当前位置:文档之家› 第7章 小结自动控制原理

第7章 小结自动控制原理

第7章  小结自动控制原理
第7章  小结自动控制原理

第7章小结

1、控制系统校正的概念

在系统中引入适当的辅助装置,使原系统在稳定性、精度和动态性能等方面得以改善,从而满足预定的性能指标要求。

常用的系统综合方法是时域分析法和频域分析法。

2、时域分析法校正思想

用时域分析法综合系统,着眼于系统的闭环零、极点在复平面上的合理分布,可以把对系统性能指标的要求转化为对系统零、极点分布位置的要求。

1)校正方法

一般说来,仅调整未校正系统的增益并不能满足全部指标要求,必须引入零、极点位置适当的校正装置,以改变原来系统的根轨迹形状,迫使已校正系统的根轨迹通过希望主导极点位置,并使系统的实际主导极点位置与希望主导极点位置重合,或接近重合,从而达到校正的目的。

3、频域分析法校正思想

用频域分析法综合系统,可以把对系统性能的要求转化为对系统开环对数频率特性的要求,在开环系统对数频率特性基础上,以满足稳态误差、开环系统截止频率和相角度等要求为出发点,对系统进行校正。

1)开环对数频率特性曲线的意义

开环对数频率特性的低频段能够反映出系统稳态误差大小;中频段基本反映了系统的动态性能和抗干扰性;高频段对系统影响较小,反映系统的复杂性和滤波性能。

2)增益、幅值裕度、相角裕度对Bode 曲线的影响

低频段的增益充分大,以保证稳态误差要求;中频段对数幅频特性斜率一般应等于—20dB/dec,并占据充分宽的频带,以保证系统具备适当的相角裕度;高频段增益应尽快减小,以便使噪声影响减到最小程度。

4、串联校正

闭环控制系统的控制过程是通过误差信号c(t)来进行的,因此串联校正方法也是对系统中的误差信号进行加工。

1)超前网络的影响及原理

超前网络常被用来改善系统的稳定性和动态性能。由于引入误差信号的微分

项,就意味着预先将误差信号的相位超前一定的角度,用来抵消后级元件所产生的迟后,因而使系统的稳定性和动态性能都得到改善。从系统的传递特性上看,引入微分项可以改变系统闭环传递函数的零、极点分布情况。

2)迟后网络的作用与稳态误差减小原理

迟后网络常被用来减小系统的稳态误差。由于引入误差信号的积分项,就意味着把误差积累起来,这将使加在执行元件上的控制信号随着时间的增加而增大,从而使系统的误差减小,直到误差趋近于零为止。这种方法相当于在系统的开环传递函数中增加一个位于原点的极点,从而提高系统的无差阶数,使系统的稳态性能得以改善。

相位迟后网络对系统稳定性的校正作用不在于其相位滞后,而在于其对高频段的衰减。还可看出,α值取决于所要求的低频增益,而τ值的选择要使穿越频率附近的相位特性基本不受网络的影响。合适地选择这些参数,可以保证串人迟后网络减小系统的

稳态误差而对动态性能没有太大的影响。

应当指出,迟后网络校正对高频有衰减作用,这可以提高系统的抗干扰能力,

就会下降,系统带宽变窄。另外,但是,如不加大系统增益,则开环穿越频率ω

c

迟后网络给误差信号带来的相位迟后,这些都会影响系统的快速性。

5、复合网络

1)复合网络的结构

PID校正网络相当于是比例环节、积分环节与微分环节的并联。

2)符合网络的作用

既改善了系统的精度,又改善了系统的动态性能。

自动控制原理课程设计报告

《自动控制原理》 课程设计报告 姓名:高陆及__________ 学号: 1345533107______ 班级: 13电气 1班______ 专业:电气工程及其自动化学院:电气与信息工程学院

江苏科技大学(张家港) 2015年9月

目录 一、设计目的 (3) 二、设计任务 (3) 三、具体要求 (4) 四、设计原理概述 (4) 4.1校正方式的选择 (4) 4.2集中串联校正简述 (5) 4.2.1串联超前校正 (5) 4.2.2串联滞后校正 (5) 4.2.3串联滞后-超前校正 (5) 4.2.4串联校正装置的一般性设计步骤 (5) 五、设计方案及分析 (6) 5.1高阶系统的频域分析 (6) 5.1.1 原系统的频率响应特性及阶跃响应 (7) 5.1.2使用Simulink观察系统性能 (9) 5.1.3 搭建模拟实际电路 (10) 5.1.4 对原系统的性能分析 (12) 5.2校正方案确定与校正结果分析 (13) 5.2.1 采用串联超前网络进行系统校正 (13) 5.2.3 采用串联滞后—超前网络系统进行校正 (18) 5.2.4 使用EWB搭建校正后模拟实际电路 (23) 六、总结 (26)

一、设计目的 1.通过课程设计熟悉频域法分析系统的方法原理 2.通过课程设计掌握滞后—超前校正作用与原理 3.通过在实际电路中校正设计的运用,理解系统校正在实际中的意义 二、设计任务 控制系统为单位负反馈系统,开环传递函数为) 1025.0)(11.0()(++= s s s K s G , 设计滞后-超前串联校正装置,使系统满足下列性能指标: 1、开环增益100K ≥

自动控制原理前五章公式总结

A.阶跃函数 斜坡函数 抛物线函数 脉冲函数 正弦函数 B.典型环节的传递函数 比例环节 惯性环节(非周期环节) 积分环节 微分环节 二阶振荡环节(二阶惯性环节) 延迟环节 C.环节间的连接 串联 并联 反馈 开环传递函数= 前向通道传递函数= 负反馈闭环传递函数 正反馈闭环传递函数 D.梅逊增益公式 E.劳斯判据 劳斯表中第一列所有元素均大于零 s n a 0 a 2 a 4 a 6 …… s n-1 a 1 a 3 a 5 a 7 …… s n-2 b 1 b 2 b 3 b 4 …… s n-3 c 1 c 2 c 3 c 4 …… … … … s 2 f 1 f 2 s 1 g 1 s 0 h 1 ,,,,,,14171313151212131117 16 03151402131201b b b a a c b b b a a c b b b a a c a a a a a b a a a a a b a a a a a b -=-=-=-=-=-= 劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0; 劳斯表中某一行的元素全为零。P(s)=2s 4+6s 2-8。 F.赫尔维茨判据 特征方程式的所有系数均大于零。 ???≥<=0 0)(t A t t r ???≥<=00 0)(t At t t r ?????≥<=02100)(2t At t t r ?????>≤≤<=εε t t z A t t r 0000)(?? ?≥<=0sin 00)(t t A t t r ωK s R s C s G ==)()()(1 )()()(+==Ts K s R s C s G s T s R s C s G i 1)()()(==s T s R s C s G d ==)()()(222 2)(n n n s s K s G ωζωω++=s e s R s C s G τ-==)() ()()()()( ) () ()()()()()()()(211121s G s G s G s X s C s X s X s R s X s R s C s G n n =?== -)()()( )() ()()()()()(2121s G s G s G s R s C s C s C s R s C s G n n +++=+++== ) ()()() (s H s G s E s B =) ()() (s G s E s C =)()(1) ()()()(s H s G s G s R s C s +==Φ) ()(1) ()()()(s H s G s G s R s C s -==Φ??=∑ k k P T

自动控制原理课程设计报告

成绩: 自动控制原理 课程设计报告 学生姓名:黄国盛 班级:工化144 学号:201421714406 指导老师:刘芹 设计时间:2016.11.28-2016.12.2

目录 1.设计任务与要求 (1) 2.设计方法及步骤 (1) 2.1系统的开环增益 (1) 2.2校正前的系统 (1) 2.2.1校正前系统的Bode图和阶跃响应曲线 (1) 2.2.2MATLAB程序 (2) 3.3校正方案选择和设计 (3) 3.3.1校正方案选择及结构图 (3) 3.3.2校正装置参数计算 (3) 3.3.3MATLAB程序 (4) 3.4校正后的系统 (4) 3.4.1校正后系统的Bode图和阶跃响应曲线 (4) 3.4.2MATLAB程序 (6) 3.5系统模拟电路图 (6) 3.5.1未校正系统模拟电路图 (6) 3.5.2校正后系统模拟电路图 (7) 3.5.3校正前、后系统阶跃响应曲线 (8) 4.课程设计小结和心得 (9) 5.参考文献 (10)

1.设计任务与要求 题目2:已知单位负反馈系统被控制对象的开环传递函数 ()() 00.51K G s s s =+用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态及静态性能 指标: (1)在单位斜坡信号作用下,系统的稳态误差0.05ss e rad <; (2)系统校正后,相位裕量45γ> 。 (3)截止频率6/c rad s ω>。 2.设计方法及步骤 2.1系统的开环增益 由稳态误差要求得:20≥K ,取20=K ;得s G 1s 5.0201)s(0.5s 20)s (20+=+=2.2校正前的系统 2.2.1校正前系统的Bode 图和阶跃响应曲线 图2.2.1-1校正前系统的Bode 图

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计 本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用。主要内容包括:古典自动控制理论(PID)设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真。通过本课程设计的实践,掌握自动控制理论工程设计的基本方法与工具。 1 内容 某生产过程设备如图1所示,由液容为C1与C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ?为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ?为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ?为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ?为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ?为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A,B 两液槽的出水管液阻))//((3s m m 。设u 为调节阀开度)(2m 。 已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量。 图1 某生产过程示意图

要求 1. 建立上述系统的数学模型; 2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线 3. 对B 容器的液位分别设计:P,PI,PD,PID 控制器进行控制; 4. 对原系统进行极点配置,将极点配置在-1+j 与-1-j;(极点可以不一样) 5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置); 6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。 用MATLAB 对上述设计分别进行仿真。 (提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ?/流量变化Q ?。) 2 双容液位对象的数学模型的建立及MATLAB 仿真过程 一、对系统数学建模 如图一所示,被控参数2h ?的动态方程可由下面几个关系式导出: 液箱A:dt h d C Q Q i 111?=?-? 液箱B:dt h d C Q Q 22 21?=?-? 111/Q h R ??= 222/Q h R ??= u K Q u i ?=? 消去中间变量,可得: u K h dt h d T T dt h d T T ?=?+?++?222122221)( 式中,21,C C ——两液槽的容量系数 21,R R ——两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =——第二个容积的时间常数 2R K K u =_双容对象的放大系数

自动控制原理作业参考答案(第五章

5.1 (1))(20)(20)(20)(12)(t r t r t c t c t c +=++ (2)21)10)(2()1(20)(s s s s s C ?+++= = s s s s 4 .0110275.02125.02+++-++- 所以 c(t)=4.0275.0125.0102++----t e e t t c(0)=0;c(∞)=∞; (3)单位斜坡响应,则r(t)=t 所以t t c t c t c 2020)(20)(12)(+=++ ,解微分方程加初始条件 解的: 4.04.02)(102++-+=--t e e t c t t c(0)=2, c(∞)=∞; 5.2 (1)t t e e t x 35.06.06.3)(---= (2)t e t x 2)(-= (3) t w n n n t w n n n n n n n e w b w a e w b w a t x )1(22)1(22221 2)1(1 2)1()(----+----+-+ -+----= ξξωξξωξξξωξξξω(4)t a A t a Aa e a a b t x at ωωωωωωωcos sin )()(2 22222+-++++=- 5.3 (1)y(kT)=)4(16 19 )3(45)2(T t T t T t -+-+-δδδ+…… (2) 由y(-2T)=y(-T)=0;可求得y(0)=0,y(T)=1; 则差分方程可改写为y[kT]-y[(k-1)T]+0.5y[(k-2) T]=0;,k=2,3,4…. 则有0))0()()((5.0))()(()(121=++++----y T y z z Y z T y z Y z z Y 2 11 5.015.01)(---+--=z z z z Y =.....125.025.025.05.015431----++++z z z 则y *(t)=0+)5(25.0)4(25.0)3(5.0)2()(T t T t T t T t T t -+-+-+-+-δδδδδ+… (3)y(kT)=k k k k k T T k T T )1(4 )1(4)1(4)1(4++---- 5.4

自控专业设计的方法和步骤

.自控工程设计的任务 自控工程专业设计的任务基本上有以下几个方面: 1.1负责生产装置、辅助工程和公用工程系统的检测、控制、报警、联锁/ 停车, 以及监控/ 管理计算机系统的设计; 1.2负责检测仪表、控制系统及其辅助设备和安装材料的选型设计; 1.3负责监测仪表和控制系统的安装设计; 1.4负责DCS PLC自控系统的配置、功能要求和设备选型,并负责或参加软 件的编制工作; 1.5负责现场仪表的环境防护措施的设计; 1.6负责控制室的设计; 1.7负责生产过程计量系统的设计。 自控工程设计常用的方法是由工艺专业提出条件,自控与工艺专业一起讨论确定控制方案,确定必要的中间储槽及其容量,确定合适的设备余量,确定开、停车以及紧急事故处理方案等。这种设计方法对合理确定控制方案,充分发挥自控专业的主观能动性是有益的。但是在实际设计过程中,尤其对一些新工艺,主要是由工艺专业提出条件并确定控制方案,自控专业进行设计,我们当前基本采用这种方法。 2.自控工程设计的阶段划分和设计内容 当前工程设计的阶段划分,一般分为两个阶段,即初步设计和施工图设计 2.1初步设计 初步设计的主要目的是为了上报有关部门作为审批的依据,并为订货做好必要的准备。它应完成的主要内容为: 设计说明书:给出设计依据、设计原则,提出项目实施的必要性,拟定控制系统的技术方案、仪表选型规定、DCS空制系统的选型及控制策略,并从节能、消防、环境保护以及劳动安全卫生等方面作出设计概述。 工艺控制流程图:在工艺专业流程图的基础上,正确选定所需的检测点及其安装位置,选择必要的被控变量和恰当的操纵变量,绘制于工艺流程图上。图例符号应符合化工部标准《过程检测和控制系统用文字代号和图形符号(HG 20505)》或国标《过程检测和控制流程图用图形符号和文字代号(GB 2625) 》。 主要仪表设备、材料汇总表:汇总所有控制系统所需设备及相应材料,给出名称、数量,为订货以及概算提供依据。 初步设计概算:从建筑工程、设备、安装工程、工器具费等方面进行综合概算。 2.2施工图设计施工图设计是直接应用于施工的图纸设计。当前我们常用的施工图 设计文 件由以下内容组成: 1)图纸目录 2)设计说明书 3)材料表 4)设备明细表 5)工艺专业提资表

自动控制原理第六章课后习题答案

自动控制原理第六章课后习题答案(免费) 线性定常系统的综合 6-1 已知系统状态方程为: ()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????= 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3. 解: 由()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????=可得: (1) 加入状态反馈阵()0 12K k k k =,闭环系统特征多项式为: 32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+- (2) 根据给定的极点值,得期望特征多项式: *32()(1)(2)(3)6116f λλλλλλλ=+++=+++ (3) 比较()f λ与*()f λ各对应项系数,可得:0124,0,8;k k k === 即:()408K =

6-2 有系统: ()2100111,0x x u y x ? -????=+ ? ?-????= (1) 画出模拟结构图。 (2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。 解(1) 模拟结构图如下: (2) 判断系统的能控性; 0111c U ?? =?? -?? 满秩,系统完全能控,可以任意配置极点。 (3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为: ()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式: *2()(3)(3)69f λλλλλ=++=++ 比较()f λ与*()f λ各对应项系数,可解得:011,3k k == 即:[1,3]K =

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

自动控制原理课后习题答案第五章

第 五 章 5-2 若系统单位阶跃响应为 49()1 1.80.8t t h t e e --=-+ 试确定系统的频率特性。 分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。 解:从()h t 中可求得:(0)0,(0)0h h '== 在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为 ()()()H s s R s =Φ? 即 ()()()H s s R s Φ= 其中()s Φ为系统的传递函数,又 1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++ 1()[()]R s L r t s == 则 ()36()()(4)(9)H s s R s s s Φ==++ 令s j ω=,则系统的频率特性为 ()36()()(4)(9)H j j R j j j ωωωωωΦ==++ 5-7 已知系统开环传递函数为 )1s T (s )1s T (K )s (G 12++-= ;(K、T1、T2>0) 当取ω=1时, o 180)j (G -=ω∠,|G(jω)|=0.5。当输入为单位速度信号时,系统 的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。 分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。 解: 由题意知: 2 2211()()1()K T G j T ωωωω+=+ 021()90arctan arctan G j T T ωωω∠=--- 因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即 01()lim ()0.1ss s e E s K →∞=== 所以:10K = 当1ω=时,2 22 11(1)0.51K T G j T +==+ 00 21(1)90arctan arctan 180G j T T ∠=---=-

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

自动控制原理(邹伯敏)第三章答案

自动控制理论第三章作业答案 题3-4 解: 系统的闭环传递函数为 2()()1()1()1 C s G s R s G s s s ==+++ 由二阶系统的标准形式可以得到 11, 2 n ωζ== 因此,上升时间 2.418r d d t s ππβωω--=== 峰值时间 3.6276p d t s πω=== 调整时间:35% 642% 8s n s n t s t s ωζ ωζ?=≈ =?=≈ = 超调量: 100%16.3%p M e =?= 题3-5 解: 22 ()10()(51)10102510.60.5589 n n n C s R s s a s a a ωωζωζ=+++?=?=??????=+==???? ?=闭环传递函数

1.242 100%9.45% p d p t s M e π ω === =?= 3 5% 1.581 4 2% 2.108 s n s n t s t s ωζ ωζ ?=≈= ?=≈= 题3-7 解: 0.1 1.31 100%30% 1 p d p t M e π ω === - =?== 上升时间 超调量 =0.3579 33.64 n ζ ω ? ?? = ? 2 2 1131.9 () (2)24.08 n n G s s s s s ω ζω == ++ 开环传递函数 题3-8 (1) 2 100 () (824) G s s s s = ++ 解:闭环传递函数为 2 ()100 ()(824)100 C s R s s s s = +++ 特征方程为32 8241000 s s s +++= 列出劳斯表: 3 2 1240 81000 11.50 100 s s s s 第一列都是正数,所以系统稳定 (2) 10(1) () (1)(5) s G s s s s + = -+

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

自动控制原理考试试题第七章习题及答案

第七章 非线性控制系统分析 练习题及答案 7-1 设一阶非线性系统的微分方程为 3x x x +-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。 解 令 x =0 得 -+=-=-+=x x x x x x x 321110()()() 系统平衡状态 x e =-+011,, 其中:0=e x :稳定的平衡状态; 1,1+-=e x :不稳定平衡状态。 计算列表,画出相轨迹如图解7-1所示。 可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-x 时,x t ()→∞。 注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~x x 平面上任意分布。 7-2 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。 (1) x x x ++=0 (2) ?? ?+=+=2122112x x x x x x 解 (1) 系统方程为 x -2 -1 -1 3 0 13 1 2 x -6 0 0.385 0 -0.385 0 6 x 11 2 0 1 0 2 11 图解7-1 系统相轨迹

?? ?<=-+I I >=++I )0(0:)0(0:x x x x x x x x 令0x x ==,得平衡点:0e x =。 系统特征方程及特征根: 2 1,2 21,21:10,()2:10, 1.618,0.618 () s s s s s s I II ?++==-±???+-==-+? 稳定的焦点鞍点 (, ) , , x f x x x x dx dx x x x dx dx x x x x x ==--=--==--=-+=αα β11 1 ??? ??? ? <-= >--=) 0(11 :II ) 0(1 1: I x x β αβ α 计算列表 用等倾斜线法绘制系统相平面图如图解7-2(a )所示。

自动控制原理课程设计

物理科学与工程技术学院 课程设计说明书 课题名称:自动控制原理 设计题目:自动控制与检测原理 专业班级:11级自动化 学生姓名:袁 学号:1134307138

自动控制系统 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。 自动检测 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的 质量标准和技术要求目标值而进行的测试、测量等质量检测活动。检测有3个目标:①实际测定产品(含零、部件)的规定质量特性及其指标的量值。② 根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制 自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故障诊断。他是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术

课程内容——设计一个雷达天线伺服控制系统 1 雷达天线伺服控制系统简介 1.1 概述 用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1 所示。

自动控制原理基础教程第三版胡寿松第一章课后答案

1-2 仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 题1-2图仓库大门自动开闭控制系统 解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如下图所示。 1-4 题1-4图为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么? 题1-4图水温控制系统原理图 解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。 其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器

中设定;冷水流量是干扰量。 系统方块图如下图所示。这是一个按干扰补偿的复合控制系统。 1-5 题1-5图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。 题1-5图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。系统方框图见下图。

自动控制原理第五章习题及答案

第五章习题与解答 5-1 试求题5-1图(a)、(b)网络的频率特性。 c u r c (a) (b) 题5-1图 R-C 网络 解 (a)依图: ???? ????? +==+=++= + + =21211112 12111111 22 1 )1(11) ()(R R C R R T C R R R R K s T s K sC R sC R R R s U s U r c ττ ω ωτωωωωω111 21212121) 1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++== (b)依图: ?? ?+==++= + ++ =C R R T C R s T s sC R R sC R s U s U r c )(1 1 11) () (2122222212ττ ω ω τωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++= +++== 5-2 某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(= (2) )452cos(2)30sin() (?--?+=t t t r 题5-2图 反馈控制系统结构图

解 系统闭环传递函数为: 2 1)(+=Φs s 频率特性: 2 244221)(ω ω ωωω+-++=+=Φj j j 幅频特性: 2 41 )(ω ω+= Φj 相频特性: )2arctan()(ωω?-= 系统误差传递函数: ,2 1 )(11)(++=+= Φs s s G s e 则 )2 arctan( arctan )(, 41)(2 2ω ωω?ω ωω-=++= Φj j e e (1)当t t r 2sin )(=时, 2=ω,r m =1 则 ,35.081 )(2== Φ=ωωj 45)2 2 arctan( )2(-=-=j ? 4.186 2 arctan )2(, 79.085 )(2==== Φ=j j e e ?ωω )452sin(35.0)2sin()2( -=-Φ=t t j r c m ss ? )4.182sin(79.0)2sin()2( +=-Φ=t t j r e e e m ss ? (2) 当 )452cos(2)30sin()(?--?+=t t t r 时: ???====2 , 21,12211m m r r ωω 5.26)21arctan()1(45.055)1(-=-=== Φj j ? 4.18)3 1arctan()1(63.0510)1(====Φj j e e ? )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ??+-?Φ-++?Φ= )902cos(7.0)4.3sin(4.0 --+=t t )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ??+-?Φ-++?Φ= )6.262cos(58.1)4.48sin(63.0 --+=t t 5-3 若系统单位阶跃响应

自动控制原理设计

自动控制原理 课程设计报告 一.设计内容 某单位反馈系统的开环传递函数可以写为: ) 2)(1()(++= s s s K s G 试确定系统的开环增益K ,并分析系统的性能,要求:系统闭环极点中有一对共轭复数极点;系统阻尼比5.0=ξ。 设计步骤: 1.用Matlab 绘制此三阶系统的精确根轨迹图,并与概略根轨迹图比较 2.利用根轨迹图与ξβarccos =线的交点确定共轭复极点; 3.确定第三个闭环极点及开环增益K ;

4.参照教材第四章,表4-4“性能指标估算公式表”计算系统的调节时间t s和超调量σ%; 5.用Matlab画出此三阶系统的单位阶跃响应曲线以验证第4步计算的t s和σ%指标; 6.根据主导极点法,可以将此三阶系统在当前K值下降阶为二阶系统。试推导此二阶系统的传递函数,绘制其单位阶跃响应曲线,计算t s和σ% ;将响应曲线与性能指标同原三阶系统相比较; 7.完成上述设计过程之后,将设计结果整理成设计报告,要求有轨迹曲线和响应曲线、计算结果、Matlab程序及相关的分析对比,并在报告中谈谈你对根轨迹法用于控制系统分析与设计的认识与感想。 二.设计过程 1.用Matlab绘制此三阶系统的精确根轨迹图,过程如下: num=1; >> den=conv([1,0],conv([1,1],[1,2])); >> rlocus(num,den);

概略根轨迹图如下,与matlab绘制图比较,虽不精确,但能看出其分离点,渐近线和根轨迹条数。

βarccos =线的交点确定共轭复极点。过程如下:num=1; >> den=conv([1,0],conv([1,1],[1,2])); >> rlocus(num,den); >> sgrid(0.5,[]);

自动控制原理基础教程 第三版 胡寿松 第三章

3-1 设随动系统的微分方程为:T x 0 + x 0 = K2u u = K1[r(t) ?x f ] T f x f + x f = x0 其中T,T f, K2 为正常数。如果在外作用r(t)=1+t 的情况下,使x0 对r(t)的稳态误差不大于正常数ε0 ,试问k1 应满足什么条件? 见习题3-20 解答 3-2 设系统的微分方程式如下: (1)0.2c (t) = 2r(t) (2)0.04c (t) + 0.24c (t) + c(t) = r(t) 试求系统的单位脉冲响应k(t)和单位阶跃响应h(t)。已知全部初始条件为零。解:(1)因为0.2sC(s) = 2R(s)单位脉冲响应:C(s) = 10/ s k(t) = 10 t ≥ 0单位阶跃响应h(t) C(s) = 10/ s2h(t) = 10t t ≥ 0 (2)(0.04s2 + 0.24s +1)C(s) = R(s)C 单位脉冲响应:C k t 单位阶跃响应h(t) C(s) = s[(s + 253) 2 +16] = 1s ?(s +s3+)26 +16 h t 3-3 已知系统脉冲响应如下,试求系统闭环传递函数Φ(s)。 (1)k(t) = 0.0125e?1.25t

(2)k(t) = 5t +10sin(4t + 450 ) (3)k(t) = 0.1(1?e?t /3 )解: (1)Φ(s) = 0.0125 s +1.25 (2)k(t) = 5t +10sin4t cos450 +10cos4t sin450 Φ(s) = s 52 + 5 2 s2 +416 + 5 2 s2 +s 16 = s52 + 5 2 ss2 ++16 4 (3)Φ(s) = 0.1 ?0.1 s s +1/3 3-4 已知二阶系统的单位阶跃响应为 h(t) =10 ?12.5e?1.2t sin(1.6t + 53.1o ) 试求系统的超调量σ%、峰值时间tp和调节时间ts。 解:h(t) = 1?1 2 e?ξωn t n 1?ξβ= arccosξσ% = e?πξ/ p 1?πξ2ωn t s =ξω3.5nξ= cosβ= cos53.10 = 0.6 σ% = e?πξ/ 1?ξ2 = e?π0.6/ 1?0.62 = e?π0.6/ 1?0.62 = 9.5%π π t p = 2ωn = 1.6 =1.96(s)1?ξ t s = 3. 5 == 2.92(s) ) 1 sin(2β ω ξ+ ?t 2 1ξ?t=

自动控制原理第五章

自动控制原理第五章 现代控制理论基础 20世纪50年代诞生,60年代发展。 标志和基础:状态空间法。 特点:揭示系统内部的关系和特性,研究和采用优良和复杂的控制方法。 适用范围:单变量系统,多变量系统,线性定常系统,线性时变系统,非线性系统。 状态:时间域中系统的运动信息。 状态变量:确定系统状态的一组独立(数目最少的)变量。能完全确定系统运动状态而个数又最少的一组变量。 知道初始时刻一组状态变量的值及此后的输入变量,可以确定此后全部状态(或变量)的值。 n阶微分方程描述的n阶系统,状态变量的个数是n。

状态变量的选取不是唯一的。 状态向量:由n个状态变量组成的向量。 状态空间:以状态变量为坐标构成的n维空间。 状态方程:描述系统状态变量之间及其和输入之间的函数关系的一阶微分方程组。 输出方程:描述系统输出变量与状态变量(有时包括输入)之间的函数关系的代数方程。 状态空间表达式:状态方程与输出方程的组合。 线性定常系统状态空间表达式的建立 根据工作原理建立状态空间表达式 选择状态变量:与独立储能元件能量有关的变量,或试选与输出及其导数有关的变量,或任意n个相互独立的变量。

由微分方程和传递函数求状态空间表达式 1.方程不含输入的导数,传递函数无零点 2.方程含有输入的导数,传递函数有零点 根据传函实数极点建状态空间表达式 状态变量个数一定,选取方法很多,系数矩阵多样。z=Px(│P│≠0)是状态向量。 │sI-A│:系统或矩阵的特征多项式。 │sI-A│=0:特征值或特征根,传递函数极点。 同一个系统特征值不变。 状态变量图包括积分器,加法器,比例器。 表示状态变量、输入、输出的关系。 n阶系统有n个积分器。

相关主题
文本预览
相关文档 最新文档