当前位置:文档之家› 浙江省杭州求是高级中学2020届高考数学二轮专题复习 求轨迹方程常见方法(美术班)(无答案)

浙江省杭州求是高级中学2020届高考数学二轮专题复习 求轨迹方程常见方法(美术班)(无答案)

浙江省杭州求是高级中学2020届高考数学二轮专题复习 求轨迹方程常见方法(美术班)(无答案)
浙江省杭州求是高级中学2020届高考数学二轮专题复习 求轨迹方程常见方法(美术班)(无答案)

P M N 求轨迹方程常见方法 方法1:直接法求轨迹方程 1、已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于

(A )π (B )4π (C )8π (D )9π

2、动点P 与两定点()13,0F -、()23,0F 的两条连线的斜率的积为定值

m ,求动点P 的轨迹方程,并讨论所求方程的轨迹

3、如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线A PM 、PN (M 、N 分别为切点),使得2PM PN =

试建立适当的坐标系,并求动点 P 的轨迹方程.

方法2:定义法求轨迹方程 1、点M 到点()5,0A 的距离减去点M 到点()5,0B -的距离的差为6,求动点M 的轨迹方程

2、在ABC V 中,已知()2,0A -、()2,0B ,且AC 、AB 、BC 成等差数列,求点C 的轨迹方程

3、已知动点(),P x y 满足()()225123412x y x y -+-=+-,则点P 的轨迹是( )

(A )两条相交直线 (B )抛物线 (C )双曲线 (D )椭圆

方法3:代入法求轨迹方程

1、点P 是圆22

16x y +=上一个动点,点()12,0A 是一个定点,求满足2AM MP =u u u u r u u u r 的点M 的轨迹方程

2、从双曲线22

1x y -=上一点P 作直线20x y +-=的垂线,垂足为Q ,求线段PQ 中点的轨迹方程

3、设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足?4PA PB =u u u r u u u r ,点Q 是点P 关于直线2(4)y x =-的对

称点.求

(I)求点A B 、的坐标; (II)求动点Q 的轨迹方程.

方法4:消参法求轨迹方程

1、过点(1,3)P 作两条相互垂直的直线12,l l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程

2在平面直角坐标系xoy 中,抛物线2x y =上异于坐标原点O 的两不同动点A、B满足BO AO ⊥(如图4所示)

(Ⅰ)求AOB ?得重心G (即三角形三条中线的交点)

的轨迹方程;

(Ⅱ)AOB ?的面积是否存在最小值?若存在,请求出

最小值;若不存在,请说明理由. x

y O A B

图4

高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 求轨迹方程的六种常用技法 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则 y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习: Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程 是。 22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。的点,求点 3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是() A.直线B.椭圆C.抛物线D.双曲线 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 AB30ABCAC?(8,0)B(C?8,0),,2例.若的两顶点,和为两边上的中线长之和是?ABC。 _______________的重心轨迹方程是则. AB30ABCAC?)(x,yG可得,则由两边上的中线长之和是的重心为和解:设 2?30??CG?20BGG(8,0)8,0),CB(?B,C的轨迹为以,而点为定点,所以点3为焦点的椭圆。 228?20,c?2a?c?a6?a?10,b可得所以由22yx??1(y?0)?ABC的重心轨迹方程是故 10036练习: 22?|x?y?(y?1)x2(?1)2|?表示的曲线是( 4).方程 A.椭圆B.双曲线C.线段D.抛物线 3.点差法 圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y),B(x,y)x?x,的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得221211x?x2x?x?xyy?yy?AB),yP(x,

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

浙江省杭州求是高级中学2013-2014学年高一上学期期末考试数学试题

浙江省杭州求是高级中学2013-2014学年高一上学期期末考试数学试题 姓名: 座位号: 一、选择题:本大题共10小题,每小题3分,共30分。 1 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()B A C U 为( ) A.{}0,2,4 B. {}1,2,4 C. {}2,3,4 D.{}0,2,3,4 2 函数())f x x -的定义域为( ) A.[0,1) B.(0,1) C.( 0,1] D.[0,1] 3 函数 ()sin(24 f x x π =+)的最小正周期为( ) A 2π B π C 2π D 4π 4. 设6 x π = , 则)tan( x +π等于( ) A . B . C .3 3 D 5. 下列是增函数且是奇函数的是( ) A.1 -=x y B.2 1x y = C.2x y = D.3 x y = 6.要得到函数cos(2)3 y x π =-的图象,只要把函数cos(2)y x =的图象( ) A.向左平移 6π个单位 B. 向右平移6π 个单位 C. 向左平移3π个单位 D. 向右平移3 π 个单位 7.函数)1,0(1 )(≠>- =a a a a x f x 的图象可能是( ) 8.生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本

为21() 2202 C x x x =++(万元),一万件售价是20万元,为获取最大利润(利润=收入-成本),该企业一个月应生产该商品数量为( ) A .9万件 B .18万件 C .22万件 D .36万件 9.函数()23x f x e x =+-的零点所在的一个区间是( ) A.1,02?? - ??? B.10,2?? ??? C.1,12?? ??? D.31,2?? ??? 10.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足 212 (log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( ) A. 1,22?? ???? B.[1,2] C. 10,2?? ??? D.(0,2] 二、填空题:本大题共6小题,每小题4分,共24分。 11.已知2,0()1(),02 x x x f x x ?->- << 一个周期的图像如图所示. 则函数()f x 的表达式为()f x =____________

2019-2020学年浙江省杭州高中高一(上)期末数学试卷

2019-2020学年浙江省杭州高中高一(上)期末数学试卷一.选择题(本大题共10小题,每小题4分,共40分) 1. 已知集合P={?1,?0,?1},Q={x|?1≤x<1},则P∩Q=() A.{0} B.[?1,?0] C.{?1,?0} D.[?1,?1) 2. 若一个幂函数的图象经过点(2,1 4 ),则它的单调增区间是() A.(?∞,?1) B.(0,?+∞) C.(?∞,?0) D.R 3. 下列函数既是奇函数,又在区间[?1,?1]上单调递减的是() A.f(x)=sin x B.f(x)=?|x+1| C.f(x)=1 2(a x+a?x) D.f(x)=ln2?x 2+x 4. 函数y=ln x+2x?6零点的个数为() A.0 B.1 C.2 D.3 5. 已知函数f(x)是奇函数,且当x>0时,f(x)=x2+1 x ,则f(?1)=( ) A.?2 B.0 C.1 D.2 6. 已知θ∈[π 2,π],则√1+2sin(π+θ)sin(π 2 ?θ)=() A.sinθ?cosθ B.cosθ?sinθ C.±(sinθ?cosθ) D.sinθ+cosθ 7. 在下列函数①y=sin(2x+π 6)②y=|sin(x+π 4 )|③y=cos|2x|④y=tan(2x? π 4 )⑤y=|tan x|⑥y=sin|x|中周期为π的函数的个数为() A.3个 B.4个 C.5个 D.6个 8. 函数f(x)=2x2+3x 2e x 的大致图象是()

A. B. C. D. 9. 已知函数f(x)=2sin ωx (其中ω>0),若对任意x 1∈[?3π4 ,0),存在x 2∈(0,π 3 ],使 得f(x 1)=f(x 2),则ω的取值范围为( ) A.ω≥3 B.0<ω≤3 C.ω≥9 2 D.0<ω≤9 2 10. 已知函数f(x)是R 上的增函数,且f(sin ω)+f(?cos ω)>f(?sin ω)+f(cos ω),其中ω是锐角,并且使得g(x)=sin (ωx +π 4 )在(π 2 ,?π)上单调递减,则ω的取值范围是( ) A.(π4,?5 4] B.[54,?π 2) C.[12,?π 4) D.[12,?5 4] 二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) sin π 6=________;cos α≥√2 2 ,则α∈________. 函数y =(1 4)?|x|+1的单调增区间为________;奇偶性为________(填奇函数、偶函数或者非奇非偶函数). 若lg x =m ,lg y =n ,则lg √x ?lg (y 10)2=________;若a m =2,a n =6(a >0,?m,?n ∈R),则a 3m?n 2 = 2√3 3 . 函数y =cos x ?sin 2x ?cos 2x +7 4的值域为________?1 4,2] ;函数f(x)=3?sin x 2+sin x 的值域为________2 3,4] .

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

高级词汇替代整理(杭州高级中学)

第1组:代替important的高级词汇 〔简单〕Education is very important. 〔高级〕Education is of much/vital/great importance. 〔简单〕The work he does is very important. 〔高级〕The work he does is absolutely vital. 〔简单〕A balanced diet is very important for us. 〔高级〕A balanced diet is absolutely essential for everyone. 〔简单〕Money is the only thing that’s important to him. 〔高级〕Money is the only thing that matters to him. 〔简单〕First impressions are very important. 〔高级〕First impressions really do count. 〔简单〕Parents are important in chi ldren’s learning. 〔高级〕Parents play an important role/part in children’s learning. 〔简单〕Children’s education is very important for Chinese parents. 〔高级〕Chinese parents attach much importance to children’s education. 〔简单〕It’s very important for parents to b e honest with their children. 〔高级〕It’s very vital/essential for parents to be honest with their children. 第2组:代替good的高级词汇 〔简单〕He is a good football player. 〔高级〕He is an amazing football player.

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

高三数学轨迹方程50题及答案精选

高三数学轨迹方程50题及答案 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法. (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程. (2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求. (3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程. (5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法 求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念. 一、选择题: 1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线 2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线 3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=21x - 4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( ) A 、x 2+y 2=2(x+y) B 、x 2+y 2=2|x+y| C 、x 2+y 2=2(|x|+|y|) D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线

杭州市一二三级重点中学名单

浙江省一二三级重点中学名单(杭州) 一、省一级重点中学 杭州市: 杭州高级中学杭州第二中学浙江大学附属中学杭州学军中学 杭州第四中学杭州第十四中学杭师院附属三墩高级中学杭州长河高级中学 杭州外国语学校萧山中学萧山区第二高级中学萧山区第三高级中学 萧山区第五高级中学余杭高级中学余杭第二高级中学富阳中学 富阳市第二高级中学富阳市新登中学桐庐中学临安中学 临安昌化中学临安市於潜中学淳安中学严州中学 二、省二级重点中学 杭州市: 杭州市源清中学杭州西湖高级中学杭州市第二中学分校杭州市第四中学分校 杭州第七中学杭州第九中学杭州第十一中学萧山区第八高级中学 建德市新安江中学 三、省三级重点中学 杭州市: 杭州余杭中学杭州市塘栖中学建德市寿昌中学萧山区第六高级中学 杭州市绿城育华学校(民办)余杭区瓶窑中学淳安县威坪中学桐庐分水高级中学(原桐二高) 临安市天目外国语学校(民办)杭州市长征中学杭州市第十中学富阳市大源中学 富阳市场口中学萧山区第十高级中学杭州市夏衍中学萧山区第十一高级中学 桐庐富春高级中学(桐三高、四高合并)淳安县汾口中学

浙江省一级普通高中特色示范学校名单(面向杭州城区招生) 1.杭州外国语学校 2.杭州高级中学 3.杭州第二中学 4.杭州第十四中学 5.杭州师范大学附属中学 6.杭州第七中学 7.杭州绿城育华学校 8.杭州市萧山区第五高级中学 9、余杭高级中学 10、富阳中学 包含: 杭二中东河校区, 杭高钱江校区, 杭四中吴山校区, 杭十四中康桥校区, 学军紫金港校区, 浙大附中丁兰校区 11.浙江大学附属中学 12.杭州学军中学 13.杭州市长河高级中学 14.杭州第四中学 15.杭州市源清中学 16.浙江省萧山中学 17.杭州市余杭第二高级中学 18.杭州市富阳区第二中学

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

杭州高级中学2018届高三最后一次适应性考试语文试卷Word版含详细详细答案

杭高2017学年第二学期高三最后一次适应性考试语文试卷 一、语言文字运用(共20分) 1.下列各句中,没有错别字且加点字的注音全都正确的一项是(3分) A.水草在西湖里一年年开花、结.(jiē)籽,籽随水走,慢慢在西湖各处落了脚,在酝酿了一个冬天后,又开始“疯长”,蹿.(cuān)得高的都冒出了水面。 B.对于充斥我们生活的大量资讯,若只是浮光略影似地略读,未经充分辨别与吸收, 毋.(w ú)庸置疑,容易使我们陷入“名词朗.(lǎng)朗上口,光说不会做”,或是“张冠李戴,以讹传讹”的尴尬局面。 C.突如奇来的高温瞬间催熟了树叶,使它们变得枯槁,那些树儿似乎顷.(qǐng)刻间就抖落了一身的树叶,在泥土上铺上了它们黄澄.(dēng)澄的斗篷。 D.浙江电信国内首开5G全景直播,体验者表示,无人机与5G结合产生卓.(zhuō)越的空中俯瞰效果,使得沉浸式观看体验更加震撼,毫无眩晕.(yùn)感。 阅读下面的文字,完后2-3题。 2005年,台北故宫博物院开发了一款“朕知道了!”胶带作为纪念品销售。[甲]当电视剧 《甄嬛传》如火如荼 ....地播出时,这款胶带竟也迅速火遍网络。事实上,全世界的博物馆都在 为如何吸引人们而烦恼。要消化几百年以致 ..上千年历史的文物文化,没有一点底蕴是难以实 现的;而文创产品营造的“萌文化”是其最好的诠释和延伸。[乙]当正襟危坐 ....的皇帝皇后开始“萌萌哒”动起来,古董和文物也可以变得活泼有趣。 让文物“述说”文化记忆,也是博物馆连接大众的一种“新的打开方式”。苏州博物馆有一棵紫藤树,是四百多年前文徵明亲手种植的(明代著名画家)。[丙]苏博工作人员亲手采集、晾晒、筛选、试种,选出合适的种子包装成文创产品,仿佛使产品穿越500年的历史沧桑,“述 说”着古人的风雅 ..与志趣。 2.文段中加点的词,运用不正确的一项是(3分) A.如火如荼 B.以致 C.正襟危坐 D.风雅

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

求轨迹方程例题方法解析

求轨迹方程的常用方法 知识梳理: (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ?? ?=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为: ( ) A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x +=1 【答案】:B

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

轨迹方程的求法及典型例题

轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.

例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若?AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或

相关主题
文本预览
相关文档 最新文档