当前位置:文档之家› 浅谈“电动汽车中的电池能量管理系统”

浅谈“电动汽车中的电池能量管理系统”

浅谈“电动汽车中的电池能量管理系统”
浅谈“电动汽车中的电池能量管理系统”

浅谈“电动汽车中的电池能量管理系统”

一、前言

电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本;其二是电池的性能差,使用寿命低影响电动汽车的使用成本。

电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。

二、电动汽车电池能量管理系统的功能

电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能:

2.1 对能量的检测功能

电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。

2.2 对电池工作状态的监测与控制功能

电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。

电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工

作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。

2.3 保证充电功能

电池能量管理系统随时参与整车检测工作,检测电池的工作状态,尤其对每只电池的技术状态进行检测分析,将检测的数据在车辆停驶,充电之前“通知”充电机,即“车与机”的对话。告诉充电机,电池组的工作状态及每只电池的技术状态,“落后”电池和“先进”电池性能差异。此时充电机应当采用什么样的充电模式给电池充电,才能达到给电池充足,性能好的电池不能过充,而性能差的电池又能充足,保证整车能量的供应。在放电过程中保证性能差的电池不能过放,这一点应当是电池能量管理系统最重要的功能之一。

2.4 DC—DC、DC—AC转换功能

如果车辆安装辅助电池,电池能量管理系统应能控制动力电池随时给辅助电池模块充电,保证辅助电池模块的供电功能即DC—DC的转换功能,保证低压系统的正常工作。

当应用异步电机时,电池能量管理系统尚有DC—AC的转换功能保证电动汽车的正常运行。

2.5 解决性能一致性的保护功能

如果在电池箱的线路内装置了由于电池性能一致性偏差引起某个电池性能变化很大,达到影响系统工作,或该电池受到损坏威胁时,两个电池之间有旁通线路并有控制模块时,电池管理系统应指令模块功能启动,进行补偿,又能保证系统在偏低电压状态下维持工作以便维修。

2.6 对电池模块的冷却和排除充电时产生的氢气

电池箱内的冷却风扇有两种功能,其一是电池模块的冷却,尤其是充电过程中参与工作的必要性,其二是将电池模块充电过程中排出的氢气排除电池箱外,防止氢气聚集引起爆炸的可能性。

2.7 监测记录控制功能

在电池工作状态下(充、放电)对电池模块的工作性能、安全性能进行监测,并对有关参数做记录,内存或进行提示、警告或指令停车、停机(充电),即对过压、过流、欠压、绝缘等提出警示、警告与控制功能。

三、使用电池能量管理系统必备的条件

电池能量管理系统是对电池箱内电池模块的工作进行管理,我们认为电池能量管理系统并非一种专用仪表而是一个系统,也不是什么样的电池箱都能应用电池能量管理系统,它应具备一定的条件才能发挥其功能,否则会带来不可预见的后果。

3.1 电池模块方面的要求

3.1.1 电池模块应具备足够的使用寿命、可靠性和工作的稳定性

大家都知道汽车是一种设计很紧凑的机-电—体化的产品。电动汽车的紧凑性更加突出、电动汽车给安装电池箱留有的空间有限,有时会造成接近性很差,加上电池质量很大,拆-卸很不方便,不能随时进行拆卸。所以要求应用的电池具有极好的使用寿命和可靠性,使其减少维护的频次、减少拆卸电池的次数给安装电池能量管理系统创造条件。

电池能量管理系统一个重要的功能是对剩余能量的计算,如应用的电池性能不稳定、可靠性很差,电池模块在工作中的性能难于进行SOC的估算,另外各种变化条件(温度、湿度、放电条件等)对电池模块的影响都造成对SOC影响,所以从剩余能量估算角度分析要求电池模块的性能要稳定。

3.1.2 电池应当是免维护电池

电池应当是免维护的或维护周期长的少维护电池。否则的话在电动汽车上不能应用。原因除第一点谈到的以外,如果应用于开口电池除加液费时,工作量大以外,工作时电解液的外溢、外渗对周围环境污染严重,影响环境,有时会破坏电动汽车整车的电绝缘限值,影响车辆的使用寿命和使用安全。

3.1.3 电池充电后期排出的气体应能得到控制

电池充电后期排出的气体(以氢为主)应能得到控制并能集中处理以保证工作安全。各种电池排出的气体在电池箱内是一种不安全的因素,不能集存,必须排除。一般有两种处理办法:(1)是将每只电池的排气系统串联起来,集中排除电池箱外而扩散至安全处;

(2)是在箱内用强制的气流加以驱赶排除电池箱外。

3.1.4 电池性能的一致性达到控制要求

电池能量管理的控制参数是由电池箱参与工作的电池模块采样的,而控制参数并非每个电池都要采样,否则参数量很大,不便管理,难于安装。一般都在电池箱内不同区域里采取最有代表性的电池模块,某些性能参数(比如温度)作为控制参数,在经过计算对比后发布控制执行指令,执行各种控制功能,所以说被选择采样电池模块的性能参数量值上应能代表其他没被采样电池模块的性能,否则的话,它就失去代表的意义。这时发出的指令不具备合理性,达不到对电池箱内电池模块的能量管理的目的。比如电池箱中电池模块间的性能差异较大,每个电池模块都不具备代表整箱电池模块性能就难以取得可信的控制参数。所以说,用于电池能量管理的电池模块其性能间的差异,即电池模块的间性能一致性差异必须在一定的范围之内,这样用哪一个电池模块作为采样电池都具备条件,都具有代表性。

3.2 电池模块用的电池箱

3.2.1 电池箱的要求

为达到对电池进行能量管理的目的,电池模块必须装在一个箱内,该箱应具备一定条件:(1)电池箱必须是密封的。除必需的通风孔外均不能与大气相通。密封箱内的要求主要考虑电池冷却气流的流动问题,不许在某处泄漏,避免冷却气流的流动性差造成电池模块工作温度的不一致,从而导致性能的一致性进一步的恶化。

(2)电池箱形状应达到与电池模块布置形状相适应。当冷却系统工作时,冷却风扇提供的冷却气流能均匀地流过每个电池模块周围,箱内不能形成气流的“死区”和涡流的存在,保证电池模块工作过程中温度均匀、性能一致,防止个别电池模块早期损坏。

(3)电池箱应做到内部与电池的绝缘,外部与车身的绝缘,防止电池与车身绝缘电阻低下而影响系统工作,发生不安全事故。

(4)在电池模块安装条件下尽量减少电池模块自行放电的条件。

3.2.2 冷却风扇空气进口的选择

电池能量管理系统,无论在充电或放电过程中它都存在工作的可能性,即它应具备全天候工作的条件。所以电池能量管理系统冷却空气进口的选择就十分重要。它要保证进入电池箱内的空气是清洁的即要求防尘和防雨水进入电池箱内。如果防尘和防雨措施做得不好,会有灰尘脏物和雨水进入电池箱内,这样会造成电池模块间的爬电,自放电量的增加,电池箱与车身绝缘阻值的下降,严重时会造成电池模块的短路,这是很危险的。此时管理系统会发出指令,停止车辆行驶或停止充电,而影响车辆的运行。实际应用也说明了这一点能量管理系统冷却空气进口位置的选择十分重要,具体选在何处应由汽车设计者根据整车的总布置来决定。

3.2.3 排气口的选择

电池箱排气口的选择十分重要,排气口位置的选择正常与否会影响电池箱内冷却风扇的工作性能,选择得正确会有助于冷却风扇的工作。如何利用汽车前进时在电池箱某部造成的,负压区,加速电池箱内气体的排除也是值得考虑的一个问题。

3.2.4 电池冷却空气的提供方式(吸风或排风)的选择

电动汽车动力电池的冷却一般采用风冷的形式较多,其他冷却方式由于结构复杂或成本高应用的较少。所以此处着重讨论风冷方式的冷却空气如何提供的问题,即采用吸风式还是排风式为宜。关于选用哪种供风方式,要与电池结构联系起来分析。

(1)排风式:电动汽车电池箱内对电池进行冷却的气体提供方式以排气的方式占绝大多数,这是因为电池在充电过程中要排出一定量的气体(多数为氢气),这些气体要与进入电池箱内的冷却气体混合排除到箱外。上面已谈过这种气体的处理方式有两种,即集中引出箱外或由冷却空气带出箱外。如果为后者,必须采用排气的方式,否则的话这种易燃气体通过电风扇的搅动后流出箱外很危险,此时应当采用防爆电机来推动冷却风扇,即使采用防爆电机也不应当应用这种供气方式以防不测。

(2)吸风方式:上面提到如果电池内的排除气体由管路集中引出箱外,且管路间的密封可靠从布置上考虑可以用吸风式对电池箱提供冷却空气。如果总布置允许用排气方式从安全考虑最好采用排风方式为好。

3.2.5 充电条件下对电池模块的冷却

电动汽车尤其是纯电动汽车的电能补充都是在汽车停驶时依赖外源进行充电。从蓄电池的工作状态来分析其放热量最大的时候是充电状态下而不是放电状态下,充电时往往要求对电池模块加强冷却,这时一般都是汽车停驶状态。汽车停驶时一般汽车仪表用辅助电源均处于停电状态下,而此时的电池管理系统须供电使其具有指令的功能,保证电池模块的冷却条件,有的电动汽车忽略这一点,在停车时辅助电源由钥匙开关控制,全部停止供电是不行的,电池管理系统的电源应当处于常闭状态,电动汽车停驶时也应有电源供应,保证管理系统的正常工作。

电动汽车用锂离子动力蓄电池包和系统测试规程完整

电动汽车用锂离子动力电池包和系统测试规程 1 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 3 术语和定义 3.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 3.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。

新能源汽车核心技术详解:电池包和BMS、VCU、-MCU

新能源汽车核心技术详解:电池包和BMS、VCU、MCU 导读:为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,北汽福田新能源系统开发部部长杨伟斌结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1 新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 1.1消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 表1 消费者角度分类 1.2技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2 新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制

电池管理系统在电动汽车中的应用

第23卷第3期 2010年6月 山东科学SHANDONG SCIENCE Vol.23No.3Jun.2010 收稿日期:2010- 04-15作者简介:于良杰(1977-),男,工程师,从事实时系统,汽车电子的研究。E- mail :embedlinux@126.com 文章编号:1002-4026(2010)03-0087-05电池管理系统在电动汽车中的应用 于良杰1,乔昕2,张许峰2,邓楠 2(1.山东省科学院自动化研究所,山东省汽车电子技术重点实验室,山东济南250014; 2.北京尚能联创科技有限公司北京10029) 摘要:本文介绍了电池管理系统(Battery Management System )的发展以及应用在电动汽车中所面临的前端数 据采集、电池均衡管理、SOC 电量计量、实时通信以及电池绝缘监测等关键问题。 关键词:电动汽车;电池管理系统 中图分类号:U468.3文献标识码:B 随着人们环保意识的增强以及能源的日趋紧张,电动汽车受到国家和民众的广泛关注。电动汽车是全部或者部分由电能驱动电机作为动力系统的汽车,因此,电池系统作为电动汽车的动力系统在整个电动汽车 的研究和发展中具有举足轻重的作用。电池系统一般分为电池和电池管理系统两个部分。就电池而言, 铅酸、镍氢、锂离子或锂聚合物电池在电动汽车的研究中都有应用。锂离子电池由于其比能量大、放电电压高、循环寿命长、无记忆效应、具有快速充电能力、自放电速率小、具有多种安全保护措施、密封良好,无泄漏现 象、 环保等众多优点,使得其在未来电动汽车中的应用前景非常广阔。就电池管理系统而言,在锂离子电池被广泛关注之前,已经有学者针对铅酸和镍氢电池开展了电池管理系统的研究,这些研究包括数据采集、SOC 估算、实时通信、均衡、绝缘监测等。由于锂离子物理特性相当活跃,过充、过放更容易对锂离子电池带来损坏,这就对电池保护系统的性能提出了更高的要求。一个好的电池管理系统可以确保车辆的行驶安全、增加电池使用寿命、提供给驾驶员有用的信息、减少能源消耗等,是电动汽车的一个重要组成部分。 国外对电池管理系统的研究已经有几十年了,并取得了一定的成果。我国对电动汽车电池管理系统的研究还处于起步阶段,目前清华大学、北京理工大学、同济大学、北京航天航空大学在电动汽车的电池管理系统上取得了一定的研究成果,并应用于奥运大巴的项目中。 总的来说,电池管理系统按照实现方式可以分为两大类:一类是基于芯片的电池管理系统;另一类是基 于分立式器件的电池管理系统。基于芯片的电池管理系统一般将前端采集电路、 均衡电路以及电量计量算法、通讯功能等集成在芯片中,辅以外围电路完成对电池的管理功能,如德州仪器在电池管理IC 领域的bq 系列芯片[1-2],凹凸科技的OZ890电池管理芯片[3]等,具有更小的体积、更高的集成度等优势;基于分立器件的电池管理系统,有基于纯硬件和基于软硬件协调工作的解决方案,而软硬件协调工作方案由于实现更灵活、功能更完善,被广泛采用,如各院校和科研单位开发的电池管理系统、北京市中天荣泰科技有限公司的智能电池管理系统等,分立器件方案在产品设计的灵活性上占有一定优势。 无论是采用芯片还是采用分立器件搭建系统,都要面临一些电池管理系统需要解决的关键问题,而这些问题也被国内外学者广泛的研究,他们包括前端数据采集、数据存储、保护功能、均衡管理、电池健康状态、电量计量和实时通信,针对不同的应用需求可能还需要内置充电管理、后备态管理、绝缘监测等功能,其结构见

电动汽车动力蓄电池尺寸相关标准

一、电动汽车用动力蓄电池标准尺寸 1.圆柱形电池单体 序号N1N2 118±2.0mm65±2.0mm 221±2.0mm70±2.0mm 326±2.0mm65±2.0mm/70±2.0mm 432±2.0mm70±2.0mm/134±5.0mm 2.方形电池单体

序号N1N2N3 120±2.0mm65±2.0mm138±5.0mm 2(20/27)±2.0mm70±2.0mm(107/120/130)±5.0mm 3(12/20)±2.0mm100±5.0mm(140/310)±5.0mm 4(12/20)±2.0mm120±5.0mm(80/85)±2.0mm 527±2.0mm135±5.0mm(192/214)±5.0mm 6(20/27/40/53/57/7 9/86)±2.0mm 148±5.0mm(91/95/98)±2.0mm/ (129/200/396)±5.0mm 7(12/20/32/40/45/4 8/53/71)±2.0mm 173±5.0mm85±2.0mm/ (110/125/137/149/166/184/ 200)±5.0mm 8(32/53)±2.0mm217±5.0mm98±2.0mm 注:考虑整车布置的需要,推荐方形电池极柱高度不超过10mm 3.电池模组 序号N1N2N3 1211~515mm141mm211/235mm 2252~590mm151mm108/119/130/141mm 3157mm159mm269mm 4285~793mm178mm130/163/177/200/216/240/255/265mm 5270~793mm190mm47/90/110/140/197/225/250mm 6191/590mm220mm108/294mm 7547mm226mm144mm 8269~319mm234mm85/297mm 9280mm325mm207mm

燃料电池电动汽车可行性报告

燃料电池汽车市场可行性分析报告 (长安大学信息工程学院2004级高继) 燃料电池是一种把储存在燃料和氧化剂中的化学能,等温地按电化学原理转化为电能的能量转换装置。燃料电池是由含催化剂的阳极、阴极和离子导电的电解质构成。燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电能而驱动负载工作。燃料电池与常规电池不同在于,它工作时需要连续不断地向电池内输入燃料和氧化剂通过电化学反应生成水,并释放出电能;只要保持燃料供应,电池就会不断工作提供电能。 燃料电池电动汽车实质上是电动汽车的一种,在车身、动力传动系统、控制系统等方面,燃料电池电动汽车与普通电动汽车基本相同,主要区别在于动力电池的工作原理不同。一般来说,燃料电池是通过电化学反应将化学能转化为电能,电化学反应所需的还原剂一般采用氢气,氧化剂则采用氧气,因此最早开发的燃料电池电动汽车多是直接采用氢燃料,氢气的储存可采用液化氢、压缩氢气或金属氢化物储氢等形式。 直接供氢的FCEV推广普及的关键是纯氢的供应和储存。为了保证直接供氢的FCEV用氢的需要,必须建造氢站,这就增大了直接供氢的FCEV商品化和推广普及的难度,因此,世界上各大汽车公司纷纷推出了通过燃料重整反应制取氢气的技术,可使用多种碳氢燃料,包括醇类燃料、天然气等。目前,通过重整反应利用甲醇制取氢气的技术已十分成熟,甲醇为液体燃料,携带方便,提高了燃料电池电动汽车的续驶里程,且燃料能量的利用率可达70%-90%,大大高于热力发动机的效率。 福特汽车公司的21世纪绿色汽车的开发计划中,FCEV作为开发研究重点,其推出的P2000HFC试验车即为直接供氢的FCEV,福特公司也有利用甲醇进行改质产生氢气的技术。目前,福特公司与石油公司摩比尔一起开发更具实际意义的车载汽油改质氢燃料电池车(FCEV)。从基础设施建设和社会使用环境上看,汽油改质型比甲醇改质型更为有利。新开发的汽油改质器与以往的相比,质量和体积都缩减了30%左右,从而提供了车载性,实现了与汽油相媲美的包装效率,对汽油改质氢FCEV的早日实用化及FCEV的普及推广具有重要意义。 由于它不经历热机过程,不受热力循环限制,故能量转换效率高,燃料电池的化学能转换效率在理论上可达100%,实际效率已达60%~80%,是普通内燃机热效率的2—3倍。现在应用于电动汽车中的燃料电池是一种被称为质于交换膜燃料电池(PEMFC),它以纯氢为燃料,以空气成龙为氧化剂。在1993年加拿大温哥华科技展览会上,加拿大的BALLABC公司推出了世界上第一辆以PEMFC电池为动力的电动公共汽车。载客20人,可行驶160km/h,最高速度72.2km/h。德国奔驰汽车公司也研制了以PEMFC电池为动力的电动汽车。生成物是水,不污染环境,缺点是造价太高,目前仅燃料电池的价格就要25000美元。 一、美国对燃料电池汽车的优惠政策 1999年10月克林顿总统签署清洁空气法,严格规定了汽车排放的标准,同月加州政府也有了新的规定,即要求汽车制造商在加州销售的车辆中百分之二必须是零排放车辆。2001年8月2日,美国议院代表批准了2001年美国未来能源保证法案。这项立法的目的是使美国到2012年后对外国能源的依赖由56% 降到45%,从伊拉克进口的石油由700,000桶/天减

纯电动汽车动力电池包结构静力分析及优化设计

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

纯电动汽车电池管理系统的设计说明书模板

纯电动汽车电池管理系统的设计说明 书

毕业设计说明书 纯电动汽车电池管理系统的设计 院、部: 学生姓名: 指导教师: 职称 专业: 班级: 完成时间: 摘要

随着经济的发展, 电力电子设备的更新速度更是突飞猛进, 然而传统的能源煤, 石油, 天然气的储量却在日渐减少, 这样带来的能源问题就引起了广大用户的关注, 作为生活中的重要组成部分, 汽车越来越被称为了生活得必须品,能源的减少引发了汽车动力的改革, 而以电能代替传统的汽油的汽车便走进了人们的视野中, 它污染小, 对周围的影响也小。电动汽车的主要特色就是它的电池工程, 而对电池的管理系统也就成了试下研究的热点。电池管理系统作为电动汽车上不可缺少的一部分, 在对电动车的电池管理, 充放电控制, 电池监控等方面有着很重要的作用。 本课题拟以中国长安纯电动汽车的设计要求和主体设计规划为蓝本, 设计一款以单片机作为主要控制器的电池管理系统, 实现对电池的综合检测管理的设计。主要包括电压检测、电流检测、充电检测、放点检测, 并针对性的设计外围CAN总线接口电路, 以方便上级控制系统和我们设计的电池管理系统有机结合。 关键字: 电动汽车, 充电管理, 锂电池

ABSTRACT With the development of economy, the updating speed of power electronic equipment is advancing by leaps and bounds. However, the traditional energy of coal, oil, natural gas reserves but in dwindling, energy problem has caused attention of the majority of users, as an important part of life, more and more vehicles is known to life necessities, energy reduction caused by the reform of the electric vehicle, and the electrical energy takes the place of the traditional gasoline car went into people's field of vision, it little pollution, influence on the surrounding is small. The main feature of electric car is its battery engineering, and the battery management system has become a hot spot for the study. As an indispensable part of electric vehicle, battery management system plays an important role in battery management, charge discharge control, battery monitoring and so on.. This paper intends to China Changan pure electric vehicle design

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(BatteryElectric Vehicle,BEV)与混合动力汽车(HybridElectric Vehicle,HEV)和燃料电池汽车(Fuel CellElectric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1传统汽车与纯电动汽车综合能量效率比较(单位:%) (2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

燃料电池电动汽车发展现状与前景

燃料电池电动汽车发展现状与前景 随着社会的进步和人员移动性增强,全球汽车需求 量快速增长,迄今世界上的汽车保有量达到创纪录的10 亿 辆以上且还在不断大幅增长,使得基于传统的内燃机 Internal Combustion Engine ,ICE )汽车的轻量化与节能减排等技术进步难以降低汽车燃料的消耗和减少污染物的排放。2020 年之前温室气体(Greenhouse Gas ,GHG) 排放在1990 年水平基础上下降20% 的任务日益艰巨。如果再不采取有效措施,公路交通运输车辆的GHG 温室气体排放将会持续不断增长。通过研讨纯电动汽车( Battery Electric Vehicle ,BEV )、混合动力汽车(Hybrid Electric Vehicle HEV )、或燃料电池电动汽车( Fuel Cell Vehicles ,FCVs ; Fuel Cell Electric Vehicles ,FCEVs )等多种类型的电动汽车( Electric Vehicle ,EV )技术[3-5]有望明确实现节能减排 的理想途径。自1966 年通用汽车推出了世界上第1 款燃料电池电动汽车GMC Electrovan ,尤其是本田在1999 年推出了世界上第1 台商用的燃料电池电动汽车FCX-V4 以来,世界上EV 电动汽车型号不断丰富和租赁销售量明显增长,太、北美和欧洲成长为全球EV 电动汽车重要的新车研发制造和租赁销售市场,2014 年全世界的EV 电动汽车销售量达到34.6 万辆以上,年增长率达到86% 。

燃料电池是一种高效、清洁的电化学发电装置,近年来 得到国内外高度重视,成为最被看好的可用于替代汽油和柴 油等传统的 ICE 内燃机发动机技术的先进新能源汽车技术。 日本政府希望其到 2020 年的 FCVs 燃料电池汽车销量达到 500 万辆,再通过 10 年的研发推广实现全面普及 FCVs 燃 料电池汽车。 美国政府在 2003 年投入 12 亿美元大力推进氢 技术和燃料电池技术,其中重要项目之一就是美国能源部 Department of Energy , DOE )在北加州、南加州、密歇 展的氢技术和基础实施验证与示范综合工程,吸引了 Hyundai-Kia/Chevron 、 DaimlerChrysler/BP 、 Ford/BP 和 GM/Shell 等多家汽车制造 /能源供应商参与。 美国能源部大力推进氢经济和燃料电池技术,尤其是商 业化推广应用方面取得显著进展,比如目前高容量和低容量 燃料电池制造成本分别为 55 美元 /kW 和 280 美元 /kW[6] , 汽车燃料电池 2014 年的制造成本自 2006 年下降 50% 并自 2008 年以来进一步下降 30% 以上(基于高容量电池制造) 这必将带动创造工作岗位、投资机会和可持续、安全的能源 供应。为了在 2020 年前争取把欧盟建立成一个具有全球领 先水平的燃料电池 (Fuel Cell ,FC )系统和氢能源 (Hydrogen Energy ,HE ) 经济的巨大市场,欧盟高度重视燃料电池技术 和氢能源技术并把之视作能源领域的战略高新技术大力推 根州东南部、大西洋区中部和佛罗里达州中部等 5 个区域开 f It 步

电动汽车用动力电池

电动汽车用动力电池 摘要 能源危机和环境恶化已成为传统汽车发展的最大障碍,而发展电动汽车能够很好的解决这些问题.电动汽车不仅能够减少燃油消耗,提高经济性,而且还能降低尾气的排放,提高环境质量.电动汽车的关键技术之一是动力电池,动力电池的好坏一方面决定着电动汽车的成本,另一方面决定着电动汽车的动力性和续驶里程,这2个方面也是电动汽车与传统的燃油汽车竞争的关键所在.能否开发出性价比高的动力电池对电动汽车的未来发展具有至关重要的作用. 关键词:铅酸蓄电池,正负极板,电极,电解液,电子等等。 前言 电池是电动汽车的动力源,是能量的储存装置,也是目前制约电动汽车发展的关键因素。要使电动汽车能与燃油汽车相竞争,关键是开发比能高,比功率大,使用寿命长,成本低的电池...... 电动汽车使用的动力电池可以分为化学电池,物理电池和生物电池三大类。在三大电池当中化学电池又分为:原电池,蓄电池,燃料电池和储备电池,从化石燃料向可再生能源转换的能源革命中蓄电池所起的作用非常大,政府民间都在大力进行研发。物理电池是利用大自然的能量来吸附储存,有太阳能电池,超级电容器,飞轮电池等等。生物电池是利用生物化学反应发电的电池,如微生物电池,酶电池,生物太阳能电池等。 电动汽车用动力电池的性能指标主要是:电压,容量,内阻,能量,功率,输出功率,自放电率,使用寿命等,根据电池种类不同,其性能指标也有所不同。 电动汽车对动力电池的要求是:(1)比能量高:主要是为了提高电动汽车的继驶里程;(2)比功率大:为了能使电动汽车的加速行驶以及负载能力;(3)充放电效率高;(4)相对稳定性好;(5)使用成本低;(6)安全性好等等。 正文 在电池的发展史之中,铅酸蓄电池是最成熟的电动汽车蓄电池。我们常用的铅酸蓄电池主要分为三类,分别为普通蓄电池、干呵蓄电池和免维护蓄电池三种。铅酸蓄电池是蓄电池的一种,主要是采用稀硫酸做电解液,用二氧化铅和绒状铅分别作为电池的正极和负极的一种酸性蓄电池。 基本构造:铅酸蓄电池主要由以下部分构成:1.硬橡胶管 2.负极板 3.正极板4。隔板5.鞍子6.汇流排7.封口胶8.电池槽盖9.连接10.极柱11.排气栓

电动汽车的电池管理系统

电动汽车中的电池能量管理系统 一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能

电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行 驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能 电池能量管理系统随时参与整车检测工作,检测电池的工作状态,尤其对每只电池的技术状态进行检测分析,将检测的数据在车辆停驶,充电之前“通知”充电机,即“车与机”的对话。告诉充电机,电池组的工作状态及每只电池的技术状态,“落后”电池和“先进”电池性能差异。此时充电机应当采用什么样的充电模式给电

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 王楠 摘要:主要针对电动汽车动力电池运行检修管理, 研究了电池接收检验、运行管理、日常维护、运行检测与安全管理等关键环节, 结合电池运行的技术特点, 对电池的日常检测、维护与检修等进行了分析, 分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法, 同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 目录: 摘要 1、动力电池的检修内容 (1)电压异常(2)温度异常(3)外观异常(4)检测振动对电池的影响 2、动力电池的检测系统总成 3、动力电池的维护 (1)充电不足与过充电 (2)大电流放电与过放电 (3)要及时充电 (4)短时充电 4、如何解决电池硫化与修复仪的使用 引言:在环境污染日益加剧,能源形势日益严峻的现代生活中,电动汽车无疑以其对排碳量减少无可非议的贡献受到全球的关注。当前与电动汽车有关的研究热点很多,但电池技术无疑就是其中重之又重的一块领域。现在应用于电动汽车的电池大多为电化学电池,在电池的发展史之中,铅酸蓄电池就是最成熟的电动汽车蓄电池,动力电池在能量、安全性、使用寿命等各个方面进行一代又一代的优化,才有了今天相对较为完备的电池体系。在今年4月21日至29日的北京国际车展当中备受人瞩目的典型车型都就是新出的纯电动汽车,不管就是国内还就是国外,许多汽车厂商都推出了自己的纯电动车型。由此可见在未来的汽车发展当中电动汽车将成为未来汽车发展的主要方向,然而由于受到电池技术的影响,纯电动汽车一直难以推广到市场。本文主要就是结合电池产业的厂商,引出当下比较主流的电池技术,从中了解电动汽车动力电池的结构,并结合各电池厂商分析可以怎样改正,以及探究了电动电池的检测与维护方法。 动力电池的结构 1、电池盖 2、正极--活性物质为氧化钴锂 3、隔膜--一种特殊的复合膜 4、负极--活性物质为碳 5、有机电解液 6、电池壳 动力电池的特点 1、高能量(EV)与高功率(HEV); 2、高能量密度;

电动汽车电池包散热加热设计

万方数据

?电动汽车电池包散热加热设计? 被动冷却/加热电池包。尽管空气是经过汽车空调(交流)或供暖系统冷却和加热的,但它仍然被 认为是一种被动系统(如图2)。运用这种被动系统,环境空气必须在一定温度范围(10℃~35℃)中才能正常进行热管理,在环境极冷或极热条件 下运行电池包可能会产生更大的不均匀。相关实 验也证明被动系统中,由于引入环境空气的温度不一致性,冷却加热电池包会导致电池包更大的不均匀性。 下面为空冷和液冷主被动系统示意图。 ?6? 图I被动冷却一外部空气流通 图2被动加热和冷却一内部空气流通 图3主动加热和冷却一外部和内部空气流通 图4被动冷却一液体循环 图5主动冷却/加热一液体循环 图6主动冷却/加热一液体循环 1.2散热系统 根据传热学理论,固体与气体,固体与液体接 触产生传热现象。气体的对流换热系数远远没有 液体的对流换热系数大,液体和固体接触对流换热能力更强。传热系数越大所交换的热量越多,换 热效果就越明显,因此要选择合适的传热介质。各 种传热现象的传热系数范围如表l所示。 表I表面传热系数的一般范围 对流换热问题的类型 h/[w/(m2k)】 自然对流换热:气体 2.25液体 50.1000强迫对流换热:气体 25.250液体 50.25000相变对流换热:沸腾 2000.50000凝结 2000.100000 使用液体作为传热介质,需要考虑导电性,安全性,还有密封性,以及以后的维修方便性,还要考虑到电池包整体的重量。相变材料(例如液 体石蜡)的传热蓄热能力最强,且在达到相变温 度时可以大量吸热或放热而不升温降温。通过选用合适的相变材料能够使电池单体有效地达到热平衡,很好地控制电池温度上下限,避免产生温度过高过低现象。但是考虑到材料的研发、制造成本等问题,目前最有效且最常用的还是采用空气作为散热介质。 目前多采用的空冷主要有并行和串行两种通风方式,如图7~图8所示。这就要求在电池包结构上设计相应导风口,尽量减小空气流动阻 力,保证气流的均匀性。 图7串行通风 图8并行通风 .—(蜷)20 1 0.No.1. 万方数据

现有电动汽车用动力电池及其发展趋势

电动汽车用动力电池分类及其发展趋势 / 、八 1 前言 上个世纪80 年代以来, 随着全球经济的稳步发展, 汽车的产量和保有量急剧增加。这些燃油汽车所排放的废气造成空气质量日趋恶化。环境问题, 特别是大气环境污染问题, 已引起世界各国, 尤其是发达国家的普遍关注。同时, 目前世界石油资源日趋紧张, 石油价格始终居高不下。因此, 各国政府和各大汽车企业都正在加紧开发无排放或低排放、低油耗的清洁汽车。 进入90 年代, 以美欧为主的一些西方国家开始制订并逐步执行严厉的汽车尾气排放标准, 低能耗、无污染的绿色汽车开始成为人们关注的热点。而电动汽车又是能达到这一目标的为数很少的环保型汽车。迫于形势的要求, 各种新材料和新技术在电动汽车上不断被开发应用, 电动汽车的发展异常迅猛。 2 电动汽车用动力电池分类 2.1 铅酸电池 铅酸电池是采用金属铅作为负极,二氧化铅作为正极,用硫酸作为电解液,放电时,铅和二氧化铅都与电解液反应生成硫酸铅。充电时反应过程正好相反。现在比较广泛的采用免维护的阀控式铅酸电池(VRLA)。总体上说,铅酸电池具有可靠性好、原材料易得、价格便宜等优点,比功率也基本上能满足电动汽车的动力性要求。但它有两大缺点;一是比能量低,所占的质量和体积太大,且一次充电行驶里程较短;另一个是使用寿命短,使用成本过高。由于铅酸电池的技术比较成熟,经过进一步改进后的铅酸电池仍将是近期电动汽车的主要电源。 2.2 镍金属电池 镍氢蓄电池正极活性物质采用氢氧化镍,负极活性物质为贮氢合金,电解液为氢氧化钾溶液,电池充电时,正极的氢进入负极贮氢合金中,放电时过程正好相反。在此过程中,正、负极的活性物质都伴随着结构、成分、体积的变化,电解液也发生变化。相对于其他电池,N 12MH 电池的优异特性表现在:高比 能量(衡量电动车一次充电行驶里程)已与锂离子电池水平相当;高比功率(赋予电

电动汽车电池管理系统(BMS)的研究

电动汽车电池管理系统的研究 摘要 在电动汽车中,电池系统是其中不可或缺的重要组成部分它对电动汽车的续航里程、加速能力和最大爬坡度都会产生直接的影响,由于蓄电池特性高度的非线性、结构的特殊性故容易导致电池寿命的缩短以致损坏。所以电池管理系统是电动汽车的必备重要部件,与电池系统、整车控制系统共同构成电动汽车的三大核心技术。它能保护电动汽车电池的安全可靠使用,发挥电池的能力和影响其使用寿命,通过一系列的管理和控制,从而保障了电动汽车的正常运行。目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一。为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国内外均投入大量的人力物力开展广泛深入的研究。 关键词:电动汽车;电动汽车电池;电池管理系统;功能 目录

1前言 (3) 1.1本研究的意义 (3) 1.2电池管理系统在国内外的发展概况及存在问题 (3) 2电动汽车电池管理系统 (4) 2.1电池管理系统的运行模式 (4) 2.2电池管理系统的技术 (5) 3本文结论 (8) 参考文献 (9)

1前言 随着能源紧缺、石油涨价、城市环境污染的日益严重,替代石油的新能源的开发利用越来越被各国政府所重视。所以说随着各国対新能源汽车的推广,电动汽车会被越来越多的关注,电池系统是电动汽车的关键部件,由于电动汽车的显著特点和优势,各国都在发展电动汽车。根据汽车的使用特点,其实用的动力电池一般应具有比能量高、比功率大、自放电少、工作温度范围宽、能快速充电、使用寿命长和安全可靠等特点,因此,电池管理系统对电动汽车的性能起到了决定性的作用。 1.1本研究的意义 综合各国的电动汽车研究情况,可以发现共同存在的一个现象,即电池是整个电动汽车研究中出问题最多的部件。电动汽车用电池的使用性能和寿命远不能满足电动汽车运营的要求制约着电动汽车事业的发展。能源短缺和环境污染是现今世界汽车工业发展面临的两大挑战,因此开展新能源汽车的研究已经刻不容缓。虽然电池电动汽车有良好的前景,但目前技术门槛比较高尚未产业化,同时燃料电池的可靠性、寿命有待改进,氢气的基础设施有待建立,氢气的来源和供应有待解决。 本研究通过对电动汽车电池和电池管理系统的存在的问题,技术难题和前景来分析动力电池及其管理系统的现状和发展趋势。 1.2电池管理系统在国内外的发展概况及存在问题 近年来,我国的汽车行业发展迅速,已成为世界第四大汽车生产国和第三大汽车消费国。但是我国的石油资源短缺,目前石油进口量以每年两位数字的百分比增长,预计到2010年进口依存度将接近50%。因此大力发展新能源汽车,用电代油是保证我国能源安全的战略措施。因此大力发展新能源汽车是实现我国能源安全、环境保护以及中国汽车工业实现跨越式、可持续发展的需要。 车用动力蓄电池是电动汽车产业化的关键。B电动汽车电池管理系统(BMS)是电动汽车中一个越来越重要的关键部分,近年来已经有了很大提高,但在采集数据的可靠性、SOC的估计精度、均衡技术和安全管理等方面都有待进一步改进和提高。所以,大部分企业在电动汽车研制中曾遭遇尴尬,车用动力电池不仅是制约电动汽车规模发展的技术瓶颈,而且是电动汽车价格居高不下的关键因素,其成本占整车成本的30%~50%。因此,动力BMS的性能对电动汽车使用成本、节能和安全性至关重要。 我国在这方面的研究还刚刚起步,即使美国等汽车工业发达国家的研制工作也不完善我国在“十五”期间设立电动汽车重大研究项目,积极推进BMS研究、开发和工程化应用,取得了一系列的成果和突破。在电动汽车领域,我国与发达国家的科技水平差距不是很大,决定电动汽车产业成熟度的关键因素是动力电池技术,目前中国企业在电

相关主题
文本预览
相关文档 最新文档