当前位置:文档之家› 杂散电流的腐蚀及防护

杂散电流的腐蚀及防护

杂散电流的腐蚀及防护
杂散电流的腐蚀及防护

一、杂散电流干扰方式

杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60所示。

从图中可以划分三种情况:

图10-60 杂散电流干扰示意图

1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7—阴极区

1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已作用在当多台机车运行时会产生杂乱无章的地下电流。供电所很多,形成网状,管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线

埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62和图10-63所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点

1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几.

十毫安。在土壤中的杂散电流腐蚀,则是电解电池原理。即外来的直流电流或电位差,造成了土壤溶液中金属腐蚀。其腐蚀量与杂散电流强度成正比,服从法拉第电解定律。也就是说,假如有1A的电流通过钢管表面,流向土壤溶液,那么1a的直流杂散电流1年的时间会溶解钢铁9kg。实际上,土壤中发生的杂散电流强度是很大的,管道上管地电位可能高达8~9V,通过的电流量最大能达几百安。因此,壁厚为7~8mm的钢管,在杂散电流作用下,4~5个月即可能发生腐蚀穿孔。所以,杂散电流的腐蚀强度是一般腐蚀不能与之相比的。它是管道腐蚀穿孔的主要原因。

2.范围广随机性强杂散电流的作用范围很大,其影响可达几千米、几十千米,这与引起杂散电流的外部电流源密切相关。杂散电源腐蚀的发生又常常是随机而变的。无论从电流方向上,还是电流强度上,都是随外界电力设施的负载情况、轨道的连接与绝缘状况、管道的绝缘状况而变化。因此,常将杂散电流的干扰称为动态干扰。这也给杂散电流的测量、排除带来了困难。

图10-62 阳极地床周围的杂散电流干扰

1—测电位曲线2—测电流(东) 3—被干扰管道4—测电流(西) 5—整流器

6—被保护的管道7—被干扰管道电位曲线8—电流干扰区9—电流泄漏

对杂散电流的腐蚀已引起人近年来,直流腐蚀是引起管道泄漏的最大隐患。

们的普遍关注。

图10-63 阴极保护管道的干扰

a)交叉b)平行

三、杂散电流干扰的判断标准

地下杂散电流可以根据管一地电位偏移和地电位梯度来判断。对于此判断。各国根据国情都有自己的指标。例如,英国国家标准规定,以管道对地电位正向偏移20mV为判断指标;德国以+100mV为标准;日本的标准是+50mV。

原石油工业部编制的《埋地钢质管道直流排流保护技术标准》。(SYJ17—1986),把判定标准分为两个台阶:一是确认干扰的存在,二是在确认干扰存在的前提下必须采取措施的临界指标。这一指标是:处于直流电气化铁路、阴极保护系统及其他直流干扰附近的管道,当管道任意点上管—地电位较自然电位正向偏移

20mV时,或管道附近土壤中的电位梯度大于0.5mV/m时,确认为有直流干扰;当管道上任意点管一地电位较自然电位正向偏移lOOmV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应及时采取直流排流保护或其他防护措施。.

日本<电蚀土壤腐蚀手册》推荐的地电位梯度与杂散电流干扰关系,见表10-69。

表10-69 地电位梯度与杂散电流干扰

地电位梯杂散电流干扰/(mA/mm)

弱0.5

中0.5~5

强>5

四、直流干扰腐蚀的防护减少干扰源电流的泄漏(一)直流干扰的防直流干扰腐蚀的产生是源于各种电气设备的电流泄漏。因此,护首先应减少这些电气设备的电流的泄漏。为此,对直流电气化铁路作如下限制:通过铁轨的平均电流产生的电位差不得大于 1.铁轨导电性能必须良好

。3V/km各区段铁轨接头增加的电阻,不得大于该区段铁轨电铁轨接头增加电阻 2. %。阻的20电气化铁轨应采取与大地绝缘的措施。对于供电方式, 3.铁辄与大地绝缘

保证在供电范围内接地装置只应采用减小供电范围,增加足够的供电所的原则,接地一次等,来减少杂散电流源。二()避开干扰源的设计原则为保证管道在管道设计时又不可能完全避开,由于干扰源的情况错综复杂,

安全,应遵循下列设计原则:合理选择埋地管道的走向,尽量远离干扰源。当埋地管 1.管道走向的选择

,且尽量道与直流电气化铁路的铁轨接近或交叉时,相互间的距离不得小于1m 缩短与之平行的管线的长度。被保护管道与非保护管道的间距,应保持足够大的距离。非联合保护的平2.

二者间的净垂被保护管道与其他管道交叉时,。10m二者间距不宜小于行管道,直距离不应小于0.3m;当小于0.3m时,中间必须设有坚固的绝缘隔离物,确保其不接触。双方管道在交叉点两侧10m以上的管段上,应作特加强防腐。管道与电缆交叉时,相互间净垂直距离不应小于0.5m,交叉点两侧也各延伸10m作加强防腐。

3.对受杂散电流干扰管段的保护措施在受到杂散电流干扰的管段,可增设绝缘法兰,将被干扰管道分成若干段,以减轻干扰,把干扰限制在一定范围内。

4.在被干扰管道与干扰源之间,可埋设金属屏蔽体,以减轻干扰。

(三)增加回路电阻

1.对可能受到杂散电流腐蚀的管道,其表面的防腐层等级采用加强级或特加强级。

2.对已遭受杂散电流腐蚀的管道,可通过修补或更换防腐层,来消除或减弱杂

散电流的腐蚀。

(四)排流保护技术

1.排流方法杂散电流干扰本身是一害,但掌握其本质、因势利导,就可以化害为利。排流保护就是把杂散电流变为管道阴极保护的电流,所以排流保护也属于阴极保护的方法之一。排流方式有直接排流、极性排流、强制排流和接地排流,这些排流方法及其优缺点和适用条件,见表10-70。

排流点的选择应以最佳排流效果为标准,往往要通过排流实验确定。一般情况下,可根据下列原则选定:

(1)管道上排流点的选定

1)管一地电位为正且管一轨电位差最大的点;

2)管一地电位为正且持续时间最长的点;

3)管道与铁轨(或管道)间距最小的点;

4)便于排流设备安装与维修的地点。

(2)铁轨上排流点的选定

1)扼流线圈中点或交叉跨线处;

2)直流供电所负极或负回归线。

(3)接地排流的接地地床,应选择在土壤电阻率较低的地方。

2.排流方式的结构

(1)直流排流直接排流结构如图10-64所示。

直接排流用于极性不变的阳极区,可调电阻和控制开关及熔断器的使用可用来控制流量的大小和管道的相对电位,以防排流量过大时造成防腐层的老化和剥离。

(2)极性排流极性排流的结构如图10-65所示。

极性排流是目前广泛使用的排流方法之一。它具有单向导电性,只允许杂散电流管道排出,而不允许杂散电流进入管道,它是比较安全的排流方

式。.

图10-64 直接排流保护电路

1—被保护的金属管道2—铁轨3、4—排流电缆5—可变电阻6—控制开关7—熔断器8—电流表

上述两种排流方式都是借助于管道和铁轨之间的电位差来排流,当两个连接点的电位差较小时,所能排除的电流量很小,故保护段落很短,排流效果不佳。此时,应选择其他形式的排流方式。

(3)接地排流接地排流结构如图10-66所示。

接地排流电缆不连接到铁轨上,而是连接到一个埋在地下的辅助阳极(或牺上。将杂散电流从管道排到阳极上,经过土壤再返回铁轨。)牲阳极材

料.

图10-65 极性排流保护电路

1—管道2—铁轨3—电缆4—可变电阻5—整流器6—电流表7—控制开关8—熔断器

图10-66 接地式排流

接地排流保护在国外应用较少,但在我国应用较多。这是因为我国对于干扰源泄漏入地的杂散电流限制不力,造成干扰范围很大,不利于极性排流的应用;

当采用极性排流时,排流连接变得十分困难。接地排流的效果要比极性排流差,排流量不易调节。还需定期更换阳极。但接地排流的适应性强、施工简单,同时又比较安全,可以完全避免将杂散电流导入管道。因此,接地排流是使用较多的排流方式。

接地排流的地床接地电阻要做得尽可能的小。采用牺牲阳极时仍需填包料。(4)强制排流当地下金属管道处于杂散电流干扰极性交变区,用直接或极性排流都无法将杂散电流排出时,需使用强制排流。强制排流的原理类似于阴极保护,它在管道与接地阳极或铁轨之间,接一可逆的恒电位仪,在外加电位差下强制排流。其电路结构如图10—67所示。由于强制排流兼有排流和阴极保护的作用。同时其设施费用节省一半,故使用此排流方式也较多。例如,在日本东京的煤气

管线上就使用得比较普遍。

图10—67 强制排流电路

对同一条管道或一系统中,可根据实际情况的需要采用一种或几种排流方式,选择一点或多点进行排流。

排流电流量可根据欧姆定律的原理来计算:排流计算3.

式中I——排除电流量(A);

V——管一轨电位差(V);

——排流线电阻(Ω);R1——排流器内阻(Ω);R2——管道接地过渡电

阻(Ω);R3——铁轨接地电阻(Ω)。R4其中,

——管道纵向电阻(Ω);γ式中3——管道泄漏电阻(Ω);ω3——铁轨纵向电阻(Ω);γ4——铁轨泄漏电阻(Ω)。ω4当采用接地排流时,R4为接地地床的接地电阻,其值应小于0.5Ω。

排流量过大会造成管~地电位过负。为保证管道排流处在最佳状态,也就是正电位得到较好的缓解,负电位又不致于过高。可以在排流电路中中入电阻,限制排流量。串入的电阻值可按下式计算:

式中R——串入电阻(Ω);

I——原排流量(A);

I′——拟定排流量(A);

V——管/轨电压(V)。

电阻器的选择,要注意具有足够的功率,以防排流量大时烧毁。排流器、排流导线的额定电流应为计算排流量的1.5~2倍。排流用的接地地床电位梯度,在水中时不大于10V/m,在土壤中不大于5V/m。

4.排流器功能的要求

(1)在管轨电位差或管地电位波动的范围内,均能正常工作。

(2)能及时跟随管轨电位差或管地电位的急剧变化。

(3)防逆流元件的正向电阻要尽量小,反向耐压应较大。

(4)所有动接点应能承受频繁动作的冲击。

(5)应具有过载保护。

(6)结构简单,便于维护。

5.排流器宜设置在室内,设置在室外时应能适应野外环境、坚固耐用。排流器要安全接地,接地电阻不应大于4Ω。

6.对排流线敷设的要求排流线应对地绝缘,架宅敷设时应满足下列要求,并符合低压电力线路敷设工程的规定。

(1)电缆必须采用吊挂方式,吊挂强度不应小于GJ-20×7的钢绞线的机械强度。其接地电阻不应大于10Ω。

(2)采用裸电线或绝缘电线架设时,应采用截面积为16mm2及以上的铝线,或

具有同等机械强度的铜线。

(3)架空线的高度,当跨越铁路和公路时不应小于6m,其他场合不应小于5m。

(4)当排流线与架空通信线等弱电线路同杆敷设时,应敷设在架空弱电线的下方。若采用裸线时,间距为0.75m;若采用绝缘电线时,间距为0.3m。7.排流线埋地敷设时的要求

(1)不应使用裸金属护套电缆或橡胶绝缘电线。

敷设方式可采用穿电缆管、电缆沟或直埋。(2)

(3)直埋时的覆土厚度,当有重物压迫危险时应大于1.2m,其他场合为0.7m。8.接地排流的电位梯度,在水中设置时不得超过10V/m,在土壤中设置时不得超过5V/m。

9.排流线与管道应采用焊接连结。焊接处的管道要采取局部补强。接点电阻不大于0.01Ω,机械强度不小于排流线的机械强度。

(五)排流效果的评定

排流工程安装后,应立即投入试运调整,以期达到和接近下述目标:

1.对于已经施加阴极保护的管道或管道系统,应使被干扰管段上任意测定点的管——地电位达到阴极保护电位标准。

2.对于未施加阴极保护的管道或管道系统,应使被干扰管段上任意测定点的管一地电位达到未受干扰时的状态。

上述目标实属理想状态,一般很难实现。当达不到时,可按表10-71的排流前后实测正电位指标进行评定。

表10-71 排流保护效果评定指标

管—地电正电位平均排流类型位/V 值比(%)

>95 >10

>90 10~5 直接向干扰源排流>85 <5

>90 >10

接间接向干扰源排流(>85 ~105 )

地排流>80

<5

正电位平均值比的计算方法如下:

(——正电位平均值比%);η式中v——正电位平均值(V);V avl(+)。(V)排流后正电位平均值——V av2(2).

正电位平均值可按下式计算:

式中n——测量时间段内正、负电位读数的总次数。

由于电机车运行频繁,所以排流效果的评定是一项很复杂的工作。一般选取评定测试点不应少于3点,对于长距离管道则不应少于5点。排流效果评定点必须包括排流点、干扰缓解较大的点和干扰缓解较小的点。在测取排流前后的参数时,

必须统一测定时间段、读数时间间隔、测试方法和仪表设备。

测定时必须注意,排流后负电位的变化虽然在指标中没有提到,但负电位变化也不应负得太多。

(六)排流系统的调整

排流系统的调整是为了使受干扰管道全面得到保护,一般应采用以下方法:

首先改变排流点的位置,或增加排流点及设施;调整各排流点的排流量。

同时,对同系统中的不同管道进行具有电流调节机能的连连,并行电流的调节;对绝缘法兰跨接,并进行电流调节。

此外,为了提高排流效果,可采用其他有效的辅助设施。

五、交流干扰的危害与防护

(一)交流干扰的危害

交流电引起的腐蚀要比直流电于扰的强度小得多,大约为直流电的1%或更小。但是,当高压输电线与管道平行架设时,由于静电场和交变磁场的影响,在钢管上感应出交流电压和电流,对管道的危害则是不可忽视的。尤其是在交、直流叠加情况下,交流电的存在可引起电极表面的去极化作用,造成腐蚀的加剧,形成穿孔。同时。交流干扰还可加速绝缘层的老化,特别是在防腐绝缘层的破损处,易引起防腐层的剥离。交流干扰还会使阴极保护无法在控制电位的范围内正常进行,使牺牲阳极发生极性逆转,电流效率降低。故障情况下,对管道会造成.

危险,甚至危及操作人员的安全。交流干扰腐蚀的危害已日益被人们所重视。

交流干扰作用于埋地金属管道。按其干扰电压作用的时间可分为:

1.瞬间干扰强电线故障时产生的干扰电压可达几千伏以上,由于干扰电压作用的持续时间在1s以下,故称瞬间危险干扰电压。此电压对人身安全和设备均

可构成威胁。高压电还会引起管道防腐层击穿;在管道与电力系统接地极距离不当时,还会产生电弧通道,引起管壁烧穿事故。

2.间歇干扰在电气化铁路附近的管道上,所感应产生的几伏、几十伏,直至几百伏的干扰电压。作用时间时断时续、随电气铁道馈电网内负载变化。

3.持续干扰高压输电线路运行时,在管道上感应产生的交流电压,可由几伏、几十伏到几百伏。其作用时间长,只要高压输电线路上有电流,管道上就有感应电压,埋地管道则会在此干扰电压下产生交流腐蚀。

(二)交流干扰状态

对管造成危险影响的高压输电线路,有以下三种状态:

1.三相对称中点直接接地的高压输电线(110kv以上)及交流电气化铁路供电线

处在相导线接地短路时的故障状态。中性点直接接地的输电线发生单相短路接地故障时,对附近管道产生的电磁感应电压极高。特别是系统电容量大、电压级别高的电力系统中,短路电流可达10~60kA,交流干扰电压可达千伏以上。

如果短路瞬间,在故障附近的地面上有管道的附属设施(如阀门、泵等设备),而操作人员恰巧去触及阀门时,就会威胁操作人员与设备的安全。

2.三相对称中性点对地绝缘或不直接接地的高压输电线(多指60kV以下),当

两相导线同时在不同地点接地时的故障状态。

3.不对称高压线路、直供式交流电气铁路在正常运行状态或在相导线接地时的强行运行状态。

当埋地管道与电厂、变电站和高压杆塔的接地装鼍接近时,或与交流电气化铁路交叉时,应考虑由于电流流过接地装置(或轨道)而产生的地电位升高所造成的

危险影响。

(三)干扰途径

磁感应耦合和容性耦合、强电线路对埋地管道的干扰影响主要有三种方式:

阻性耦合。其对管道的影响见表10-72。

表10-72 交流干扰方式及对管道的影响

感应耦合)

当输电线路短路、故障时,在管道上可能感应出高压电,击穿覆盖层

阻性耦合故障时地电位升高威胁覆盖层和人身安全

1.静电感应(容性耦合) 这一方式主要出现在施工期间的地面管道或架设在绝

缘垫(如木块)上时,通过高压线和管道之间、管道和大

地之间的分布电容耦合作用。由于大地的屏蔽作用,当管道埋地后,这一作用就小到可以忽略不计了。原理如图10-68所示。

2.电磁感应当管道与高压线平行时,由于相电流的交变形成电磁场作用在埋地管道上,使管道不断切割磁力线而产生感应电流。这一耦合原理如同变压器,高压线一侧如同变压器的一次侧,管道一侧如同变压器的二次侧。当三相之中的各相电流相等(平衡时)、相导线到管道距离相等时,其电磁场的综合影响为零。但实际中相电流很少处于平衡状态,三相导线距管道也不可能相等,尤其是平行间距较小时几何不对称更为突出。故障条件下(严重不平衡)将产生危险影响,其。10-69感应原理见图

图10-68 容性耦合

a)管道在地面上b)管道在地面下

图10-69 磁干扰原理

3.阻性耦合当管道与电气化铁路交叉、与强电线路的接地极(体)、发电厂、变电站接地小距离接近时,接地体上的电流流入地下,通过管道和接地体之间的电阻进行耦合作用,把交流电流直接传递到管道上,这就是阻性耦合。由于地电场衰减很快,所以一般情况下阻性耦合作用范围很小。

(四)交流干扰的计算

1.静压感应电压的计算

其中

(V);——管道感应交流电压V 式中p (m);——单相导线地上高度h1;(m)——埋设管道等效地面高度h2;——输电线等效半径(m)r ;输电线和管道的水平距离(m)——x 。相导线对地电压(V)——V1 2.电磁感应计算

-21)

=2πfLMi (10V p

(Hz);f——交流电频式中

;——平行段长度(km)L (H/km);输电线和管道间互感系数M——。——i相电流(A)

阻性耦合计算3.

;(V)接地体对远方大地电压——V o 式中

Io——接地体上流入大地电流(A);

ρ——土壤电阻率(Ω·m);

R——接地体接地电阻(Ω);

a——接地体等效球面半径(m);

——距接地体x处的大地电位和管道电位差(V)。V x 4.管道参数的计算(1)管道阻抗的计算

Z=Z+z (10-24)

ei

式中Z——道阻抗(Ω/km);

——管道内阻抗(Ω/km);Z i——管道外阻抗(Ω/km)。Z e其中,管道内阻抗Zi的计算是一个复杂的零阶贝塞尔函数,计算较困难,通常可采用近似公

式计算,即:

管道外阻抗Z计算公式为:e

(2)管道传播常数

——管道外半径(m);r 式中oσ——大地导电率。

(3)管道特性阻抗

式中Z——管道阻抗(Ω/km);

——管道内阻抗(Ω/km);Z i——管道外阻抗(Ω/km);Z e——钢管外半径(m);r oσ——大地电导率(S/m);

——管道直流电阻,R o

——钢材电导率(S/m);δm f——频率(Hz);

D——回流当量深度,

——管道特性电阻(Ω)。Z o(五)交流干扰的保护

1.对交流干扰点测试对交流干扰的防护,首先取决于对干扰现场的调查与测《电力可遵照行业标准电力线路对管道交流电干扰的测试方法,试的正确与否。.线路对埋地钢质管道交流电干扰测试方法》SYJ32-1988执行。

管道交流干扰的测试,主要是测试干扰电压和管道交流参数现场的测量。

测试仪表和测量导线应执行行业标准《埋地钢质管道阴极保护参数测试方法》SYJ23-1986的有关规定。

交流干扰电压一般较高,所以不用硫酸铜参比电极进行测试,使用钢棒电极。

2.安全指标

(1)瞬间干扰电压从对工作人员安全考虑,德国规定为600V,意大利规定为500V,我国研究报告认为600V是适宜的。

(2)持续干扰电压在含盐量小于0.01%的中性土内,安全电压可取8V;在弱碱性土壤内,当Ca++、Mg++离子的总含量超过0.005%时,安全电压可取10V;在酸性土或盐碱地,干扰电压的安全指标可取6V。

交流干扰电压低于16V时,不会造成沥青防腐层剥离和引起金属氢脆裂。

10V以下的交流干扰电压,对铝、锌阳极保护性能的影响可不考虑。

镁阳极所允许的交流电流密度为0.8mA/cm2,逆转电压在15V左右,安全电压可取10V。

(3)间歇电压干扰从对人身安全考虑。采用30V。从对管道危害考虑,其临界

干扰电压值应比持续干扰电压安全指标高2~3V。

(4)长距离平行时的安全间距图10-70提供了埋地管道与强电输电线路相对平行距离下的临界长度。为消除干扰,通常作如下预防措施:对新建管道,当与电力线或电气化铁道平行时,平行段应保持50m以上距离;对220kV以下的对称输电线,可保持75m以上距离;当各相导线三角排列,此间距可缩小至50m。

(5)与强电接地体的安全间距管道与电力系统接地体的安全间距见表10-73。

图10-70 相对平行距离的临界长度IGr

表10-73 管道与电力系统接地极间的安全距离

高压线电压等级/kV

35<

110 220

10

0.75 5

铁塔或电杆附近

/m

最小安全距离35 15 电站或变电所附近 2.5

(6)最大允许接触电压和需要采取的必要措施,可参照执行表10-74。

10-74 表最大允许接地电压和措施

干扰类型接触电压措施

长期 U≤65V c不需要措施短期U≤1000V c

3. 防护措施由于感应影响是相互的,所以防护措施也应是双方的。作为干扰源的强电线路,对减轻干扰影响有不可推卸的责任,故在运行方式上应努力作到平衡,电气化铁路应避免采用直供方式而用AT方式(采用自耦变压器的供电方式)和BT方式(采用吸流变压器的供电方式)。通过测试比较,AT方式造成的干扰比起直供方式要减轻到1/10左右,由此可见干扰源侧的重要性。管道侧的防护,其主要防护措施为:

(1)阻性耦合的防护措施

1)加大管道和强电接地体间的距离,可参考表10-73。

2)在管道和强电接地之间设均压网来防止危险影响。对于管路阀门,可用锌带或镁带均压。

3)使用接地电池(两支捆在一起、相互绝缘的锌电极)或保护器(二极管)来保护绝缘法兰及防腐覆盖层。

(2)容性耦合的防护措施由于容性耦合主要出现在管道施工期间,所以,一般要求管道在高压线下施工时应采用临时接地极来防护。其接地极间隔应不大于300m,且接地极应保留到管道回填完为止或永久接地体接好之后。

(3)磁感应耦合的防护磁感应是平行状态下的主要形式,所以它的防护也是交流干扰防护的核心。防护手段分为三种类型:

1)接地排流,即通过接地电阻很小的接地体把管道上的交流电压降下去。一般要求接地体的接地电阻应小于该处管道的接地电阻。由于管道中有直流阴极保护电流存在,故在排流时要采用隔直环节或牺牲阳极接地材料。根据所选用的回路环节的不同和材料的区别,又可分为以下几种排流方式:

a.直流排流即在管道和接地体之间直接用电缆连接。该法简单适用,但仍。10-71极保护电流要流失。见图

b.牺牲阳极排流用牺牲阳极(多用镁阳极)作接地体材料,既可起到接地排流作用,又可起到阴极保护作用,应用较为广泛。国内外都有大量这类工程实践。见图10-72。

图10-71 直接排流

c.嵌位式排流如图10-73所示,在管道和接地体这间串入一个嵌位式排流器(一正、二反的三只硅二极管),当正半波时Z导通,负半波时Z、Z导通。由321于硅二极管有个0.7V的电压,所以理论上将残余-0.7V左右的电压提供管道阴极保护。一般二极管选用的额定电流值为20~30A。在采用嵌位式排流时,要考虑接地材料的对地电位,否则会造成失败。

图10-72 牺牲阳极排流

图10-73 嵌位式排流

d.电容排流如图10-74所示。用电容作隔直元件来排除交流,这一方法可以防

止阴极保护电流的流失。不足之处是电容器的耐压只有几十伏,且大容量的电解电容量损坏,维护也麻烦。电容器的容量一般选3000μF或5000μF。

e.极性排流利用二极管的单向导通的原理消除管道上的正向交流电压,并把负半周的电压保留在管道上,提高管道的负电位,以供管道阴极保护。但管道上负电位将随着交流电压的幅值增加而升高,有时要高出允许值的许多倍而起副作用。二极管的材料多为硅或锗,容量为20~30A。见图10-75。

图10-74 电容排流

图10-75 极性排流

2)分段隔离在干扰的平行区间里,利用绝缘法兰把管道分割成若干个小的干扰段,使得管道的纵向感应电动势降低。该法在已建管道上施工较困难,而且会割断管道上的阴极保护电流,一般不采用。

3)提高恒电位仪抗干扰能力目前使用的KKG-3系列恒电位仪抗交流干扰的指标为12V,对于干扰比较严重的地区应将其指标提高到30V。

油气管道的杂散电流腐蚀与防护

油气管道的杂散电流腐蚀与防护 随着我国能源和交通工业的发展,我国油气管道与电力线路、电气化铁路的里程迅速增加。由于地理位置的限制,在油气管道与电力线路、电气化铁路的设计和建设过程中不可避免地出现了并行敷设的情况。由电力线路、电气化铁路产生的杂散电流会对油气管道产生巨大的危害。辽河油田到鞍山化肥厂的天然气管道在投产14个月后就出现多起杂散电流引起的腐蚀穿孔事故,被迫长时间停产,开挖大修。郑州煤气公司在某电厂附近的一段输气管道受电厂杂散电流的影响,也多次出现穿孔泄漏,严重威胁管道和人身的安全。由此可见,杂散电流对油气管道会产生强烈腐蚀作用。因此,开展杂散电流引起的油气管道的腐蚀与防护研究,对保障油气管道的安全运行具有十分重要的意义。 1杂散电流的形成 杂散电流是指在规定电路或意图电路之外流动的电流,又称迷走电流[1]。杂散电流主要表现为直流电流、交流电流和大地中自然存在的地电流3种状态,且各自具有不同的特点。直流杂散电流主要来源于直流电解设备、电焊机、直流输电线路;交流杂散电流主要来源于交流电气化铁路、输配电线路系统,通过阻性、感性和容性耦合在相邻的管道或金属体中产生交流杂散电流,但交流杂散电流对铁腐蚀较轻微,一般为直流腐蚀量的1%;由于地磁场的变化感应出来的地杂散电流,一般情况下只有约2μA/m2,从腐蚀角度看并不重要。

以电气化铁路车辆直流供电牵引系统产生的直流杂散电流是造成油 气管道杂散电流腐蚀的主要原因。 在电气化铁路车辆直流供电牵引系统巾,列车所需要的电流由牵引变电所提供,通过架空线向列车供电,然后经行走轨回流至牵引变电所。理想情况下行走轨电阻为0,行走轨对大地的泄漏电阻无穷大,此时经行走轨回流的电流等于牵引电流,即所有的电流都经行走轨回流至牵引变电所。但实际上行走轨的电阻不为0,当有电流通过时就形成了电位差,并且行走轨对大地的泄漏电阻也不会为无穷大,这就不可避免地造成了部分电流不经行走轨回流,而是流入大地,然后通过大地回流至牵引变电所。若铁路附近有导电性能较好的埋地金属管道(燃气管道、输油管道、供水管道等),则部分电流会选择电阻率较低的埋地金属管道作为电流回流路径,从牵引变电所附近的管道中流出流回牵引变电所。杂散电流形成原理见图1,杂散电流形成原理等效电路见图2。

地铁杂散电流危害及防护(最新版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 地铁杂散电流危害及防护(最新 版)

地铁杂散电流危害及防护(最新版)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:杂散电流给地铁设备、设施的安全运行和使用寿命造成影响,甚至会威胁乘客的安全,有必要对其采取防护和治理措施,以确保地铁的安全运营。文章对地铁杂散电流的危害及防护方面进行了分析。 在地铁系统中,牵引供电系统一般采用直流方式,会产生杂散电流。目前,地铁的牵引供电方式一般采用直流供电方式。在理想的状况下,牵引电流由牵引变电所的正极出发,经由接触网、电动列车和走行轨返回牵引变电所的负极。由于走行轨与大地之间的绝缘不良或不是完全绝缘,流经走行轨的电流不能全部经由走行轨流回牵引变电所的负极,有一部分电流会泄漏进入大地,然后再流回变电所,这部分泄漏到大地中去的电流就是杂散电流,也称作迷流。走行轨铺设在轨枕、道碴或整体道床上,由于钢轨与轨枕或整体道床之间不是完全绝缘状态,钢轨与大地间存在一定的过渡电阻,其阻值表示了轨道和大地之间的阻性耦合和电导性耦合。有关研究表明,钢轨与大地之间

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施 地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行 轨兼作负回流线。由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨 对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄 漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流 即称迷流,又称地铁杂散电流。地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装 外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用 寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。如煤 气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。另外,地铁迷流同时 也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流 腐蚀机理及防护措施方面浅谈管见。 1杂散电流腐蚀机理 1.1杂散电流腐蚀机理 地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属 于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都 是具有阳极过程和阴极过程的氧化还原反应。即电极电位较低的金属铁失去电子被氧化而 变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到 电子被还原。地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。图中,I为牵引 电流,Ix、Iy分别为走行轨回流和泄漏的迷流。 由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即 电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区); 电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。 当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其 周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。概括起来可将发生腐蚀的 氧化还原反应分为两种:当金属铁周围的介质是酸性电解质,即pH<7时,发生的氧化还原反 应是析氢腐蚀,以H+为去极化剂;当金属铁周围的介质是碱性电解质,即pH≥7时,发生的氧化还原反应是吸氧腐蚀,以O2为去极化剂。 1.2杂散电流大小 当钢轨为悬浮系统时(指全线钢轨采取对地绝缘,在任何地点不直接接地或通过其它 装置接地),虽然钢轨对地采取了一系列措施,但钢轨对地泄漏电阻在工程实施中不可能无限大,一般在5~100Ω·km范围内。同时随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、漏水和高地应力作用等影响,使地铁车站以及区间隧道中的轨、地绝缘性能降 低或先期防护措施失效,势必增大了由走行轨泄漏到土壤介质中的杂散电流。当列车在两牵 引变电所间运行时,钢轨电位如图2所示,列车位置处为阳极区,钢轨电位为正,牵引变电所附 近为阴极区,钢轨电位为负。钢轨电位产生的原因是牵引回流在钢轨上产生了纵向电压。研 究表明,钢轨电位的大小与钢轨泄漏电阻的关系不大,当钢轨对地泄漏电阻在5~100Ω·km范围内变化时,受从牵引变电所至列车位置处的钢轨纵向电压钳制,钢轨对地电位基本不变。杂

杂散电流施工方案

北京地铁15号线一期工程 杂散电流施工方案 编制: 复核: 审核: 中铁隧道集团有限公司 北京地铁15号线一期工程07标段项目经理部 2009年12月

目录 第一章编制说明....................................................... 错误!未定义书签。 编制依据.......................................................... 错误!未定义书签。 适用范围.......................................................... 错误!未定义书签。第二章工程概况....................................................... 错误!未定义书签。 工程范围........................................................... 错误!未定义书签。 杂散电流设计概况.................................................. 错误!未定义书签。第三章施工安排....................................................... 错误!未定义书签。 劳动组织及责任分工................................................. 错误!未定义书签。第四章施工准备....................................................... 错误!未定义书签。 劳动力准备......................................................... 错误!未定义书签。 材料准备........................................................... 错误!未定义书签。 机械准备........................................................... 错误!未定义书签。 技术准备........................................................... 错误!未定义书签。第五章主要施工工艺................................................... 错误!未定义书签。 杂散电流钢筋连接.................................................. 错误!未定义书签。 连接端子、测量端子及排流端子施工要求 .............................. 错误!未定义书签。 杂散电流钢筋焊接.................................................. 错误!未定义书签。第六章综合保证措施................................................... 错误!未定义书签。 建立、建全质量管理保证体系........................................ 错误!未定义书签。 加强思想教育、提高全员质量意识 .................................... 错误!未定义书签。 以制度保证工程质量................................................ 错误!未定义书签。 技术管理体系...................................................... 错误!未定义书签。 制订技术管理办法和制度............................................ 错误!未定义书签。 图纸审查.......................................................... 错误!未定义书签。 技术交底制度...................................................... 错误!未定义书签。 工程检查制度...................................................... 错误!未定义书签。第七章安全保证措施................................................... 错误!未定义书签。 综合保证措施....................................................... 错误!未定义书签。 现场安全施工措施................................................... 错误!未定义书签。第八章施工风险分析及预案............................................. 错误!未定义书签。 施工风险分析....................................................... 错误!未定义书签。 风险对策........................................................... 错误!未定义书签。 应急预案........................................................... 错误!未定义书签。

杂散电流的腐蚀及防护

一、杂散电流干扰方式 杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60 所示。从图中可以划分三种情况: 图10-60 杂散电流干扰示意图 1—供电所2 —架空线3 —轨道电流4 —阳极区5—腐蚀电流6 —交变区 7— 阴极区 1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成 杂散电流电解。 2.在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能 流出。当电流流出时,造成腐蚀。 3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种 程度的阴极保护作用。 以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。作用在

管道上的杂散电流干扰电位如图10-61 所示 图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。 随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62 和图10-63 所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。 二、杂散电流腐蚀的特点 1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几

拆解工程方案

1.1.拆解工程概述 拆解改造变电所安装工程包括新建安德门站牵引降压混合变电所和既有线3座牵引降压混合变电所、1座降压变电所、4座跟随式降压变电所的设备安装与接线、单体设备调试、所内调试、供电系统调试,以及系统总联调的配合等工作。 1.1.1.变电所拆解改造工程 (1)奥体中心站牵引降压混合变电所内新增40.5kV C-GIS开关柜、DC1500V直流开关柜等设备的运输、仓储、安装和试验调试等。 (2)奥体中心站、小行站变电所供电设备间连接电缆的敷设、接线与试验等。 (3)奥体中心站DC1500V直流电缆(上网电缆、回流电缆)的敷设、接线与试验等。 (4)既有安德门站215馈线回路重新敷设电缆由原212馈线端接出,原2151开关编号改为2121;原216馈线回路重新敷设电缆由原214馈线端接至2141(原2145开关另一端新加上网隔离开关编号为2141),原2145开关编号改为2124。 (5)将小行站进线柜、安德门主变电所向新建安德门站的馈出柜的既有差动保护装置更换为与新建安德门站差动保护装置型号一样的装置,进行安装、调试,换下的差动保护装置作为备品备件。 (6)既有安德门站处三边供电的联跳、闭锁的改造奥体中心站、中胜站双边联跳回路改造: ①拆除既有安德门站与中胜站的双边联跳、隔离开关闭锁回路以及之间的联跳电缆。 ②小行车辆段出入段线电动隔离开关的闭锁回路,也需要按新调整的双边供电关系进行调整和改造。 ③既有安德门站、三山街站、一号线南延段的宁丹路站的隔离开关闭锁回路也需要进行调整和改造。

(7)新建安德门站处的联跳:新建安德门站采用既有车站直流开关设备,双边联跳回路采用强电压常开回路方式,同时对中胜站、奥体中心站既有双边联跳回路由弱电流常闭回路改造为强电压常开回路,由此实现新建安德门站、中胜站、奥体中心的双边联跳。 (8)奥体中心站的联跳和闭锁 ①奥体中心新增直流馈线柜采用既有车站直流设备, 双边联跳回路采用强电压常开回路方式,由此实现奥体中心站与新建线路绿博园站的双边联跳。此处,对于有可能出现的两个不同厂家的情况,由于都是强电压常开回路方式,两厂家可在设计联络时进行接口配合实现。 ②奥体中心站端子柜内的隔离开关闭锁回路部分进行增加改造。 (9)保护整定值的重新调整与调试配合 ①交流系统 安德门主变电所至迈皋桥主变电所之间的车站变电所在“迈皋桥主变电所解列,安德门主变电所支援供电”和“安德门主变电所解列,迈皋桥主变电所支援供电”方式下的交流环网保护定值需重新进行校核、调整。 小行站至奥体中心站的交流环网保护整定需按纳入十号线供电系统内重新整定。 ②直流系统 既有一号线与南延线构成的“新一号线”的直流短路计算需重新计算,直流开关柜相关保护需重新校核并调整。 1.1. 2.环网电缆拆解改造工程 (1)将一号线中华门站35kV两路进线电缆及差动保护电缆由安德门主所拆解,拆解后电缆接至既有安德门站出线端; (2)既有安德门站35kV进线电缆换成型号为240mm2的电缆重新敷设至安德门主所,差动保护电缆不动; (3)安德门主所接中华门站两路进线重新敷设电缆及差动保护电缆接至新建安德门站,路径沿安德门主所至既有安德门站间电缆隧道敷设,再从既有安德门站敷设至新建安德门站,接新建安德门站进线端; (4)小行站原两路进线重新敷设电缆及差动保护电缆接至新建安德门站出

地铁杂散电流施工方案

一、工程概况 火车北站地铁车站为地下二层框架式结构,设计使用年限为100年。为保证结构及设备在使用年限内安全运营,必须对车站杂散电流采取相应措施进行处理,靠可靠电气连接,形成杂散电流主辅收集网,对结构钢筋及盾构管片进行防护。 二、编制依据 2.1 《地铁设计规范》GB50157-2003 2.2 《地铁杂散电流腐蚀防护技术规程》 CJJ49—92 2.3 《成都地铁1号线一期工程施工图设计-火车北站-主体结构与防水第一分册结构》220011-js 三、编制范围 车站结构范围内的杂散电流腐蚀防护工程。 四、总体施工方法 利用整体道床结构钢筋的可靠电气连接,形成杂散电流的主收集网。利用地下车站结构钢筋可靠电气连接,形成杂散电流辅助收集网。在地下车站的两个端头侧墙及道床各引出一测量端子,本车站共设8个测量端子。 五、施工工艺

1.车站结构钢筋焊接 为避免或尽量减少杂散电流对土建结构钢筋的腐蚀,须将车站结构钢筋可靠连接成为一体。具体要求如下: (1)站台层的每个横断面的底板、中板及侧墙内表层横向结构钢筋均应焊接成一闭合圈。 (2)站台层每个结构段的底板、中板及侧墙的内表层所有纵向结构钢筋应电气连续。 (3)底板、中板及侧墙内表层所有的纵向结构钢筋每隔5m(或不小于5m)应与横向结构钢筋圈焊接。 (4)在车站与盾构区间接口的端头井处,站台层侧墙的纵向钢筋应通过端头井的侧墙及端墙的水平筋与圆洞门的钢环(或钢环锚筋)焊接,顶板、中板中的纵向结构钢筋应通过端头井墙中竖向结构钢筋与圆洞门的钢环(或钢环锚筋)焊接,端头井端墙中的水平结构钢筋与竖向结构钢筋应焊接。 (6)车站底板、中板、风道、墙体开孔处的结构钢筋焊接:围绕孔洞的内层(或外层)纵向和横向结构钢筋在交叉点处应焊接,围绕孔洞形成钢筋环。与结构钢筋环相交的横向、纵向结构钢筋均应与结构钢筋环焊接。 (8)在上下行线路下方分别选两根底板表层纵向结构钢筋(垂直钢轨下方)与所有底板横向结构钢筋焊接,此纵向结构钢筋作为排流条。排流条靠端墙端,从人防门框内表面,沿线路纵向引出1.15m

调试施工方案

调试施工方案 8.1调试概述 根据施工范围作业内容,对各个工序的电气和仪表进行调试工作。 其中,电气调试主要有:①仪表单体校验、测试监控;②回路模拟试验;③分系统组态、测试;④分系统开通、试运行;⑥系统联动试运行。 仪表调式主要有:①单体元件性能测试;②二次回路模拟试验;③分系统整组试验;④分系统带电试运行;⑤系统联动试运行。 8.2仪表及电气调试程序和方法 8.2.1仪表调试 8.2.1.1仪表调试基本流程 仪表、自控设备交接试验是自控系统投入运行前必须进行的一项工作,是对设计、产品和安装工作的综合检验,是确认自控系统能否达到设计要求,能否可靠投入运行的关键环节,应遵照以下流程进行。 8.2.1.2 仪表调试执行的技术标准 (见前面列出的施工及验收规范、质量规范。此处略) 8.2.1.3仪表基本调校项目 1)零点、量程调整、精度、变差校验; 2)定值整定、动作、保持、返回特性校验;

3)智能参数设置、功能组态; 4)I/O接口回路校验; 8.2.1.4仪表调试基本方法 1)准备工作 认真熟悉设计院提供的图纸和有关产品技术资料,了解设计要求;熟悉本项目调试工作所执行的规程、规范;对所有调试用仪器、仪表通电检查,保证能正常使用;准备好记录需要的各式试验报告。 2)外观检查 正式调校前,对仪表进行外观检查,应符合下列规定:仪表型号、规格、材质、外形尺寸、测量范围、工作电源符合设计要求;端子、接头、紧固件、附件、合格证、检定证书齐全;无变形、损伤、油漆脱落等缺陷。 3)仪表单体调试基本方法 仪表单体调校前认真阅读仪表说明书,检查智能仪表配置的编程器、专用电缆、附件是否满足使用要求,核定校验用的标准仪器基本误差不超过被校仪表基本误差的1/3。通电前检查电源线、接地线、信号线、通讯线是否连接无误,保险丝是否完好无损,智能仪表插卡位置是否正确,相关的DIP地址开关、跳线设置是否符合设计。仪表校验时,及时填写校验记录,注明校验日期,由校验人、质量检查员、技术负责人签字确认。经校验调整后的仪表应满足下列要求:仪表零位、量程正确;基本误差、变差不超过仪表精度允许的最大误差;指针在整个过程中无抖动、磨擦和跳动现象;电位器和可调节螺丝等可调部件在调校后留有再调整余地;数字显示仪表示值清晰、稳定,无闪烁现象。校验结束后,合格仪表贴上检定合格标记,不合格仪表报业主、监理确认后作退库处理。

土壤电阻率对埋地管道杂散电流腐蚀影响 的研究进展

Applied Physics 应用物理, 2015, 5(10), 123-130 Published Online October 2015 in Hans. https://www.doczj.com/doc/9015798961.html,/journal/app https://www.doczj.com/doc/9015798961.html,/10.12677/app.2015.510017 Research Progress on Soil Resistivity Affecting Stray Current Corrosion of Buried Pipeline Qiong Feng1, Yaping Zhang1*, Hao Yu1, Lianqing Yu1, Yan Li2 1College of Science, China University of Petroleum (East China), Qingdao Shandong 2College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao Shandong Email: *zhangyp@https://www.doczj.com/doc/9015798961.html, Received: Oct. 12th, 2015; accepted: Oct. 26th, 2015; published: Oct. 29th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/9015798961.html,/licenses/by/4.0/ Abstract Using four-electrode method to measure soil resistivity can decrease the influence caused by non- uniformity of soil compositions. Generally, soil resistivity is inversely proportional to the stray current corrosion. Factors which can affect soil resistivity may make differences to stray current corrosion, such as water content, salt content, porosity, temperature, PH value of soil and the types of salt. Within a certain range, as the water content, water saturation, salinity, temperature and porosity increase, soil resistivity decreases and then stray current corrosion aggravates. However, different types of salt have different influences on stray current corrosion. This paper analyzes how the acidic salt, alkaline salt and the salt containing Cl? affect stray current corrosion, and puts forward the outlook for the research of complex salt types. Keywords Buried Pipeline, Stray Current Corrosion, Soil Resistivity, Environmental Factors 土壤电阻率对埋地管道杂散电流腐蚀影响 的研究进展 封琼1,张亚萍1*,余豪1,于濂清1,李焰2 *通讯作者。

地铁杂散电流危害及防护详细版

文件编号:GD/FS-2737 (解决方案范本系列) 地铁杂散电流危害及防护 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

地铁杂散电流危害及防护详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 摘要:杂散电流给地铁设备、设施的安全运行和使用寿命造成影响,甚至会威胁乘客的安全,有必要对其采取防护和治理措施,以确保地铁的安全运营。文章对地铁杂散电流的危害及防护方面进行了分析。 在地铁系统中,牵引供电系统一般采用直流方式,会产生杂散电流。目前,地铁的牵引供电方式一般采用直流供电方式。在理想的状况下,牵引电流由牵引变电所的正极出发,经由接触网、电动列车和走行轨返回牵引变电所的负极。由于走行轨与大地之间的绝缘不良或不是完全绝缘,流经走行轨的电流不能全部经由走行轨流回牵引变电所的负极,有一部分电流会泄漏进入大地,然后再流回变电所,这部分泄漏

地铁站综合接地及杂散电流施工方案

目录

×××站综合接地及杂散电流施工方案 一、编制依据 1、《地铁设计规范》GB50157-2013 2、《交流电气装置的接地设计规范》GB50065-2011 3、《电气装置安装工程接地装置施工及验收标准》GB50169-2006 4、《接地装置工频特性参数的测量导则》DL475-2006 5、《地铁杂散电流腐蚀防护技术规程》CJJ49-92 6、《轨道交通地面装置第2部分:直流牵引系统杂散电流防护措施》GB/ 7、×××站岩土工程勘察报告 8、建筑专业提供的车站附属用房建筑平面图 9、接地装置安装03D501-4标准图集 10、国家、郑州市现行技术标准、规程和规范,相关法规、政策,特别是环保、安全生产、文明施工方面的法规和政策。 二、工程概况 工程概况 ×××站为××城市轨道交通2号线与3号线同期施工T形换乘车站,位于长治路和×××交叉口,2号线车站沿长治路南北方向布置,3号线位于路口东侧沿×××东西向布置。2号线车站主体为明挖地下两层(换乘节点处地下三层)岛式车站,为双柱三跨箱型框架结构,总长m,标准段总宽,总高,顶板覆土约,底板埋深约;3号线车站主体为明挖地下三层岛式车站,为双柱三跨箱型框架结构,总长,标准段总宽,总高,顶板覆土约,底板埋深约。 工程地质和水文地质条件 工程地质 本站场地内钻孔揭露地层主要为第四系全新统、上更新统地层,共3个大层,10个亚层。现分述如下: 第四系全新统广泛分布于表层,主要有人工填土(杂填土、素填土)、粉质黏土、粉土(黏质粉土)及粉细砂、中砂等,该组总厚度17~35m。 (1)人工填土(Q4ml)(层号1):包括杂填土(1-1)和素填土(1-2)。 杂填土(1-1):杂色,干燥,松散,主要由建筑垃圾、沥青路面、碎石块等组成,含少量粘性土,欠压实~稍压实,均匀性差。层厚~。 素填土(1-2):褐黄色,杂色,主要成分为黏质粉土和粉质黏土,夹碎石、砖块,欠压

地铁杂散电流危害及防护

地铁杂散电流危害及防护 摘要:杂散电流给地铁设备、设施的安全运行和使用寿命造成影响,甚至会威胁乘客的安全,有必要对其采取防护和治理措施,以确保地铁的安全运营。文章对地铁杂散电流的危害及防护方面进行了分析。 杂散电流概念: 通过工作接地极或其他途径无规律地流向大地或接地金属件的电流。 电力(一级学科);配电与用电(二级学科) 在非指定回路上流动的电流。 机械工程(一级学科);腐蚀与保护(二级学科);电化学腐蚀(三级学科) 任何不按预定通路而流动的电流。 煤炭科技(一级学科);矿山电气工程(二级学科);矿山电气安全(三级学科)杂散电流就是一种因外界条件影响而产生的一种电流.例如在电气的高压试验中,直流泄漏或直流耐压试验中,因为高压部分对地存在电容,从而有电流从这个电容流过. 由于电气化铁路、矿山、工厂、港口各种用电设备接地与漏电,在土壤当中也会形成杂散电流的循环。 指存在于预设的电源网路之外的电流,其主要来源一般为:1.电气牵引网路流经金属物(指铺轨以外的金属物)或大地返回直流变电所的电流;2.动力和照明交流电路的漏电;3.大地自然电流;4.雷电和电磁辐射的感应电流等。 在地铁系统中,牵引供电系统一般采用直流方式,会产生杂散电流。目前,地铁的牵引供电方式一般采用直流供电方式。在理想的状况下,牵引电流由牵引变电所的正极出发,经由接触网、电动列车和走行轨返回牵引变电所的负极。由于走行轨与大地之间的绝缘不良或不是完全绝缘,流经走行轨的电流不能全部经由走行轨流回牵引变电所的负极,有一部分电流会泄漏进入大地,然后再流回变电所,这部分泄漏到大地中去的电流就是杂散电流,也称作迷流。走行轨铺设在轨枕、道碴或整体道床上,由于钢轨与轨枕或整体道床之间不是完全绝缘状态,钢轨与大地间存在一定的过渡电阻,其阻值表示了轨道和大地之间的阻性耦合和电导性耦合。有关研究表明,钢轨与大地之间的过渡电阻与通过走行轨中的电流无关,其阻值取决于轨枕和轨道紧固件的类型、轨枕下面的垫层、污染程度、气象条件。也就是说,与走行轨流人大地的杂散电流与道床类型、轨枕和轨道紧固类型有关,并还随污染程度、气象条件的变化而变化。 一、杂散电流的危害 地铁中的杂散电流是一种有害的电流,会对地铁中的电气设备、设施的正常运行造成不同程度的影响,还会对隧道、道床的结构钢和附近的金属管线造成不同程度的危害。 1.引起地铁附近建筑物结构钢筋、金属管线腐蚀地铁附近的地下金属体埋于地下,周围有电解质存在,在没有杂散电流通过时,这些金属体所承受的渗透压与溶解压通常会保持平衡状态,不会发生电化学腐蚀。但当这些金属体中流过杂散电流时,这些金属体所承受的渗透压与溶解压的平衡状态就会被打破,就要发生电化学腐蚀。在这些情况下,会有两种过程同时发生。如果城轨隧道、道床或其他建筑物的结构钢筋及附近的金属管线(如电缆、金

地铁车站综合接地及杂散电流施工方案

目录 1.编制依据................................................ 错误!未指定书签。 2.工程概况................................................ 错误!未指定书签。 2.1地理位置........................................... 错误!未指定书签。 2.2设计概况........................................... 错误!未指定书签。 2.3主要工程数量 ....................................... 错误!未指定书签。 3.施工计划................................................ 错误!未指定书签。 3.1施工布置及分段划分.................................. 错误!未指定书签。 3.2机械设备计划 ....................................... 错误!未指定书签。 3.3人员设备配置 ....................................... 错误!未指定书签。 4.综合接地施工方案......................................... 错误!未指定书签。 4.1综合接地系统施工工艺................................ 错误!未指定书签。 4.2综合接地系统各组件相互关系........................... 错误!未指定书签。 4.3综合接地测量放线.................................... 错误!未指定书签。 4.4沟槽开挖........................................... 错误!未指定书签。 4.5垂直接地体打入...................................... 错误!未指定书签。 4.6水平接地体的敷设.................................... 错误!未指定书签。 4.7接地系统组件间焊接.................................. 错误!未指定书签。 4.8降阻剂的敷设及回填.................................. 错误!未指定书签。 4.9接地引上线施工 ..................................................................................... 错误!未指定书签。 4.10接地电阻测试 ....................................................................................... 错误!未指定书签。 4.11关于放热焊接常见问题及解决方案.................................................... 错误!未指定书签。 4.12质量控制注意事项 ............................................................................... 错误!未指定书签。 5.杂散电流施工方案 ............................................................................................ 错误!未指定书签。 5.1施工工艺 ................................................................................................. 错误!未指定书签。 5.2各端子的制作工艺 ................................................................................. 错误!未指定书签。 5.3焊接方式 ................................................................................................. 错误!未指定书签。 5.4车站范围内附属设施 ............................................................................. 错误!未指定书签。

地铁杂散电流腐蚀及其防护措施(通用版)

地铁杂散电流腐蚀及其防护措 施(通用版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0219

地铁杂散电流腐蚀及其防护措施(通用版) 摘要:地铁主体结构钢筋、电气设备、地铁附近的埋地管线经常遭受地铁杂散电流的电化学腐蚀。这种杂散电流腐蚀减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故;同时造成一定的经济损失。讨论了地铁杂散电流的危害,并给出了较为详细的减少杂散电流及其防护的方法。关键词:地铁;杂散电流;防护;监测 1概述 地铁具有运量大、安全舒适、运输成本低等优点,且与地面的交通工具互不干涉,因此成为解决城市交通拥挤紧张状态的有效途径。目前地铁列车牵引动力一般用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈送电量,并利用走形轨作为回流线路。直流供电的地铁系统的走形轨本身具有电阻且走形轨对地做不到完

全绝缘,所以有一部分电流从走形轨泄漏到大地。这部分从走形轨漏出的电流被称为杂散电流又叫迷流。 杂散电流从走形轨漏出后,经过地铁的道床流入大地,然后从大地流回钢轨回流点。若地铁附近有导电性能较好的埋地金属管线(如自来水管、煤气管道、电缆等),则有一部分杂散电流选择电阻率较低的埋地金属管线作为流通路径,在变电所附近从金属管线中流出流回变电所。对于走形轨杂散电流是在远离变电所的地方流出,对于埋地金属管线杂散电流是从变电所附近的部位流出,由于土壤或其它介质的作用,金属体有电流流出的部位发生电解,使金属体遭受电化学腐蚀。这种电化学反应易腐蚀地铁钢轨、地铁主体结构钢筋、地铁线路附近的埋地金属管线,减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故。钢轨埋设在地表面,易于发现损坏状况,且便于更换,所以杂散电流腐蚀对其的危害不是很大;但由于地铁主体结构钢筋和埋地金属管线埋设在地下,其腐蚀情况不易察觉,所以杂散电流腐蚀对地铁主体结构钢筋和埋地金属管线的腐蚀危害是很大的。例如从20世纪70年代开始运行

接地施工方案

接地施工方案 一.工程概况 ×××××车站接地网施工面积达3986.5平方,主要为水平接地体(50*5紫铜排)、垂直接地体(Φ50*5 2.5m紫铜管)及非磁性接地引出装置构成.接地电阻值按设计要求必须小于0.5欧姆.在施工结束后,如果实测结构达不到要求,则必须采取相应的降阻方案予以补救,直至接地电阻值达到设计要求为止. 二.接地网施工原则 1.综合接地网施工在保证达到设计要求,设备安全运行可靠性基础上,应尽量减少投资,降低施工成本. 2.在综合接地系统施工时,应兼顾杂散电流腐蚀防护的要求.当接地施工与杂散电流腐蚀防护发生矛盾时,优先考虑接地设计要求. 3.综合接地系统施工后应同时满足变电所设备、弱电设备及其他需接地的车站设备对接地的要求. 4.本站单独设置1个接地网,接地电阻要求≦0.5Ω.本接地网面积为3986.5平方米,根据该站的地质资料,底版下岩土电阻率的平均值为40.42欧.米,经计算接地电阻值R=0.32欧姆,满足设计要求.若实测结构达不到要求,则必须采取相应的降阻方案予以补救,直至接地电阻值达到设计要求为止. 5.本站设变电所设备接地引出线两组,弱电设备接地引出线一组,每组引出线的距离满足沿接地导体的距离不小于20米的要求.

6.每组接地引出线为三根,其中一根为备用.接地引出线应妥善保护,不得丢失、断裂. 7.综合接地系统的施工应充分考虑接地引出线穿越地下车站结构地板时的防水问题.可以采用防水套管。 8.所有铜材均选用紫铜. 9.接地网施工应该在结构地板施工前进行,必须严格检查接地网各连接点,严防焊头脱焊、虚焊. 10.为配合车站施工,接地网敷设应分段进行.在阶段性施工结束后,应对完工部分接地网进行接地电阻值测量,以此演算出整体接地网的接地电阻值. 三、施工准备 1.工具及材料准备 1.模具 2.焊药 3.放热焊接专用工具箱 4.气焊 5.铁锹 6.接地电阻测试仪 7.洛阳铲 8.冲击钻 9. 切割机10.水钻11.石棉12.隔热手套 13.白灰14.铜排15.铜管16.非磁性接地引出装置 17.皮尺18 硅橡胶 所有材料必须进行报审,符合要求后方可使用 2.人员准备 在指挥部领导下,共需施工人员12名,其中土建人员10名,主要负责接地沟槽开挖,铜排、铜管敷设,接地沟槽回填等土建工作;另需2名放热焊接专业技术人员,主要负责铜排、铜管焊接、接地电阻检测

相关主题
文本预览
相关文档 最新文档