当前位置:文档之家› 训练大规模神经网络并行计算平台

训练大规模神经网络并行计算平台

训练大规模神经网络并行计算平台
训练大规模神经网络并行计算平台

训练大规模神经网络的并行计算平台

摘要:人工神经网络(ANN )已能成功地应用于各种模式识别和数据挖掘中。然而,在大规模数据集上训练人工神经网络会导致数据密集和计算密集。因此,为了获的更高的精度,大规模人工神经网络会有保留的进行耗时训练。在本文中,我们提出cNeural方法,自定义一个并行计算平台,用逆传算法加速训练大型神经网络。不同于许多并行神经网络训练系统作用于数千个训练样本,cNeural可以加快训练拥有数百万个训练样本的大规模数据集。为了实现这个目标,首先, cNeural用HBase存储和并行加载大规模数据集。第二,为了进行快速迭代训练,它提供了一个并行内存计算框架。第三,我们选择一个紧凑的事件驱动消息通信模型,而不是传递即时消息的心跳轮询模式。实验结果表明,cNeural中的数据加载和消息传递的开销时间成本非常低,并且cNeural比基于Hadoop MapReduce解决方案的速度快50倍左右。它还实现了线性的可伸缩性和良好的负载平衡。

关键字:并行计算;神经网络;大数据;快速训练;分布式存储

1 引言

人工神经网络(ANN)已应用于各种数据挖掘和模式识别中,如蛋白质结构分析、语音识别、,手写识别、图像和信号处理[1]。然而, 训练大规模神经网络时会出现计算密集和数据密集。一方面,整个训练工作流程通常需要进行成千上万次的训练步长迭代,这会导致昂贵的计算。另一方面,为了得到可靠的结果,大规模训练数据集通常用于应用程序。因此, 在单一PC机上训练大规模神经网络通常是非常耗时的,有时需要几天或者几周完成,有时甚至不可能完成。因此,大规模神经网络的低训练速度慢限制了它们处理实际应用中复杂和有价值的问题。

另一方面,现实世界的数据量早在前几年就已经爆炸,并且在许多相关领域里,分析大数据已变得相当受欢迎[2]。大数据的情况也适用于神经网络[3]。从直觉讲,大家普遍认为训练大规模样本比训练少量的样本效果好。因此,对于那些基于神经网络的应用程序,训练大规模神经网络在实现最高精度和结果中起着重要的作用。

在本文中,我们设计和实现cNeural方法,一个为训练大规模神经网络而自定义的并行计算平台。在cNeural中,训练工作流分为两个阶段: 加载训练数据和执行训练流程。为了减少数据加载的时间成本,我们把大规模训练数据集存储在HBase中,必要时通过集群会同时加载其中的一个数据到计算节点的内存中。此外, 为了加快迭代训练会采用一个并行内存计算框架。在整个训练过程中,为了合作和进一步的处理,计算节点之间需要相互沟通。在cNeural中,我们采用Apache Avro RPC建立一个事件驱动的消息传递通信框架, Apache Avro RPC有较高的通信效率并且数据结构丰富。我们的平台可以部署在商品硬件,Amazon EC2,甚至是pc机之间的网络互联。

本文分八个部分。第二节描述了相关工作。第三部分,提出基于反向传播训练算法的神经网络的背景。第四部分,介绍并行训练框架和cNeural算法。第五部分,描述用于支持快速训练的数据存储机制。第六部分,说明cNeural中的体系结构概述和主要组成部分。第七部分作出评估。第八部分总结全文。

2 相关工作

许多研究人员一直致力于在并行或分布式计算系统上实现计算上开销很高的ANN算法。相关工作可以追溯到上个世纪的70年代并且现在这个领域的研究依然保持增长。

在早期,研究人员喜欢用特殊用途的硬件来提高训练速度,这些硬件被分为神经元硬件和神经计算机[6]。Glesner和Pochnuller[11] 在他们的书中提出这种特殊用途硬件的概述。应用特殊用途的硬件可以实现快速和高效的运行。但是,它们几乎不具有灵活性和可伸缩性。在上世纪90年代以后,在普通用途的框架上设计并行神经网络成为了主流[12],[13],

如并行计算模型或网格计算模型。这些系统大多应用于集群和多处理器计算机上。但是,以前的工作在管理大规模训练数据集上并没有做出太多的努力。他们通常致力于怎样使神经网络训练并行化以及只在数千个训练样本和兆字节大小的数据上执行实验。

近年来,许多研究人员在大数据上研究训练神经网络。[10] 用HDFS 存储大型数据集并且用MapReduce 方法训练它们。然而,Hadoop 适用处理离线数据密集型的问题而不适用于处理计算密集型问题。因此,在Hadoop 上训练神经网络的速度是缓慢的。GPU 也被用于人工神经网络训练,但是训练数据集的大小受限于GPU 的全局内存[16]。文献[18] 利用大规模的无监督学习可以从无标签数据中提取特性。他们在训练算法上花费很多努力,如模型并行机制和异步随机梯度下降。与以上的研究相比,cNeural 不仅考虑了能加速神经网络训练的并行算法,而且对大数据的管理可以更好地支持并行算法的快速运行作出很多努力。

由于Hadoop 并不适用于迭代处理,很多研究提出了改进的方法,如Twister [19]和HaLoop[20]。他们试图降低初始化工作中的时间成本以及迭代节点之间的数据缓存。[21]提出Spark 方法,一个完全新的内存计算的并行分布式系统。与这些处理引擎相比,cNeural 也实现了并行神经网络训练算法。cNeural 中底层的处理引擎也支持内存计算。此外,我们为了更好的支持一流算法和应用程序而采用自定义的执行程序。

3 背景

在本节中,简要介绍神经网络训练中的反向传播算法。利用多层感知器作为一个典型的例子来描述训练算法。

前馈反向传播神经网络[4]是现在最流行的一种神经网络构架[5]。[4]中证明了被反向传播算法训练的三层前馈神经网络可以逼近任何连续的有任意精度的隐层神经元的非线性函数,如多层感知器。因此, 本节介绍一个与三层前馈感知器的描述相关的算法。三层感知器的结构如图1所示。它包括一个输入层、隐藏层和输出层。同一层的神经元不相通,而相邻层的神经元的权重和偏差完全相连。

基于梯度递减技术的反向传播(BP)[31]是一种监督训练多层前馈神经网络的算法。反向传播算法有两个阶段:前期阶段和后期阶段。

在前期阶段中,输入层接收输入信号并且给隐藏层的每个神经元传播信息。然后,隐藏层局部的处理这些信息,并把这些信息传播给输出层。例如一个输入向量),,,(21m x x x x ,

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

大数据与并行计算

西安科技大学 计算机科学与技术学院 实习报告 课程:大数据和并行计算 班级:网络工程 姓名: 学号:

前言 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 特点具体有: 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。 从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 1.大数据概念及分析 毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。 现实是,许多问题阻碍了大数据技术的发展和实际应用。 因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。 大数据技术涵盖哪些内容? 1.1流处理 伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。 决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理。 1.2并行化 大数据的定义有许多种,以下这种相对有用。“小数据”的情形类似于桌面环境,磁盘存储能力在1GB到10GB之间,“中数据”的数据量在100GB到1TB之间,“大数据”分布式的存储在多台机器上,包含1TB到多个PB的数据。 如果你在分布式数据环境中工作,并且想在很短的时间内处理数据,这就需要分布式处理。 1.3摘要索引 摘要索引是一个对数据创建预计算摘要,以加速查询运行的过程。摘要索引的问题是,你必须为要执行的查询做好计划,因此它有所限制。 数据增长飞速,对摘要索引的要求远不会停止,不论是长期考虑还是短期,供应商必须对摘要索引的制定有一个确定的策略。 1.4数据可视化 可视化工具有两大类。

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

基于FPGA的并行计算技术

基于FPGA的并行计算技术 更新于2012-03-13 17:15:57 文章出处:互联网 1 微处理器与FPGA 微处理器普遍采用冯·诺依曼结构,即存储程序型计算机结构,主要包括存储器和运算器2个子系统。其从存储器读取数据和指令到运算器,运算结果储存到存储器,然后进行下一次读取-运算-储存的操作过程。通过开发专门的数据和指令组合,即控制程序,微处理器就可以完成各种计算任务。冯·诺依曼型计算机成功地把信息处理系统分成了硬件设备和软件程序两部分,使得众多信息处理问题都可以在通用的硬件平台上处理,只需要开发具体的应用软件,从而极大地降低了开发信息处理系统的复杂性。然而,冯·诺依曼型计算机也有不足之处,由于数据和指令必须在存储器和运算器之间传输才能完成运算,使得计算速度受到存储器和运算器之间信息传输速度的限制,形成所谓的冯·诺依曼瓶颈[1];同时,由于运算任务被分解成一系列依次执行的读取-运算-储存过程,所以运算过程在本质上是串行的,使并行计算模式在冯·诺依曼型计算机上的应用受到限制。 受到半导体物理过程的限制,微处理器运算速度的提高已经趋于缓慢,基于多核处理器或者集群计算机的并行计算技术已经逐渐成为提高计算机运算性能的主要手段。并行计算设备中包含多个微处理器,可以同时对多组数据进行处理,从而提高系统的数据处理能力。基于集群计算机的超级计算机已经成为解决大型科学和工程问题的有利工具。然而,由于并行计算设备中的微处理器同样受冯·诺依曼瓶颈的制约,所以在处理一些数据密集型,如图像分析等问题时,计算速度和性价比不理想。 现场可编程门阵列(FPGA)是一种新型的数字电路。传统的数字电路芯片都具有固定的电路和功能,而FPGA可以直接下载用户现场设计的数字电路。FPGA技术颠覆了数字电路传统的设计-流片-封装的工艺过程,直接在成品PFGA芯片上开发新的数字电路,极大地扩大了专用数字电路的用户范围和应用领域。自从20世纪80年代出现以来,FPGA技术迅速发展,FPGA芯片的晶体管数量从最初的数万个迅速发展到现在的数十亿个晶体管[2],FPGA 的应用范围也从简单的逻辑控制电路发展成为重要的高性能计算平台。 FPGA芯片中的每个逻辑门在每个时钟周期都同时进行着某种逻辑运算,因此FPGA本质上是一个超大规模的并行计算设备,非常适合用于开发并行计算应用。目前,FPGA已被成功地应用到分子动力学、基因组测序、神经网路、人工大脑、图像处理、机器博弈等领域,取得了数十到数千倍的速度提高和优异的性价比[3-18]。

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由 IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助 DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署 DNN 的关键。 论文地址: 本文旨在提供一个关于实现 DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个 DNN 综述——讨论了支持 DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低 DNN 计算成本。本文也会对帮助研究者和从业者快速上手 DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的 DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解 DNN 的关键设计考量;通过基准和对比指标评估不同的 DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同 DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础 [1]。由于 DNN 在语音识别 [2] 和图像识别 [3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些 DNN 被部署到了从自动驾驶汽车 [4]、癌症检测 [5] 到复杂游戏 [6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而 DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而 DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是 GPU),已经成为许多 DNN 处理的砥柱,但提供对 DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对 DNN、理解 DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下: Section II 给出了 DNN 为什么很重要的背景、历史和应用。 Section III 给出了 DNN 基础组件的概述,还有目前流行使用的 DNN 模型。 Section IV 描述了 DNN 研发所能用到的各种资源。 Section V 描述了处理 DNN 用到的各种硬件平台,以及在不影响准确率的情况下改进吞吐量(thoughtput)和能量的各种优化方法(即产生 bit-wise identical 结果)。 Section VI 讨论了混合信号回路和新的存储技术如何被用于近数据处理(near-data processing),从而解决 DNN 中数据流通时面临的吞吐量和能量消耗难题。 Section VII 描述了各种用来改进 DNN 吞吐量和能耗的联合算法和硬件优化,同时最小化对准确率的影响。 Section VIII 描述了对比 DNN 设计时应该考虑的关键标准。

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.doczj.com/doc/8f4955390.html, Eric Haskin haskin@https://www.doczj.com/doc/8f4955390.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

关于并行计算和人工神经网络的若干观点

关于并行计算和人工神经网络的若干观点 廖添[ Tain L. ] 2015年5月2日星期六 前言 自从几年前开始关注图形绘制渲染和图像识别方面到现在,我意识到一些关于传统串行计算方式和这几个领域之间存在的关系和矛盾,从而产生了若干观点和想法。因此,我打算利用接下来的文字来记录和阐述我的观点。当然,这些都只是我的个人观点和想法,也并没有其它特殊意图,只希望能够通过此文章与感兴趣之人交流意见即可。 关于并行计算 从第一台计算机诞生至今,几乎所有的计算设备,用于特殊研究的计算机除外,都采用串行计算的思想对数据进行处理。这也就是众所周知的以传统中央处理器为计算核心的相关体系结构,比如冯·诺依曼结构(称普林斯顿结构)和哈佛结构。在这些体系中的中央处理器负责的内容非常简单,即按照先后顺序从内存中读取指令、数据然后计算出结果传回内存,或者是对其它设备按顺序下达指令和按顺序访问数据。现今的计算机之所以如此强大是因为电信号的响应速度非常迅速,以至于中央处理器的每个指令的完成速度非常短暂,因此这个性质允许我们在可以接受的时间内完成多到难以计数的指令操作。快速的串行运算能够胜任非常多的实际需求,而且至今为止它都工作地非常完美,我们不得不承认它是个非常实用的计算操作原理。 但人的欲望是无止境的,大概地球上最得寸进尺的生物就是人类了吧。 人们从未停下提升中央处理计算速度的脚步,也就是一直在想方设法将每个单位指令的操作时间降到工艺极限。提升计算速度就会遇到功耗提升、降低工艺等多方面问题。不仅如此,单靠中央处理器的速度提升无法解决缓存、内存、数据总线、硬盘速度等等其它设备的问题,从而导致整个计算机系统或结构的速度难有大幅度提升。 这时,芯片制造商意识到他们难以提供按摩尔定律增长的单核的计算速度时,他们转向为提供按摩尔定律增长的计算核数。这也就是为什么市面上的芯片核数不断增长但单核速率

并行计算环境搭建

并行计算环境搭建 一.搭建并调试并行计算环境MPI的详细过程。 1.首先,我们选择在Windows XP平台下安装MPICH。第一步确保Windows平台下安装上了.net框架。 2.在并行环境的每台机子上创建相同的用户名和密码,并使该平台下的各台主机在相同的工作组中。 3.登陆到新创建的帐号下,安装MPICH软件,在选择安装路径时,每台机子的安装路径要确保一致。安装过程中,需要输入一致的passphrase,也即本机的用户名。 4.安装好软件后,要对并行环境进行配置(分为两步): 第一步:注册。在每台机器上运行wmpiregister,按照提示输入帐号和密码,即 本机的登录用户名和密码。 第二步:配置主机。在并行环境下,我们只有一台主机,其他机子作为端结点。 运行主机上的wmpiconfig,在界面左侧栏目中选择TNP工作组,点击“select”按 钮,此时主机会在网络中搜索配置好并行环境的其他机子。配置好并行环境的其他 机子会出现绿色状态,点击“apply”按钮,最后点击“OK”按钮。 5.在并行环境下运行的必须是.exe文件,所以我们必须要对并行程序进行编译并生成.exe文件。为此我们选择Visual C++6.0编译器对我们的C语言程序进行编译, 在编译过程中,主要要配置编译器环境: (1)在编译器环境下选择“工程”,在“link”选项卡的“object/library modules” 中输入mpi.lib,然后点击“OK”按钮。 (2)选择“选项”,点击“路径”选项卡,在“show directories for”下选择“Include files”,在“Directories”中输入MPICH软件中“Include”文件夹的路径; 在“show directories for”下选择“Library files”,在“Directories”中输入 MPICH软件中Library文件夹的路径,点击“OK”。 (3)对并行程序进行编译、链接,并生成.exe文件。 6.将生成的.exe文件拷贝到并行环境下的各台机子上,并确保每台机子的存放路径要相同。 7.在主机上运行“wmpiexec”,在Application中选择生成的.exe文件;输入要执行此程序的进程数,选中“more options”选项卡,在“host”栏中输入主机和各个端结 点的计算机名,点击“execute”执行程序。 二.搭建并调试并行计算环境MPI的详细过程。 1.以管理员身份登录每台计算机,在所有连接的计算机上建立一个同样的工作组,命名为Mshome,并在该工作组下建立相同的帐户,名为GM,密码为GM。 2.安装文件Microsoft NET Framwork1.1,将.NET框架安装到每台计算机上,再安装MPI到每台主机。在安装MPI的过程中,必须输入相同的passphrase,在此输 入之前已建好的帐户名GM。 3.安装好MPI后,再对每台计算机进行注册和配置,其中注册必须每台计算机都要进行,配置只在主控计算机进行: (1)注册:将先前在每台计算机上申请的帐号和密码注册到MPI中去,这样

(完整版)深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

联想网御的多核并行计算网络安全平台

龙源期刊网 https://www.doczj.com/doc/8f4955390.html, 联想网御的多核并行计算网络安全平台 作者:李江力王智民 来源:《中国计算机报》2008年第44期 随着网络带宽的不断发展,网络如何安全、高效地运行逐渐成为人们关注的焦点。上期文章《多核技术开创万兆时代》指出,经过多年不断的努力探索,在历经了高主频CPU、FPGA、ASIC、NP后,我们迎来了多核时代。是不是有了多核,就能够满足当前人们对网络安全处理能力的需求呢?答案也许并非那么简单。 本文将从多核处理器带来的机遇与挑战、多核编程的困境、联想网御的解决方案三个方面来详细阐述多核并行计算相关的技术问题。 多核处理器带来机遇与挑战 通常我们所说的多核处理器是指CMP(ChipMulti-processors)的芯片结构。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(Symmetric Multi-processors,对称多处理器)集成到同一芯片内,各个处理器并行执行,在同一个时刻同时有多条指令在执行。 多核处理器的出现使得人们从以前的单纯靠提高CPU主频的“死胡同”走了出来,同时又使得软件开发人员能够采用高级语言进行编程,看似是一个比较完美的技术方案,但同时我们也应该看到多核处理器也给业界带来了一系列的挑战。 同构与异构 CMP的构成分成同构和异构两类,同构是指内部核的结构是相同的,而异构是指内部的核结构是不同的。核内是同构还是异构,对不同的应用,带来的性能影响是不同的。 核间通信 多核处理器各个核之间通信是必然的事情,高效的核间通信机制将是多核处理器性能的重要保障。目前主流的芯片内部高效通信机制有两种,一种是基于总线共享的Cache结构,一种是基于片上的互连结构。采用第一种还是第二种,也是设计多核处理器的时候必须考虑的问题。 并行编程

并行计算大纲

附件二: 成都信息工程学院 硕士研究生课程教学大纲 课程名称(中):并行计算 课程名称(英):Parallel Computing 课程编号: 开课单位:软件工程系 预修课程:C语言,Linux操作系统 适用专业:计算机,电子类,大气类1年级研究生 课程性质:学位课 学时:32学时 学分:2学分 考核方式:考试 一、教学目的与要求(说明本课程同专业培养目标、研究方向、培养要求的关 系,及与前后相关课程的联系) 通过本课程的学习,使学生可以对并行程序设计有一个具体的基本的概念,对MPI有比较全面的了解,掌握MPI的基本功能,并且可以编写基本的MPI程序,可以用MPI来解决实际的比较基本的并行计算问题。具体如下: 从内容上,使学生了解并行计算的基本发展过程及现在的发展水平,掌握并行系统的组织结构,并行机群系统的构建方法。掌握MPI并行编程知识,了解并行技术的遗传算法迭代算法中的应用,了解并行监控系统的构成。 从能力方面,要求学生掌握并行机群系统的实际配置方法,能用MPI编制一般难度的并行算法程序并在机群系统上实现。 从教学方法上,采用启发、引导的教学方法,结合多媒体教学方式,提高学生学习兴趣。 二、课程内容简介 本课程以并行计算为主题,对并行计算技术的发展,应用以及并行计算机模型进行概述,与此同时系统介绍了MPI并行编程环境的使用与搭建,旨在帮助学生完成简单的并行程序设计,掌握并行计算平台的搭建,为深入学习并行计算技术打下坚实的基础。

三、主要章节和学时分(含相应章节内容的教学方式,如理论教学、实验教学、 上机、自学、综述文献等) 主要章节章节主要内容简述教学方式学时备注 第1章并行计算的发展及应用1.并行计算技术的发展过 程 2.并行系统在现代技术中 的应用 理论教学2学时 第2章并行计算机系统与结构1、典型并行计算机系统简 介 2、当代并行计算机体系结 构 理论教学2学时 第3章 PC机群系统的搭建1、机群系统概述 2、机群系统的搭建方法 3、机群系统的性能测试方 法 理论教学4学时 第4章机群系统的MPI编程1、MPI语言概述 2、MPI的六个基本函数 3、MPI的消息 4、点对点通讯 5、群集通讯 6、MPI的扩展 理论教学8学时 第5章实践环节上机完成并行机群系统的 配置。 实现简单并行计算程序的 编写。上机16学 时 (此页可附页) 四、采用教材(正式出版教材要求注明教材名称、作者姓名、出版社、出版时间;自编教材要求注明是否成册、编写者姓名、编写者职称、字数等) 《并行计算应用及实战》机械工业出版社王鹏主编 2008

什么是神经网络算法

算法起源 在思维学中,人类的大脑的思维分为:逻辑思维、直观思维、和灵感思维三种基本方式。 而神经网络就是利用其算法特点来模拟人脑思维的第二种方式,它是一个非线性动力学系统,其特点就是信息分布式存储和并行协同处理,虽然单个神经元的结构及其简单,功能有限,但是如果大量的神经元构成的网络系统所能实现的行为确实及其丰富多彩的。其实简单点讲就是利用该算法来模拟人类大脑来进行推理和验证的。 我们先简要的分析下人类大脑的工作过程,我小心翼翼的在网上找到了一张勉强看起来舒服的大脑图片 嗯,看着有那么点意思了,起码看起来舒服点,那还是在19世纪末,有一位叫做:Waldege 的大牛创建了神经元学活,他说人类复杂的神经系统是由数目繁多的神经元组成,说大脑皮层包括100亿个以上的神经元,每立方毫米源数万个,汗..我想的是典型的大数据。他们 相互联系形成神经网络,通过感官器官和神经来接受来自身体外的各种信息(在神经网络算法中我们称:训练)传递中枢神经,然后经过对信息的分析和综合,再通过运动神经发出控制信息(比如我在博客园敲文字),依次来实现机体与外部环境的联系。 神经元这玩意跟其它细胞一样,包括:细胞核、细胞质和细胞核,但是它还有比较特殊的,比如有许多突起,就跟上面的那个图片一样,分为:细胞体、轴突和树突三分部。细胞体内有细胞核,突起的作用是传递信息。树突的作用是作为引入输入信息的突起,而轴突是作为输出端的突起,但它只有一个。 也就是说一个神经元它有N个输入(树突),然后经过信息加工(细胞核),然后只有一 个输出(轴突)。而神经元之间四通过树突和另一个神经元的轴突相联系,同时进行着信息传递和加工。我去...好复杂....

基于Abaqus软件的并行计算异构集群平台的搭建

第31卷第5期 2011年10月地震工程与工程振动JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.31No.5Oct.2011收稿日期:2011-05-27;修订日期:2011-07-25 基金项目:国家公益性行业(地震)科研专项(200808022);江苏省自然科学基金项目(BK2008368) 作者简介:毛昆明(1985-),男,博士研究生,主要从事轨道交通引起的环境振动方面研究.E- mail :kun -ming@yeah.net 通讯作者:陈国兴(1963-),男,教授,博士,主要从事土动力学与岩土地震工程研究.E- mail :gxchen@njut.edu.cn 文章编号:1000-1301(2011)05-0184-06 基于Abaqus 软件的并行计算异构集群平台的搭建 毛昆明,陈国兴 (南京工业大学岩土工程研究所,江苏南京210009) 摘要:在异构集群上充分利用新、旧硬件资源调度计算任务是实现集群高性能并行计算的难点。 通过测试已搭建集群服务器的CPU 和内存对Abaqus 软件计算速度的影响,发现CPU 的主频对 Abaqus /Explicit 模块计算速度的影响大,CPU 的缓存对Abaqus /Standard 模块速度影响大;当内存满 足计算任务的最小需求时, 增加内存对计算速度无任何影响;当内存不足时,计算速度会大幅减慢。据此测试结果,新增4台服务器作为计算节点和一台Infiniband QDR 交换机作为交换节点,搭建了新 的异构集群, 性能测试结果表明:相对于千兆以太网络交换机,Infiniband QDR 交换机的并行计算效率更好,且集群的计算节点越多越显著;Abaqus /Standard 模块并行计算效率的提高幅度要比Abaqus / Explicit 模块的稍高一些。针对异构集群硬件构架相差较大的2批新、旧硬件,设置了2个管理节点、 2个网络节点、2个存储节点,充分利用了新、旧硬件资源,高效地实现了在一个异构集群平台上提交 与下载任务。 关键词:异构集群;Abaqus 软件;并行计算;Infiniband QDR 交换机 中图分类号:P315.69文献标志码:A Construction of parallel computing heterogeneous cluster platform based on Abaqus software MAO Kunming ,CHEN Guoxing (Institute of Geotechnical Engineering ,Nanjing University of Technology ,Nanjing 210009,China ) Abstract :Taking full advantage of new and old hardware resources on the heterogeneous cluster to schedule compu-ting jobs is a difficult point in the realization of high performance parallel computing.The influence of servers ’CPU and memory on computing speed of Abaqus software on the cluster which has been constructed is tested.The conclusions are drawn :CPU clock speed has a great effect on the computing speed of Abaqus /Explicit module and CPU internal cache has a great effect on computing speed of Abaqus /Standard module.When memory satisfies the minimum requirement of a computing job ,increasing memory has no effect on the computing speed.When memory is insufficient ,computing speed will slow down sharply.According to the testing results ,four servers as the compu- ting nodes and an Infiniband QDR switch as the network node are added , and then the heterogeneous cluster is con-structed.Parallel computing speed of the Infiniband QDR switch is tested ,and the result shows that the parallel effect of the Infiniband QDR switch is superior to the gigabit ethernet switch.The more the number of computing nodes is ,the better the parallel effect is.Abaqus /Standard module ’ s elevated range of parallel computing efficien-cy is slightly better than Abaqus /Explicit module ’s.Specific to two groups of new and old equipment whose archi-

并行计算简介

并行计算简介 Blaise Barney, 劳伦斯利弗莫尔国家实验室 译者:卢洋,同济大学 原文地址:https://https://www.doczj.com/doc/8f4955390.html,/tutorials/parallel_comp/ 目录 1 摘要 2 概述 2.1 什么是并行计算 2.2 为什么使用并行计算 3 概念和术语 3.1 冯诺依曼体系结构 3.2 Flynn经典分类法 3.3 一些通用的并行术语 4 并行计算机存储结构 4.1 共享内存 4.2 分布式内存 4.3 混合型分布式共享内存 5 并行编程模型 5.1 概览 5.2 共享内存模型 5.3 线程模型 5.4 消息传递模型 5.5 数据并行模型 5.6 其他模型 6 设计并行程序 6.1 自动化vs. 手工并行化 6.2 问题的理解和程序 6.3 问题分解

6.4 通信 6.5 同步 6.6 数据依赖 6.7 负载平衡 6.8 粒度 6.9 I/O 6.10 并行程序设计的限制和消耗 6.11 性能分析与调整 7 并行示例 7.1 数组程序 7.2 PI 的计算 7.3 简单的加热等式 7.4 一维的波等式 8 参考和更多信息 1 摘要 为了让新手更加容易熟悉此话题,本教程覆盖了并行计算中比较基础的部分。首先在概述中介绍的是与并行计算相关的术语和概念。然后探索并行存储模型和编程模型这两个话题。之后讨论一些并行程序设计相关的问题。本教程还包含了几个将简单串行化程序并行化的例子。无基础亦可阅读。 2 概述 2.1 什么是并行计算 传统上,一般的软件设计都是串行式计算: -软件在一台只有一个CPU的电脑上运行; -问题被分解成离散的指令序列; -指令被一条接一条的执行; -在任何时间CPU上最多只有一条指令在运行 图

神经网络11大常见陷阱及应对方法

深度学习的这些坑你都遇到过吗?神 经网络11 大常见陷阱及应对方法【新智元导读】如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据、正则化、学习率、激活函数、网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料。 如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。 1.忘记规范化数据 2.忘记检查结果 3.忘记预处理数据 4.忘记使用正则化 5.使用的batch太大 6.使用了不正确的学习率 7.在最后层使用了错误的激活函数 8.你的网络包含了Bad Gradients 9.初始化网络权重不正确 10.你使用的网络太深了 11.使用隐藏单元的数量不对 忘记规范化数据了

问题描述 在使用神经网络时,思考如何正确地规范化数据是非常重要的。这是一个无法改变的步骤——假如这一步骤没有小心、正确地做,你的网络就几乎不可能工作。由于这个步骤非常重要,在深度学习社区中也是众所周知的,所以它很少在论文中被提及,因此初学者常常在这一步出错。 怎样解决? 一般来说,规范化(normalization)的意思是:将数据减去均值,再除以其方差。通常这是对每个输入和输出特征单独做的,但你可能经常会希望对特征组做或特别主翼处理某些特征的规范化。 为什么? 我们需要对数据进行规范化的主要原因是大部分的神经网络流程假设输入和输出数据都以一个约是1的标准差和约是0的均值分布。这些假设在深度学习文献中到处都是,从权重初始化、激活函数到训练网络的优化算法。 还需要注意 未训练的神经网络通常会输出约在-1到1范围之间的值。如果你希望输出其他范围的值(例如RBG图像以0-255范围的字节存储)会出现一些问题。在开始训练时,网络会非常不稳定,因为比如说预期值是255,网络产生的值是-1或1——这会被大多数用于训练神经网络的优化算法认为是严重的错误。这会产生过大的梯度,可能导致梯度爆炸。如果不爆炸,那么训练的前几个阶段就是浪费的,因为网络首先学习的是将输出值缩小到大致是预期的范围。如果规范化了数据(在这种情况下,你可以简单地将数值除以128再减去1),就不会发生这些问题。 一般来说,神经网络中特征的规模也决定了其重要性。如果输出中的有一个特征规模很大,那么与其他特征相比它会产生更大的错误。类似地,输入中的大规模特征将主导网络并导致下游发生更大的变化。因此,使用神经网络库的自动规范化往往是不够的,这些神经网络库会在每个特征的基础上盲目地减去平均值并除以方差。你可能有一个输入特征,通常范围在0.0到0.001之间——这个特征的范围如此之小,因为它是一个不重要的特征(在这种情况下,你可能不想重新scale),或者因为与其他特征相比它有一些小的单元(在这种情

相关主题
文本预览
相关文档 最新文档