量总数乘以50,以CaCO3表示,其单位为mg/L。 二、填空(每题1分,共14分) 1、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 2、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生物)垒和(复合)垒。 3、碱度主要决定于水中的(HCO-3,CO2-3)的含量。硬度是以(Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以(HCO-3,CO2-3)的毫克当量总数乘以 50。 4.大气CO2的δ13C平均值是(-7‰),而土壤CO2的δ13C平均值是( -25‰)。5.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 6.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分散)。 7、SiO2和Na/K地热温度计适用的温度范围分别为(0~250℃)和(150~350℃)。8.近代火山型浅部地下热水的水化学类型为(SO2-4SO2-4 -Cl),而深部地下热水的水化学类型为(Cl-HCO-3)。 9.海水的水化学类型为(Cl-Na),而海成存封水的水化学类型为(Cl-Na -Ca)。 10、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需要较大的能量。 11、在35℃下,pH=7的地下水是(碱)性。在天然水化学成分的综合指标中,体现水的质量指标的有(TDS,硬度,含盐量或含盐度,电导率),而表征水体系氧化还原环境状态的指标有(COD,BOD,TOC,Eh)。 12、迪拜—休克尔公式的使用条件是离子强度小于(0.1mol/L),而戴维斯方程的使用条件是离子强度小于(0.5mol/L)。 13、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件 14、在氮的化合物中,(NO-2,NH4+)可作为地下水近期受到污染的标志,而(NO-3)可作为地下水很早以前受到污染的标志。

地球化学调查样品—三氧化二铁的测定—萃取光度法

FHZDZDQHX0065 地球化学调查样品三氧化二铁的测定萃取光度法 F-HZ-DZ-DQHX-0065 地球化学调查样品—三氧化二铁的测定—萃取光度法 1 范围 本方法适用于水系沉积物、土壤、岩石中三价铁的测定。 测定范围:质量百分数为2%~10%三氧化二铁。 2 原理 试样置于聚四氟乙烯坩埚中,以邻菲啰啉、硫酸(1+2)、氢氟酸低温加热分解。加入硼酸,用8-羟基喹啉-氯仿溶液萃取溶液中的Fe3+,所得氯仿萃取液用光度法测定Fe3+。 3 试剂 3.1 无水硫酸钠。 3.2 硫酸(1+1)。 3.3 硫酸(1+2)。 3.4 氢氟酸(ρ 1.15g/mL)。 3.5 邻菲啰啉(C12H8N2·H2O)溶液,8g/L。含8g/L的邻菲啰啉的硫酸(1+2)溶液。 3.6 饱和硼酸溶液。 3.7 8-羟基喹啉溶液于88mL水中加入1g 8-羟基喹啉、10g柠檬酸钠、12mL冰乙酸,搅匀。 3.8 氢氧化钠,c(NaOH)=7mol/L。 3.9 乙酸-乙酸钠缓冲溶液,pH 4 称取32g无水乙酸钠,加入120mL冰乙酸,加水溶解后稀释至1000mL。搅匀。 3.10 8-羟基喹啉-氯仿溶液,5g 8-羟基喹啉用500mL氯仿溶解。 3.11 三氧化二铁标准溶液 称取0.1000g预先经120℃烘干的光谱纯三氧化二铁于烧杯中,加20mL盐酸(1+1),温热溶解后,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀。此溶液1mL含100μg Fe2O3。 4 仪器 分光光度计。 5 试样的制备 试样应粉碎至粒度小于74μm,在室温下自然风干,待用。 6 操作步骤 6.1 空白试验 随同试样的分析步骤进行多份空白试验,所用试剂须取自同一瓶试剂。 6.2 称样量 称取0.05g试样,精确至0.0001g。 6.3 试样的测定 称取50mg试样于聚四氟乙烯坩埚中,加5mL 8g/L的邻菲啰啉的硫酸(1+2)溶液,加15滴氢氟酸,盖上坩埚盖,低温加热至试样分解完全。取下稍冷,加入5mL饱和硼酸溶液,加热至沸。冷却后用棉花过滤入100mL容量瓶中,用热水洗净坩埚、漏斗,冷却至室温后稀释至刻度,摇匀。 吸取10mL溶液于60mL分液漏斗中,加入2mL 8-羟基喹啉溶液。以下分析手续同标准曲线的绘制。 注:按50mg称样计算,FeO含量为8%时对测定无影响。 6.4 标准曲线的绘制 1

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。 土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。

土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。 水资源世界上一切水体,包括海洋、河流、湖泊、沼泽、冰川、土壤水、地下水及大气中的水分,都是人类宝贵的财富,即水资源。(广义)在一定时期内,能被人类直接或间接开发利用的那一部分动态水体。(狭义) 水矿化度天然水中各种元素的离子、分子与化合物(不包括游离状态的气体)的总量。 水硬度水中钙和镁含量。 化学需氧量(COD)水样在一定条件下,氧化1L水样中还原性物质所消耗的氧化剂的量,以氧的mg/L表示。 高锰酸钾指数法(COD Mn)在一定条件下,以高锰酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 重铬酸钾指数法(COD Cr)在一定条件下,以重铬酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 生化需氧量(BOD)在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。 水体污染进入水体中的污染物含量超过了水体的自净能力,就会导致水体的物理、化学及生物特性的改变和水质的恶化,从而影响水的有效利用,危害人类健康的现象。 水体自净污染物质进入天然水体后,通过一系列物理、化学和生物因素的共同作用,使水中污染物质的浓度降低的现象。 水环境质量评价按照评价目标,选择相应的水质参数、水质标准和评价方法,对水体的质量利用价值及水的处理要求作出评定。 第四章大气圈环境地球化学(1/11) 大气圈包围在地球最外面的圈层,是由气体和气溶胶颗粒物组成的复杂的流体系统。 同温层从对流层顶以上到25km以下气温不变或微有上升的圈层。 逆温层从25km以上到50-55km,温度随高度升高而升高的圈层。 臭氧层地球上空10-50km臭氧比较集中的大气层, 其最高浓度在20-25km处。

水文地球化学试卷

09031123 一、名词解释(每题3 分,共21 分) 1、BOD: 指用微生物降解水中有机物过程中所消耗的氧量,以mg/L 为单位。 2、脱硫酸作用: 在缺氧和有脱硫酸菌存在的情况下,SO4 2- 被还原成H2S 或S2-的过 程。 3、同离子效应: 一种矿物溶解于水溶液,如若水溶液中有与矿物溶解相同的离子,则这种矿物的溶解度就会降低,这种现象在化学上称为同离子效应 4、降水氢氧稳定同位素的高程效应: 大气降水中的18O 和D 含量随着海拔高程的增加而不断下降的现象。 5、酸性垒: 当中性或碱性条件转变为弱酸性和酸性条件或在pH 值急剧降低的地段所形成的地球化学垒。 6、水分子的缔合作用: 由单分子水结合成比较复杂的多分子水而不引起水的物理化学性质改变的现象。7、硅质水与硅酸水: SiO2 含量大于50mg/L 的水称为硅质水(1.5 分);在阴离子中,HSiO3 -占阴离子首位(按mol%计算)的水称为硅酸水(1.5 分)。 二、填空(每题1 分,共14 分) 1、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需 要较大的能量。 2、在35℃下,pH=7 的地下水是(碱)性。在天然水化学成分的综 合指标中,体现水的质量指标的有(TDS,硬度,含盐量或含盐度, 电导率),而表征水体系氧化还原环境状态的指标有(COD,BOD,TOC,Eh )。 3、迪拜—休克尔公式的使用条件是离子强度小于(0.1 mol/L ),而 戴维斯方程的使用条件是离子强度小于(0.5 mol/L )。

4、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件 5、在氮的化合物中,(NO- 2,NH4 + )可作为地下水近期受到污染的 标志,而(NO- 3 )可作为地下水很早以前受到污染的标志。 6、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 7、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生 物)垒和(复合)垒。 8、碱度主要决定于水中的(HCO- 3,CO2- 3 )的含量。硬度是以 (Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以(HCO- 3,CO2- 3 )的毫克当量总数乘以50。 9.大气CO2 的δ13C 平均值是(-7 ‰),而土壤CO2 的δ13C 平均值是(-25‰)。 10.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 11.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分 散)。 12、SiO2 和Na/K 地热温度计适用的温度范围分别为(0~250 ℃)和(150~350 ℃)。 13.近代火山型浅部地下热水的水化学类型为(SO2- 4 SO2- 4 Cl- ), 而深部地下热水的水化学类型为(Cl-HCO- 3 )。 14.海水的水化学类型为(Cl-Na ),而海成存封水的水化学类型为(Cl-Na -Ca)。 三.简答题(每题5 分,共30 分) 1、氧漂移及其影响因素?

环境地球化学

长江三角洲第一硬黏土与古环境 摘要:硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。本文从土壤形态和土壤剖面两个方面对硬黏土进行了描述,并进一步说明硬黏土是一种古土壤,同时以长江三角洲第一硬黏土为例,说明了它所蕴含的古气候信息及其与海平面的关系。 关键词:硬黏土古环境 硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。长江三角洲晚第四纪地层中普遍发育若干层厚度不等的暗绿色、黄绿色或黄褐色的硬质黏土层,在工程地质上俗称“硬质黏土”或“老黏土”。按其年代由新到老依次为第一、第二、第三……硬质黏土层。目前对第一硬黏土层研究较详。第一硬黏土是古土壤。 1硬黏土概述 1.1土壤形态 从颜色上看,硬黏土大致可以分为两类,一类是分上、下两层的暗绿色硬黏土层和黄褐色硬质黏土层;另一类为单一的黄褐色硬质黏土层。这跟海水的影响程度有关;硬黏土质地以细粉砂为主,其次是粗粉砂和黏土;呈块状构造;土壤中含有新生体。 1.2土壤剖面 第一硬黏土层分布在长江三角洲南北两翼,埋深3-25m,西部浅,东部深,总体上具有自西向东的自然坡度。西部硬黏土层的厚度最大,平均7.2 m,向东变薄,至上海市区平均为2.9 m。——这可能和暴露时间长短有关系。 上部含较多植物根屑, 具团粒结构, 中、下部淀积层内黏粒胶膜及铁锰质结核发育, 底部逐渐过渡到保留有原生沉积构造的母质层。 硬黏土与上下地层的关系:三角洲前缘古土壤层上覆滨浅海泥质沉积, 后缘上覆湖沼相泥质沉积,与上覆层呈突变接触关系。下伏黄色滨海、河流相粉细砂或黏土质粉砂, 呈渐变接触关系。 1.3硬黏土是古土壤 古土壤指过去气候与地貌环境相对稳定环境下形成的土壤,其发育或由于形成土壤的气候或地形环境的变化而中断,或在后来的地质过程中被其他沉积物掩埋。探讨并证明硬黏土是古土壤主要看硬黏土是否是经历了明显的成土改造。古土壤特征比较明显的层位在硬土层的上部:

环境地球化学考试复习重点

1. 环境背景值:指在不受污染的情况下,环境要素的平均化学成分。 2. 地球化学障:元素迁移过程中,物理-化学条件的急剧改变所引起的元素沉淀。 3. 等电pH值:当矿物颗粒不能带电荷时的PH值。 4. 生物地球化学循环:生物体所需要的营养元素在生物圈内不断地运转,他们沿着特定的途径,从非生物环境到生物有机体内,再从生物体回到非生物环境中去,从而构成元素的循环,这种循环叫做"生物地球化学循环", 5. 弥散现象:在多空的介质中,当两种流体相接触,某种物质从含量较高的物体中箱含量较低的物体迁移,是两种流体分界面处形成过度混合带,混合带不断扩大,趋向于成为均质的混合物质,这种现象称为弥散现象。 6.地下水的自净过程:污染物进入地下水,通过同周围的介质发生物理化学和生物化学等一系列的反应,使污染物质的组成发生变化,最终被净化,是地下水部分或完全恢复到原来的状态,这样的过程,称为地下水的自净过程。 7.浓缩作用:当水蒸发时,其中含盐分的量不减,则其浓度相对增大,这种作用称为浓缩作用 8.CO2的温室效应:二氧化碳可以让太阳辐射的可见光部分透过,但是能吸收地球在13-17um之间的再辐射,组织了热量向外层空间的散逸,保持了大气的温度,这就是所谓的CO2的温室效应。 9.化学需氧量(COD):在一定条件下,用一定的强氧化剂处理水样对所消耗的氧化剂量。 10.光化学烟雾:排入大气中的CO、NO等一次性污染物在光的作用下形成二次污染物,这两种的混合物所形成的烟雾污染现象。 11.混合作用:当两种或数种成分或矿化不同的地下水相遇时,新形成的地下水在成分与矿化度上与混合前不同,这种作用称为.混合作用。 12. 酸雨:是指PH值小于5.65的雨雪或其他形式的降水 13..生物半衰期:有毒物质降到最初摄入量一半所需要的时间 14. 溶质径流:地壳风化产物受水流溶蚀和冲刷并以真溶液和胶体溶液状态随水流前一的行为称为溶质径流。 1. 生命起源的前提条件有哪些?(8分) (1)在大气圈-水圈体系中必须没有游离的氧 (2)必须存在有对产生有机分子所必须的元素和催化剂 2. 在土壤样品采集中,一般采取哪几种方式? (8分) 答:(1)对角线法适用于污水灌溉或被废水污染的田块,由进水口倒出水口引对角线,按均匀间隔取3-5个点,并根据田块形状做适当修改。 (2)梅花形发适宜于面积较小、平坦、土质均匀的田块,取5-10个点。 (3)棋盘形法适宜于中等面积、平坦、形状完整,但土质较不均匀的田块,取10个以上的点。 (4)蛇形法适宜于面积大、地不太平坦、形状不规整的田块。 还可根据作物生长情况,结合土质、灌溉、施肥、施药等情况,划分为不同地段分别采样。 3. 地下水污染的主要途径是什么?(9分) (1)通过包气带渗入。这种途径是污染液从各种污染源地通过包气带想地下水面的渗透。这种污染途径的集体污染源包括:废水坑、污水池、沉淀池、污水渗坑、化粪池等;(2)从地表水体侧向渗入。由于大量未经处理的生活污水和工业废水排入河流,使许多河流收到

全国多目标区域地球化学调查进展与成果

国土资源大调查 全国多目标区域地球化学调查进展与成果 中国地质调查局 基础调查部 二〇一〇年七月

目 录 一、工作概况 (1) 二、完成情况 (1) 三、主要成果 (3)

一、工作概况 紧密围绕国民经济和社会发展需求,中国地质调查局于1999-2001年开始在广东、湖北、四川等省实施多目标区域地球化学调查试点工作。从2002年起,全国多目标区域地球化学调查工作正式启动。国土资源部先后与浙江、四川、湖南等18个省区采取部省政府间合作方式,共计投入经费67059.45万元,其中地方经费35809.45万元,占53.4%。2005-2008年,经由温家宝总理批示,财政部设立“全国土壤现状调查及污染防治专项”,由我部与环保部共同负责,目前我部到位经费27511万元,对多目标区域地球化学调查进行专项支持,调查工作扩大到全国31省(区、市)。 二、完成情况 全国多目标区域地球化学调查工作分为调查、评价和评估三个层次开展。 调查阶段:主要任务是掌握情况。全国共计部署450万平方公里调查面积,截至2009年底,已经完成160万平方公里,覆盖我国东、中部平原盆地、湖泊湿地、近海滩涂、丘陵草原及黄土高原等主要农业产区。全国投入地质科技人员500余人,采样人员十余万人,选定部级重点实验室23个,采用大型精密仪器测试地球化学样品60万件,分析3240

万个元素指标。基本查明我国土地有益和有害组分等54种元素指标组成、类型、含量、强度及其分布地区、范围和面积等,填补了我国长期以来土地各项元素指标的空白。 图1 全国多目标区域地球化学工作程度图 评价阶段:针对调查发现问题,按照长江流域、黄河流域、东北平原及沿海经济带等我国主要农业经济区域开展生态地球化学评价,对影响农业经济发展的肥力组分和重金属污染问题进行科学研究,旨在查清土地有益和有害组分成因来源、迁移转化、生态效应和变化趋势等,为土地质量评估提供科学依据。共计采集各类样品12万件,分析各项指标数以百万计。 评估阶段:依据调查和评价结果,根据各省区具体情况,

水文地球化学

水文地球化学研究现状、基本模型与进展 摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门 独立的学科得到长足的发展, 其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。水文地球化学在利用地下水化学成分资料, 特别是在查明地下水 的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。 1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。 1 应用水文地球化学学科的研究现状 1. 1 油田水研究 水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。早期油田水地球化学的研究只是对单个盆地或单个坳陷, 甚至单个凹陷进行研究, 并且对于找油标志存在不同见解。此时油田水化学成分分类主要沿用B A 苏林于1946 年形成的分类。1965 年, E C加费里连科在其所著5根据地下水化学组分和同位素成分确定含油气性的水文地球化学指标6中系统论述了油气田水文地球化学特征及寻找油气田的水文地球化学方法。1975 年, A G Collins 在其5油田水地球化学6中论述了油田水中有机及无机组分形成的地球化学作用( 汪蕴璞, 1987) 。1994 年, 汪蕴璞等对中国典型盆地油田水进行了系统和完整的研究, 总结了中国油田水化学成分的形成分布和成藏规律性, 特别是总结了陆相油田水地球化学理论, 对油田水中宏量组分、微量组分、同位素等开展了研究, 并对油田水成分进行种类计算, 从水化学的整体上研究其聚散、共生规律和综合评价找油标志和形成机理。同时还开展了模拟实验、化学动力学和热力学计算, 从定量上探索油田水化学组分的地球化学行为和形成机理。 1. 2 洋底矿藏研究

环境地球化学答案

1、名词解释 Pm10:是指大气中直径小于或等于10微米的颗粒物称为PM10,又称为可吸入颗粒物或飘尘。 Pm2.5:PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。 大气颗粒粒径:指大气颗粒的直径,粒径小于10微米的颗粒可以长期飘浮在空中,称为飘尘,其中10~0.25微米的又称为云尘,小于0.1微米的称为浮尘。而粒径大于10微米的颗粒,则能较快地沉降,因此称为降尘。 环境容量:环境容量(environment capacity)是在人类生存和自然生态系统不致受害的前提下,某一环境所能容纳的污染物的最大负荷量。或一个生态系统在维持生命机体的再生能力、适应能力和更新能力的前提下,承受有机体数量的最大限度。 生物吸附系数:是某元素在有机体(通常是植物)灰分中的含量与该元素在生长这种植物的土壤中的含量比例,它定量的反映了生物对环境中元素的吸收强度。 CO2温室效应:大气中的CO2浓度增加,允许太阳辐射能量穿透地球大气层,使地球表面变暖,当地球表面进行二次能量辐射时,温室气体CO2又将这些能量重新发射回地面,使地球发生可感觉到的温度升高,这就是CO2温室效应。 2、环境地球化学的特点及主要研究内容: 环境地球化学的重要任务之一就在于及时地研究现代环境化学变化的过程和趋势,在原来地球化学的基础上,更加深入地研究组成人类环境的各个系统的地球化学性质。人为散发的污染物在环境中不断发生空间位置的移动和存在形态的转化。这种迁移转化的结果,可以向着有利的方向发展,如污染物被稀释、扩散、分解,甚至消失;也可以向着不利的方向发展,如污染物在某些条件下积累起来,转变成为持久的次生污染物。污染物在环境中的存在形态可以通过各种化学作用不断发生变化,如溶解、沉淀、水解、络合与整合、氧化、还原、化学分解、光化学分解和生物化学分解等。

地球化学调查

地球化学调查 3.1地热资源勘查各阶段宜进行地球化学调查,采用多种地球化 学调查方法,包括地热流体特有组分(F、SiO2、B、H2S 等)调查分析、氡气测量等,确定地热异常分布范围。3.2 具代表性的地热流体,宜采集地球化学样品,并适当采用 部分常温地下水、地表水及大气降水样品作为对照,分析 彼此的差异和关系。样品采集方法、要求遵照本规范附录 B。 3.3 测定代表性地热流体,常温地下水、地表水、大气降水中 稳定同位素和放射性同位素,推断地热流体的成因与年龄。 3.4 计算地热流体中Na/K、CI/B、CI/F、CI/SiO2等组分的重量 克分于比率,并进行水岩平衡计算,分析地热流体中矿物 资源的来源及其形成的条件。 3.5 对地表岩石和地热钻井岩芯中的水热蚀变矿物进行取样鉴 定,分析推断地热活动特征及其演化历史。 3.6 地球化学调查图件比例尺与地质调查比例尺一致。 7.7.1地热流体与岩土试验分析 7.7.1 在地热勘查中,应系统采取水、气、岩土等样品进行分析 鉴定,获取热储及地热流体的有关参数,各类样品按下述 要求采取:

a) 地热流体全分析:各勘查阶段的全部地热井和代表性泉点 均应采取; b) 气体分析:凡有气体逸出的地热井(泉)均应采取;中高 温地热井应采用井下压力采样器取样; C) 微量元素、放射性元素(U、Ra、Rn)、毒性成分的分析:按 每个储层采样,预可行性勘查阶段各取(1-2)个,可行性勘查阶段各取(3-5)个,开采阶段各取(5-7)个; d) 稳定同位素:可行性勘查阶段可取(1-2)个,开采阶段可 取(2-3)个; e) 放射性同位素:可行性勘查阶段每层热储各取(3-5)个, 开采阶段每层热储各取(5-7)个; f) 岩土分析样:采集典型热储和盖层岩样及包含水热蚀变的岩 土样品。 7.7.2 地热流体化学成分全分析项目包括:主要阴离子(HCO3-1、 CI-1、SO4-2、CO3-2)、阳离子(K+1、Na+1、Ca+2、Mg+2)、微量元素和特殊组分(F、Br、I、SiO2、B、H2S、AI、Pb、Cs、Fe、Mn、Li、Sr、Cu、Zu等)、放射性元素(U、Ra、Rn)及总a、总β放射性、PH值、溶解性总固体、硬度、耗氧量等。对高温热田应增加Hg、As、Sb、Bi、的测试,对温泉和浅埋热储应视情况增加污染指标如酶、氰等的分析,并根据不同的用途增加相关分析项目。 7.73 同位素分析:一般测定稳定同位素D(H2、18O、34S)和放射

水文地球化学试卷B卷

一、名词解释(每题3分,共21分) 1、盐效应:矿物在纯水中的溶解度低于矿物在高含盐量水中的溶解度,这种含盐量升高而使矿物溶解度增大的现象。 2、阳离子交替吸附作用:在一定条件下,岩石颗粒吸附地下水中的某些阳离子,而将其原来吸附的某些阳离子转入水中,从而改变了地下水的化学成分,这一作用即为阳离子交替吸附作用。 3、氧化垒:在还原条件被氧化条件激烈交替的地段上所形成的地球化学垒。 4、侵蚀性CO2:当水中游离CO2大于平衡CO2时,水中剩余部分的CO2对碳酸盐和金属构件等具有侵蚀性,这部分即为侵蚀性CO2。 5、TDS:指水中溶解组分的总量,它包括溶于水中的离子、分子及络合物,但不包括悬浮物和溶解的气体。 6、硅质水与硅酸水: SiO2含量大于50mg/L的水称为硅质水(1.5分);在阴离子中,HSiO3-占阴离子首位(按mol%计算)的水称为硅酸水(1.5分)。 7、硬度:是以水中Ca2+和Mg2+来量度,其计算方法是以 Ca2+和Mg2+的毫克当量总数乘以50,以CaCO3表示,其单位为mg/L。二、填空(每题1分,共14分)1、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 2、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生物)垒和(复合)垒。 3、碱度主要决定于水中的(HCO-3,CO2-3 )的含量。硬度是以( Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以( HCO-3,CO2-3 )的毫克当量总数乘以 50。 4.大气CO2的δ13C平均值是(-7 ‰),而土壤CO2的δ13C平均值是( -25‰)。 5.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 6.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分散)。7、SiO2 和Na/K地热温度计适用的温度范围分别为( 0~250 ℃)和( 150~350 ℃)。 8.近代火山型浅部地下热水的水化学类型为(SO2-4 SO2-4 -Cl ),而深部地下热水的水化学类型为(Cl-HCO-3 )。 9.海水的水化学类型为( Cl-Na ),而海成存封水的水化学类型为(Cl-Na -Ca )。 10、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需要较大的能量。11、在35℃下,pH=7的地下水是(碱)性。在天然水化学成分的综合指标中,体现水的质量指标的有( TDS,硬度,含盐量或含盐度 , 电导率),而表征水体系氧化还原环境状态的指标有( COD,BOD,TOC,Eh )。 12、迪拜—休克尔公式的使用条件是离子强度小于( 0.1 mol/L ),而戴维斯方程的使用条件是离子强度小于( 0.5 mol/L )。 13、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件14、在氮的化合物中,( NO-2,NH4+ )可作为地下水近期受到污染的标志,而( NO-3 )可作为地下水很早以前受到污染的标志。 三.简答(每题5分,共30分) 1、水的酸度与pH值的区别? 答:酸度是表征水中和强碱能力的指标(1分)。它与水中的氢离子浓度并不是一回事,pH值仅表示呈离子状态的H+数量(1分),而酸度则表示中和过程中可以与强碱进行反应的全部H+数量,其中包括原已电离的和将会电离的部分(2分),已电离的H+数量称为离子酸度,它与pH值是一致的(1分)。 2、水分析结果是简分析,请问从那几方面检查分析数据可靠性。?答:(1)阴阳离子平衡的检查(1.5分)(2)碳酸平衡关系的检查(1.5分)(3)分析结果中一些计

环境地球化学

一、名词解释: 1.环境地球化学------是介于环境科学和地球化学之间的一门新兴边缘交叉学科,是研究化学元素和微量元素在人类赖以生存的周围环境中的含量、分布和迁移和循环规律的科学,并研究它们对人类健康造成的影响。同时,还研究人类生产和消费活动对自然环境的这些地球化学规律造成的影响。 2.一次污染物与二次污染物--------在污染物中,直接排放到大气中的称为一次污染物,有些一次污染物质在大气中通过与其它物质发生反应,化合成新的污染物质,这种污染物称为二次污染物。 3.水体富营养化--------指湖泊、河流、水库等水体中氮、磷等植物营养物质含量过多所引起的水质污染现象。 4.土壤环境容量----------土壤允许承纳污染物质的最大数量。 5.酸雨-------是指PH值小于5.6的雨雪或其他形式的降水。 6.光化学烟雾------汽车、工厂等污染源排入大气的碳氢化合物(CH)和氮氧化物(NOx)等一次污染物,在阳光的作用下发生化学反应,生成臭氧(O3)、醛、酮、酸、过氧乙酰硝酸酯(PAN)等二次污染物,参与光化学反应过程的一次污染物和二次污染物的混合物所形成的烟雾污染现象叫做光化学烟雾。 填空: 1.水体污染源和水体污染物:耗氧污染物、植物营养物、重金属、酚和氰类化合物、石油、农药、酸碱及无机盐类、放射性物质、病原微生物、热污染。 2.世界卫生组织根据现代医学、生物学和进化论的理论,把现代人的疾病分为四大类型,即遗传性疾病、先天性疾病、匮乏性疾病和现代病。 3.人体内元素分为四类:生命元素;毒性元素;无毒性稳定性元素;两性元素。 4.大气污染物的类型:SO2(二氧化硫)、氮氧化物(NOx)、一氧化碳(CO) 、碳氢化合物烃、醛等和颗粒物质。 选择: 1.几种重金属会导致哪些疾病? 汞Hg:水俣病;铬Cr6+:肺癌和鼻咽癌;镉Ge:骨痛病(痛痛病); 2.土壤的组成? 3.哪些属于一次或二次污染物?(有可能填空)

英语文献翻译-环境科学-环境地球化学专业

第一作者:Peter J.Hernes 期刊:JOURNALOFGEOPHYSICAL RESEARCH 发表时间:2009年Fluorescence-based proxies for lignin in freshwaterdisso lved organic matter-溶解有机物中木质素基于荧光特性的替代 摘要 木质素酚已被证明是在环境研究中良好生物标志物。但是木质素分析的复杂性限制了每次研究的样品数量,从而限制了其时空分辨率。相反,用分光光度对溶解有机物进行表征的方法具有速度快、(对样品)无破坏性、价格便宜和只需小的样品量优点,该方法甚至能在现场测量精细尺度溶解有机物循环的时空详情。在本文中,我们提出了一系列交互验证的偏最小二乘模型,利用溶解有机物的荧光性质解释高达91%的样品中木质素的组成和浓度可变性(两年的样品分季度的取自美国加利福尼亚州萨卡拉门托河和圣华金河河口三角洲)。这些模型随后用来通过测得的荧光特性预测木质素的浓度和组成。经过昼夜循环,模拟的木质素的组成大致保持不变,而模型中的木质素浓度的改变大于预期,木质素基于荧光特性的替代的灵敏性可以作为选择最详实样本作为详细木质素表征的有用工具。经过足够的校准,类似的模型可以显著扩大我们研究复杂地表水系统溶解有机物的来源和转化过程。 前言 溶解有机物的生物地球化学特征已经成为全球碳循环的重要组成部分,它是水生环境中食物网的一部分,这同时也在全球水环境中转移了显著数量的碳损失。影响溶解有机物循环的进程与DOM结构和DOM库中单个分子结构的活性密切相关。生物标志物分析技术(比如木质素的氧化铜氧化法)是研究DOM 的重要工具,因为这些技术能够提供DOM的分子世界,这对理解DOM的反应性是至关重要的。 木质素能够提供维管植物和陆源有机物的重要来源信息,同时还有能力获取成岩历史。利用对溶解性木质素的测定表明陆源有机物只是海洋DOM库中的微小部分,尽管从河流流入到海洋中的DOM实际大于海洋DOM库的平均交换量。

环境水文地球化学 第一篇 第一次作业

1.地下水的主要组成成分是什么? 答:地下水是组成成分复杂的溶液,近八十种天然元素以离子、原子、分子、络合物和化合物等形式存在于地下水中,有些已溶解和活动于地下水中的有机质、气体、微生物和元素同位素的形式存在。这些可溶物质主要是岩石风化过程中,经过水文地球化学和生物地球化学的迁移、搬运到水中的地壳矿物质。 地下水中溶解的无机物主要组分(即浓度>5mg/L)为:HCO3-、Cl-、SO42-、Na+、K+、Ca+、Mg2+、SiO2。占地下水中无机物成分含量的90-95%,决定着地下水的化学类型。 地下水中有机组分种类繁多,主要有:氨基酸、蛋白质、糖(碳水化合物)、葡萄糖、有机酸、烃类、醇类、醚类、羧酸、苯酚衍生物、胺等。各种不同形式的有机物主要由C、H、O组成,这三种元素占全部有机物的98.5%,另外还存在有少量的N、P、K、Ca等元素。 地下水中常见溶解气体有:O2、CO2、CH4、N2、H2以及惰性气体Ar、Kr、He、Ne、Xe等。 微生物成分主要有三种类型:细菌、真菌和藻类。微生物在地下水化学成分的形成和演变过程中起着重要的作用。地下水中存在各种不同的细菌。有在氧化环境中的硝化菌、硫细菌、铁细菌等喜氧细菌;有在还原环境的脱氮菌、脱硫菌、甲烷生成菌、氨生成菌等。这些微生物活动可以发生脱硝酸作用、脱硫酸作用、甲烷生成作用和氨生成作用等还原作用,也可以发生硫酸根生成、硝酸根生成和铁的氧化等作用等,从而导致地下水化学成分的相应变化。 2.举例论述络合作用有何环境意义? 答:地下水中大多数金属能与配体形成各种各样的络合物,这些络合物可能是电中性的,也可能是带正电或者带负电。金属络合作用对环境的意义在于:络合物的溶解度是影响金属形态迁移的重要因素;重金属离子与不同配体的配位作用,改变其化学形态和生化毒性,如铝离子(毒性很强)、有机铝络合物(毒性很弱)的生物毒性相差很大;络合作用影响络合剂的性质,如配位体的氧化还原性、脱羧及水解等;有些络合物可以通过化学絮凝、活性炭吸附或离子交换等方法容易地从水中去除。但有些重金属形成螯合物后很难用常规办法去除,影响水处理中对重金属的排除效率;络合作用会加速金属的腐蚀,比如氯离子和氨的作用。 3.胶体的稳定性和ζ电位有什么关系?研究胶体的ζ电位有何环境意义? 答:ζ电位是胶体稳定性的一个重要指标,因为胶体稳定是与离子键的经典排斥力密切相关的。ζ电势的降低会使静电排斥力减小,致使粒子之间范德华力占优势,从而引起胶体的聚沉难和破坏。故研究ζ电势的变化规律是十分重要的。 4.地球化学垒和水文地球化学分带形成的原因是什么? 答:地球化学垒是正在表生带内,因为短间隔内化学元素迁徙环境显然变迁,迁徙强度突然削弱而招致某些化学元素浓集的地段;水文地球化学分带是地下水化学成分和水中总溶解固体沿着水平或者垂直方向呈现有规律的带状分布和变化的现象。故它们共同形成成因都是地下

环境地球化学知识点教程文件

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。

土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。

水文地球化学分析

地下水受到污染后的修复技术研究 概况 我国的环境污染问题比较突出,生态环境脆弱,经济的发展使废物的排放量不断增大,使土壤和地下水的污染日益加重。如废水的排放、工业废渣和城市垃圾填埋场的泄漏、石油和化工原料的传输管线、储存罐的破损、农业灌溉等都有可能造成土壤和地下水的污染,使本来就紧张的水资源短缺问题更加严重。特别是北方城市,地下水在供水中占有很重要的地位,地下水的污染加剧了水资源的短缺,所以地下水污染的研究工作迫在眉睫。随着经济的快速发展,经济实力的不断提升,对地下水污染开展调查、进行污染控制甚至治理已经逐渐成为可能。地下水污染的控制与修复是我们面临的新的、极具挑战性的重要课题,需要进行多学科交叉和联合攻关。水的污染问题已经引起了人们的普遍关注,长期以来,我国把主要的注意力和研究、治理工作集中在地表水的污染,国家投入了大量的人力和物力进行地表水污染的防治,取得了一定的成效。而地下水污染由于其隐蔽性、复杂性、难以控制和治理的特性,以及治理、修复费用巨大,地下水污染的修复在我国尚未展开。近年来,随着一些突发地下水污染事件的发生,地下水污染问题也越来越引起人们的关注,国家有关部门也开始把地下水污染研究列为工作内容。如国土资源部已开始进行全国地下水污染的大调查;国家环保总局和国土资源部联合开展了“全国地下水污染防治规划”;在不同层次的科研项目中也出现了地下水污染控制和治理方面的课题。含水层的污染是一个缓慢的过程,污染具有累积和滞后效应,有

时在泄漏发生数年、甚至数十年后才会发现,如大多数的垃圾填埋场渗滤液泄漏导致的地下水污染等。所以,首先需要进行污染源的辨析、污染途径的分析、污染物在地下的迁移转化机理研究。在此基础上,开展地下水污染的控制、污染的修复工作。 地下水污染源成因分析 按照污染物产生的类型,可以将地下水污染源分为:工业污染源、农业污染源、生活污染源和自然污染源。 工业污染源 工业污染源主要指未经处理的工业“三废”,即废气、废水和废渣。工业废气如二氧化硫、二氧化碳、氮氧化物等物质会对大气产生严重的一次污染,而这些污染物又会随降雨落到地面,随地表径流下渗对地下水造成二次污染,未经处理的工业废水如电镀工业废水、工业酸洗污水、冶炼工业废水、石油化工有机废水等有毒有害废水直接流入或渗入地下水中,造成地下水污染;工业废渣如高炉矿渣、钢渣、粉煤灰、硫铁渣、电石渣、赤泥、洗煤泥、硅铁渣、矿场尾矿及污水处理厂的淤泥等,由于露天堆放或地下填埋隔水处理不合格,经风吹、雨水淋滤,其中的有毒有害物质随降水直接渗入地下水,或随地表径流往下游迁移过程下渗至地下水中,形成地下水污染。 农业污染源 农业用水占全部用水量的70%以上,污染的影响面广泛。一是过量

地球化学调查样品分析

FHZDZDQHX0001 地球化学调查样品分析 F-HZ-DZ-DQHX-0001 地球化学调查样品分析 地球化学是研究化学元素在矿物、岩石、土壤、水和大气圈中的分布和含量以及这些元素在自然界的转移规律。勘查地球化学是地球化学在地质找矿工作中的具体运用,目前地球化学调查已成为地质勘查的重要组成部分。地球化学调查主要采用岩石、土壤、水系沉积物、水化学、生物(植被)、气体等地球化学调查方法,当前广泛应用的是岩石、土壤和水系沉积物三种地球化学调查方法。 我国属于发展中国家,除内地和沿海地区外,地质工作程度较低。内地和沿海地区除冲积平原和黄土覆盖区外,一般水系较发育,因此采用水系沉积物调查方法,可以低成本、高效率地扫视大面积范围内元素地球化学分布情况,从而发现潜在的矿化异常,取得区域地球化学填图和地质勘查效果。边远地区由于地质条件较复杂,常根据不同地球化学景观,综合应用相适应的地球化学调查方法。结合我国的实际情况,为便于资料对比和元素地球化学拼图,常使用水系沉积物为主,岩石和土壤为辅的地球化学调查方法。 我国勘查地球化学调查工作,五十年代开始以土壤的1/20万金属量测量方式开展,由于剖面间距大(2km),对矿床的遥测能力差,而且元素受雨淋流失严重,再加上当时分析技术水平不高,因此难以取得良好效果。1978年地质矿产部确定在全国开展水系沉积物的1/20万区域地球化学调查(区域化探扫面),由于水系沉积物采样点的均匀布置及其形成特征,调查方式较能适应地质和表生环境条件的变化,可反映上游汇水盆地中元素的平均含量,再加上分析化学技术的进步,元素分析方法的检出限、精密度和准确度有较大提高,因此地质效果较显著,特别是包含潜水的运移,对寻找隐伏矿体有明显效果。在1/20万区域地球化学调查基础上,全国发现了大量的元素地球化学异常,通过筛选,选择有利地段开展1/5万区域地球化学调查(普查化探),缩小靶区,对异常进行验证和检查,直接取得地质找矿效果。进入21世纪后,人口、资源、环境的可持续发展已成为全球的发展主题,因此在新一轮国土资源大调查中,提出在全国平原覆盖区(黄土覆盖区)开展多目标区域地球化学调查,为农业、环境、国土规划、生态和基础地质等研究提供综合性基础地球化学资料。 元素在自然界中的活动规律与其本身的原子结构有密切关系,研究元素的化学特性及其在自然界中的共生组合关系,对发现元素在不同区域内的分布规律以及与区域成矿研究密切相关的区域地球化学研究具有一定的相关性,因此合理选择地球化学元素将反映区域地球化学调查的成果特征。1/20万区域地球化学调查的第一批39个元素,是在权衡当前勘查地球化学阶段性地质勘查的作用大小和研究深度,结合当前分析化学技术水平,并参照国外研究现状而作出的适当选择。1/5万区域地球化学调查的元素,一般选择与异常有关的几种或十几种特定元素,可根据地质体的岩性、矿性和元素的地球化学组合性等因素确定。平原覆盖区(黄土覆盖区)多目标区域地球化学调查,根据农业、环境、生态、地质等领域的需求,规定54个必测元素(项目),并参照地区特征,提出21项元素有效态分析、14项元素有机结合态分析以及6项有机污染物分析,是一项化学元素在土壤中的物理、化学和生物迁移转化过程的综合性研究,为国民经济和社会的可持续发展服务。随着分析化学技术和现代分析仪器的发展,许多痕量、次痕量元素分析方法的检出限、精密度和准确度近年来有极大的提高,中国地质调查局于1999年组织76个元素的区域地球化学调查(1/5万组合样),已在西南四省区开始试点,为地球化学填图、资源评估、环境监控、生命演化等研究提供基础资料。 区域地球化学调查样品分析的特点是要求分析元素多、样品数量多,要求分析方法检测限低、精密度好、准确度高,还要求分析周期短、分析效率高、分析成本低。因此在分析方法的 1

相关主题
文本预览
相关文档 最新文档