当前位置:文档之家› MD330闭环速度控制模式收卷典型应用

MD330闭环速度控制模式收卷典型应用

MD330闭环速度控制模式收卷典型应用
MD330闭环速度控制模式收卷典型应用

MD330闭环速度控制模式收卷典型应用

一. 闭环速度闭环速度控制控制控制模式简介模式简介

MD330参数设置及调试需要《MD330张力控制专用变频器用户手册》与《MD320用户手册》结合使用。前者仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考后者来设置。当张力控制模式选为无效(FH-00=0)时,变频器的功能与MD320完全相同。

MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。在没有卷径变化的场合实现恒转矩控制,建议使用MD320或MD380变频器。

选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。

闭环速度控制模式收卷典型应用示意图闭环速度控制模式收卷典型应用示意图::

闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。

该控制模式的原理是通过材料线速度与实际卷径计算一个匹配频率设定值f1,再通过张力(位置)

反馈信号进行PID 运算产生一个频率调整值f2,最终频率输出为f=f1+f2。f1可以基本使收(放)卷辊的线速度与材料线速度基本匹配,然后f2部分只需稍微调整即可满足控制需求,很好地解决了闭环控制中响应快速性和控制稳定性地矛盾。

这种模式下,张力设定部分无效,在FA-00 PID 给定源中设定系统控制的目标值,控制的结果是

使张力(位置)的反馈信号稳定在PID 的给定值上。特别注意,在用位置信号(如张力摆杆、浮动辊)做反馈时,改变设定值(PID 给定)不一定能够改变实际张力的大小,改变张力的大小需要更改机械上的配置如张力摆杆或浮动辊的配重。

与闭环速度模式有关的功能模块与闭环速度模式有关的功能模块::

1、PID 部分:主要在FA 组设定,FH 组中第二组PID 参数可以起到辅助作用。在其他部分都设定无误后,最终的控制效果需要调整PID 参数。

2、线速度输入部分:这部分比较重要,有两个作用,一是通过线速度计算变频器的匹配频率(见上面的描述),二是可通过线速度计算卷径。

3、卷径计算部分:计算实际卷径,变频器获取线速度和实际卷径后可以获取变频器的匹配频率。

当用线速度计算卷径时,若变频器算得的卷径与实际卷径有偏差,说明线速度输入有偏差,通过卷径计算结果可以修正线速度输入。注意一点的是用线速度和卷径计算的匹配频率值并非变频器的实际输出频率,用线速度和运行频率计算卷径时用到的运行频率是变频器的实际输出频率,所以逻辑上并不矛盾。

4、第二组PID 参数部分:当只用一组PID 参数无法满足全程的控制效果时,可以利用第二组PID

参数,例如在小卷时调整第一组PID 参数获得较好效果,满卷时调整第二组PID 参数获得较好效果。根据卷径变化(从小卷到满卷),PID 参数连续自动整定,满足全程控制效果。 闭环速度控制模式机械传动比设计需注意的问题闭环速度控制模式机械传动比设计需注意的问题::

速度控制模式下机械传动比对变频器输出频率的影响:

设机械传动比=电机转速/卷轴转速=K :1 ,卷径为R (单位:m ),系统线速度为V (单位:m/min ).

那么换算到电机轴的转速为:R

KV

n π2=

变频器输出频率为:)

1(120)1(60s R pKV

s pn f ?=?=

π(式中p 为电机极对数,s 为转差率)

由此可见,当系统工作在一定线速度时,由于收卷直径的不断增大,输出频率肯定是随着卷径的增

大而减小的,甚至有可能减到0的时候,至于能否、何时减到0,则由上式决定。需要考虑在最小工作线速度下卷径达到最大时输出频率会不会减到0,以及在最高工作线速度下卷径最小时输出频率会不会过高。另外,为了充分发挥电机调速性能,应尽量使得在正常工作线速度下电机工作在额定频率附近。依上述原则考虑,可设计出合适的收放卷的机械传动比。 二. 闭环速度控制模式闭环速度控制模式收卷变频器接线方式收卷变频器接线方式

控制端子控制端子功能配置功能配置功能配置说明说明说明::

DI1:正转运行信号

DI2:卷径复位 DI3:预驱动端子

(仅当自动换卷用到预驱动功能时才需要)

DI4:故障复位

DI5:PULSE 脉冲输入

(当线速度输入源选择PULSE 输入FH-27=4或卷径计算方法选择通过厚度累计计算FH-10=1或PULSE 输入FH-10=5时才需要)

AI1:张力检测电位器反馈信号 AI2:线速度输入信号 (当线速度输入源选择AI2即FH-27=2时需要,一般由主机变频AO 或PLC 提供)

AO1:运行频率表征信号(视需要使用) TA/TC :故障输出信号(视需要使用)

PG卡与编码器接线

(MD330标配MD32PG卡,当选择有速度传感器矢量控制F0-01=1时,需要电机配备编码器,并将编码器输出信号接到PG卡上)

开路集电极输出编码器连接示意图:

推挽式输出编码器连接示意图:

三.参数设置及调试

1. 正确输入电机相关参数正确输入电机相关参数,,速度模式试运行速度模式试运行,,确保变频确保变频器驱动电机正常运转器驱动电机正常运转器驱动电机正常运转。。 序号 功能码 设定值 说 明 0

无速度传感器矢量控制(SVC ),必须调谐通过后电机才能正常运转! 1 有速度传感器矢量控制(VC ),必须调谐通过后电机才能正常运转! 1 F0-01 2 V/F 控制

2 F0-02 0 请保持出厂默认值0,以便能够进行调谐操作!

3 F1-01 依照电机铭牌输入--电机额定功率

4 F1-02 依照电机铭牌输入--电机额定电压

5 F1-03 依照电机铭牌输入--电机额定电流

6 F1-04 依照电机铭牌输入--电机额定频率

7 F1-05 依照电机铭牌输入--电机额定转速

8

F2-11

编码器线数(每圈脉冲数),当且仅当F0-01=1时必须输入!

9 F1-11 1或2

静止调谐。将该参数设为1后,会显示“TUNE ”并闪烁,按下RUN 键,“TUNE ”停止闪烁,持续数秒后“TUNE ”消失,如果整个过程没有出现报警情况,则表示调谐通过!

完整调谐。必须脱开电机轴端所有负载必须脱开电机轴端所有负载必须脱开电机轴端所有负载!!如将该参数设为2,按下RUN 运行键,听到电机响两声后,电机会旋转起来,运行大概20秒后,电机自动停下,如果整个过程没有出现报警情况,则表示调谐通过!

确认变频器能否驱动确认变频器能否驱动电机电机电机正常正常正常运转运转运转::

V/F 控制设好电机参数或者矢量控制调谐通过之后,应试运行确认变频器驱动电机运转是否良好。修改F0-08的值,从5Hz →15Hz →30Hz →50H z 变化,按下RUN 运行键,通过操作面板查看电机工作电流,如果电流在变频器额定电流的50%之内,则表明电机驱动正常。只有电机正常运转了,才能进行后续的调试工作。

较为常见闭环矢量控制电机运转不正常,多数情况下是电机编码器线数没有设对、编码器断线、编码器AB 反相或编码器联轴器松脱打滑导致,请务必多加细致检查。

2. 通用参数设置

3. FH 组张力控制专用张力控制专用参数设置参数设置 序号 功能码 设定值 说 明

10 F0-02 1

端子控制有效 11 F0-10 最大频率 最大频率,出厂默认50Hz.应设为最高线速度下卷径最小时的最大输出频率

12 F0-17 2

设置加速时间(根据实际情况设定) 13 F0-18 2

设置减速时间(根据实际情况设定) 14 F4-00 1

DI1设为正转指令 15 F4-01 31

DI2 设为卷径复位端子 16 F4-02 34

DI3设为预驱动端子,仅当自动换卷用到预驱动功能时才需要 17 F4-03 9 DI4故障复位 30 DI5—脉冲频率输入(当线速度输入源选择PULSE 输入时即FH-27=4或卷径计算方法选择PULSE 输入FH-10=5时)

18 F4-04 35

DI5—计圈信号(当卷径计算方法选择通过厚度累计计算即FH-10=1时) 19 F4-13 实际值 AI1最小输入,张力电位器反馈的最小值 20 F4-15 实际值

AI1最大输入,张力电位器反馈的最大值

21 F4-20 10

AI2最大输入,线速度输入模拟信号最大值,通常默认10V 符合实际值 22 F4-30 实际值

脉冲输入最大频率 (仅当F4-04=30时需要设定)

23 FA-00 0

PID 给定源,通常设置为0---由FA-01键盘给定即可(出厂默认值) 24 FA-01 50% PID 给定,浮动棍平衡位置时浮棍电位器反馈值,通常为50%(出厂默认) 25 FA-02 0 PID 反馈源,设置为0---AI1为反馈源(出厂默认值) 26 FA-03 0 PID 作用方向,设置为0---正方向(出厂默认值)

27 FA-05 20.0 比例增益P ,用于调节控制器响应强度、快慢,视实际收卷效果调整。 28 FA-06 2.00 积分时间I ,用于消除稳态误差,视实际收卷效果调整。

29 FA-07 0.00 微分时间D ,用于预测误差变化趋势实施超前调节。视实际收卷效果调整。 30

FA-08

2.00

PID 反转截止频率,PID 调节器输出负向频率值上限,根据需要调大放宽;

序号 功能码 设定值 说 明

31 FH-00 2 闭环速度控制模式 32 FH-01 0 卷曲模式---收卷

33 FH-03 1.0 机械传动比=电机转速/卷轴转速,必须根据传动机械准确设置! 0 卷径计算方式---通过线速度计算,通常采用此种方式! 34 FH-10 1 卷径计算方式---通过厚度累计计算,适用布匹等厚度均匀的材料 35 FH-11 500 最大卷径(根据实际情况设定) 36 FH-12 100 卷轴直径(根据实际情况设定)

37

FH-13

初始卷径源,设为0由FH-12~FH-16设定;出厂未使用初始卷径选择端子,因此系统默认初始卷径为系统默认初始卷径为FH-12即空心卷径即空心卷径。如需要初始卷径不从空心卷径开始算起,可定义1或2个DI 端子为初始卷径选择端子(32#、33#功能,如此便可切换到由FH-14~FH-16设置的另外三个初始卷径。

38 FH-19 实际值

每圈脉冲数,指卷轴旋转一圈,DI5接入的计圈信号有多少个脉冲。仅当卷径计算方法选择通过厚度累计计算即FH-10=1时需要设置! 39

FH-22 0.01 材料厚度0,根据实际情况设定。仅当FH-10=1时需要设置! 40 FH-27 2

线速度输入源选择为AI2 ;

41 FH-28 实际值 最大线速度,单位:m/Min 指当线速度输入源AI2达到最大值,对应前级变频器最高速度运行时,材料所能达到的最大线速度;

42 FH-29 实际值

卷径计算最低线速度,为防止低速卷径计算产生较大偏差,一般此值要设为最大线速度即FH-28的20%以上;

43 FH-49 50% 张力闭环控制调节限幅,设定PID 调节器输出限幅,相对于整个系统速度 44

FH-50

0.0%

张力闭环控制调节限幅偏置,可提供零速张力,保持材料收紧,推荐2%~6%

4. 调试注意问题

1)带PG 卡闭环矢量控制的,务必要作电机参数辨识,调谐通过,电机运行正常,是后续调试成功的第一步。 最常遇到的问题是编码器信号没有输入、旋转编码器A 、B 相接反、编码器脉冲数输入不正确。这几种问题的表

现形式主要是运行速度和输入速度偏差较大或者电机低速蠕动而且运行电流与实际空载电流相差较大。

2)检查复核系统设计,核校关键参数。“磨刀不误砍柴工”,做好这一步不仅有助于避免出现一些怪

异现象,而且有利于分析解决调试问题。因此,请务必核校以下参数: A .FH-03机械传动比=电机转速/卷轴转速=K :1,此参数非常关键,要求必须精确! B .F0-10最大频率。出厂默认是50Hz ,如果系统设计频率高于50Hz ,需要放宽。

变频器输出频率为:

)

1(120)1(60s R pKV

s pn f ?=?=

π(式中p 为电机极对数,s 为转差率)

上式中,机械传动比=电机转速/卷轴转速=K :1 ,卷径为R (单位:m ),系统线速度为V (单位:m/min ). 请确保在最小工作线速度下卷径达到最大时输出频率不会减到0(最好在5Hz 以上),以及在最高工作线速度下卷径最小时输出频率不会过高(建议不要超过电机额定频率)。

C .FH-28最大线速度。

设定准确的线速度给定值,有利于收卷轴与前级传动轴保证时时的基本同步,有利于减小PID 的调整幅度,有利于卷径计算的精确性。如果线速度给定值偏差较大,则难以保证基本同步,势必造成PID 调节“疲于奔命”,PID 参数难以调整,调试难度加大!为此,请不要嫌麻烦而跳过对此参数的核验,否则极可能“欲速则不达”,以至费了九牛二虎之力,蓦然回首,才翻然悔悟原来是线速度给定值不准!

当线速度输入源AI2达到最大值,对应前级变频器最高速度运行时,材料所能达到的最大线速度;可以监控FH-30线速度实际值,对AI2模拟量进行校正。比如当前级已经开到最高速时,FH-30仍然小于FH-28,则可以将F4-20 (AI2最大输入值)略微减小;当然,也可以直接微调前级变频器AO 输出电压值。

D .FH-18卷径当前值。

实时显示当前的卷径值,通过此参数可以判断变频器内部计算出来的卷径值是否准确。如果与实际的卷径值

相差甚远,多半是FH-03机械传动比或者FH-28最大线速度不准确。如果FH-03机械传动比设置值比实际值偏大,那么变频器计算出来的卷径值将比实际值偏大;反之,机械传动比偏小,计算所得卷径值就将偏小。如果FH-28最大线速度设置值比实际偏大,那么变频器计算出来的卷径值将比实际值偏大;反之,最大线速度偏小,计算所得卷径值就将偏小。如果这两个参数准确,则可能是PID 参数设置不合理,比例增益P 设置过强,积分时间设置太小(积分作用太强),PID 调节出现振荡发散。如果是已经正常使用的机器出现此情况,一般与参数无关,多半是编码器闭环环节出现了异常,常见编码器连接线接触不良,或编码器联轴器松脱打滑等。

3)主牵引变频器的加减速时间应尽可能的长一些(一般在40~60s ),以便平稳的进行加减速。利于

收卷变频器来得及跟踪响应,与主牵引达到速度同步。

4)FH-49为PID限幅,适当限制可以减小PID的调节范围,有效防止超调,该限幅值相对于系统给定的最大线速度;FH-50为PID限幅偏置,如果该量为0,则当系统零速时,PID调节器将不起作用;适当地设置此值,可用来实现主机停机零速时,收卷部分仍然维持浮棍自动平衡,材料保持收紧状态。

5)PID参数对性能的影响

自动控制原理概述及开闭环实例分析

自动控制原理概述及开闭环实例分析 摘要 本文简单介绍了自动控制的基本原理和发展概况,并从开环控制和闭环控制两方面对自动控制原理进行了详细介绍。列举了开环控制和闭环控制的几个实例,结合实例分析了开环控制和闭环的优缺点,并对两种控制方式进行了对比。 关键词:自动控制、基本原理、开环、闭环 1自动控制基本原理及发展概述 所谓的自动控制,就是指在没有人直接参与的情况下,利用外加的设备(称为控制器)操作被控对象(如机器、设备或生产过程)的某个状态或参数(称为被控量),使其按预先设定的规律自动运行。 一般情况下自动控制理论的发展过程可以分为以下三个阶段: 1.1经典控制理论时期 时间为20世纪40-60年代,经典控制理论主要是解决单输入单输出问题,主要采用以传递函数、频率特性、根轨迹为基础的频域分析方法。此阶段所研究的系统大多是线性定常系统,对非线性系统,分析时采用的相平面法一般不超过两个变量。 1.2现代控制理论时期 时间为20世纪60-70年代,这个时期由于计算机的飞速发展,推动了空间技术的发展。经典控制理论中的高阶常微分方程可以转化为一阶微分方程组,用以描述系统的动态过程,这种方法可以解决多输入多输出问题,系统既可以是线性的、定常的,也可以是非线性的、时变的。 1.3大系统理论、智能控制理论时期 时间为20世纪70年代末至今,控制理论向着“大系统理论”和“智能控制”方向发展。“大系统理论”是用控制和信息的观点,研究各种大系统的结构方案、总体设计中的分解方法和协调等问题的技术理论基础。而“智能控制”是研究与模拟人类智能活动及其控制与信息传递过程的规律,研究具有某些仿人智能的工程控制与信息处理系统。 2自动控制系统分类 按照控制方式和策略,系统可分为开环控制系统和闭环控制系统。 2.1开环控制系统 开环控制系统是一种简单的控制系统,在控制器和控制对象间只有正向控制作用,系统的输出量不会对控制器产生任何影响,如图1所示。在该类控制系统中,对于每一个输入量,就有一个与之对应的工作状态和输出量,系统的精度仅取决于元件的精度和执行机构的调整精度。 控制量输出量 图1 开环控制系统

CDMA前向功率控制,反向功率控制

为用于变速率传输的一个功率控制时隙内的时间。在时隙内,功率波动应小于3db,功率电屏应比背景噪声高20db,功率上升和下降的时间应小于6μs。如图1所示。 移动台发射机的平均输出功率应小于-50dbm/1.23MHz,即-110dbm/Hz;移动台发射机背景噪声应小于-60dbm/1.23MHz,即-54dbm/Hz。 1.2IS-95及cdma20001x系统前向及反向功率控制 cdma系统功率控制类型包括: 反向开环功率控制 移动台根据接收功率变化,调整发射功率。 反向闭环功率控制 移动台根据接收到的功率控制比特调整平均输出功率。

前向功率控制 根据移动台测量报告,基站调整对移动台的发射功率。 1.2.1反向开环功率控制 移动台的开环功率控制是指移动台根据接收的基站信号强度来调节移动台发射功率的过程。其目的是使所有移动台到达基站的信号功率相等,以免因“远近效应”影响扩频cdma系统对码分信号的接收,降低系统容量。 1、IS-95A中的开环功率控制 IS-95A系统内,只要手机开机,开环就起作用。移动台根据前向链路信号强度来判断路径损耗。功率变化过程中,只有移动台参与。移动台不知道基站实际的有效发射功率(ERP),只能通过接收到的信号来估计前向链路损耗。移动台通过对接收信号强度的测量,调整发射功率。接收的信号越强,移动台的发射功率越小。 应当指出的是,移动台的开环功率控制的响应时间大约为30ms,只能克服由于阴影效应引起的慢衰落。移动台对接收信号测量和调整是基于认为前向信道和反向信道的衰落特性是一致的,这种依前向信道信号电平来调节移动台发射功率的开环调节是不完善的。需要采用闭环控制加以补充。 移动台在接入过程中的功率控制过程是通过接入探针实现的。接入过程中移动台的发初始发射功率不能太大,会干扰小区内其他用户;同时发射功率也不能

【技术解答】西门子PLC-常用闭环控制模块详细介绍

西门子PLC-常用闭环控制模块详细介绍 西门子PLC产品中存在四大常用闭环控制模块,下面我们就来跟着天拓四方的技术工程师一起来了解一下这四大常用闭环控制模块的详细信息。 1、FM355闭环控制模块 FM355有4个闭环控制通道,用于压力、流量、液位等控制,有优化温度控制算法和PID算法。FM355C是有4个模拟量输出断的连续控制器,FM355S是有8个数字量输出点的步进或脉冲控制器。CPU 停机或出现故障后FM355人能继续运行,控制程序存储在模块中。FM355的4个模拟量输入端用于采集模拟量数值和前馈控制值,附加的一个模拟量输入端用于热电偶的温度补偿。可以使用不同的传感器,例如热电偶、Pt100热电阻、电压传感器和电流传感器。FM355有4个单独的闭环控制通道,可以实现定制控制、串级控制、比例控制和3分量控制,几个控制器可以集成到一个系统中使用。有自动、手动、安全、跟随、后背这几种操作方式。12为分辨率时的采样时间为20~100ms,14位分辨率时为100~500ms。 自优化温度控制算法存储在米快中,当设定点变化大于12%时自动启动自由化;可以使用组态软件包对PID控制算法进行优化。 CPU有故障或CPU停止运行是控制器可以独立地继续控制。为此在:“后备方式”功能中设置了可调的安全设定点或安全调节变量。可以读取和修改模糊温度控制器的所有参数,或在线修改其他参数。 2、FM355-2闭环控制模块

FM355-2是适用于温度闭环控制的4通道闭环控制模块,可以方便实现在线自动化温度控制,包括加热、冷却控制,以及加热、冷却的组合控制。FM355-2C是有4个模拟量输出端的连续控制器,FM355-2S 是有8个数字量输出端的步进或脉冲控制器。CPU停机或出现故障后FM355-2仍能继续运行。 3、FM455闭环控制模块 12位分辨率使得采样时间为20~180ms,14位时100~1700ms(与实际使用的模拟量输入的数量有关),有16点数字量输入。 4、FM458-1DP应用模块 FM458-1DP是为自由姿态闭环控制设计的,又包含300个功能块的库函数和CFC连续功能图图形化组态软件,带有PROFIBUS-DP接口。FM458-1DP的基本模块可以执行计算、开环和闭环控制,通过扩展模块可以对I/O和通信进行扩展。 EXM438-1I/O扩展模块是FM458-1DP的可选插入式扩展模块,用于读取和输出有时间要求的信号。有数字量/模拟量输入/输出模块,可连接增量式和绝对式编码器,有4个12位模拟量输出。 EXM448通信扩展模块是FM458-1DP的可选插入扩展模块。可以使用PROFIBUS-DP或SIMOLINK进行高速通信,带有一个备用插槽,可以插入MASTERDRIVES可选模式、用于建立SIMOLINK光纤通信。FM458-1DP还有一些附件接口模块,包括数字量输入、数字量输出和程序存储模块。 北京天拓四方科技有限公司

闭环控制系统的工作过程与方式

闭环控制系统的工作过程与方式 闭环控制系统的工作过程与方式 一、教学目标 1.知识与技能 (1)了解闭环控制系统的基本组成和工作过程,了解方框图的基本构成。 (2)熟悉闭环控制系统在日常生活中的应用。 2.过程与方法 (1)通过制作自动抽水控制系统,亲自探究、体验闭环控制系统的工作过程与方式,提高动手实践及分析问题的能力。 (2)通过比较分析,逐步形成理解和分析闭环控制系统的一般方法,提高自主学习的能力。 3.情感态度与价值观 (1)通过对闭环控制系统制作与探究,养成善于探索,敢于创造的优良品质。 (2)利用所学知识解决生活中的技术问题,激发学习兴趣,引发探究欲望,提高学习的自信心。 二、教学重点 理解闭环控制系统的基本组成及工作过程 三、教学难点

1.水位检测抽水控制系统的制作 2.闭环控制系统的基本组成及工作过程 四、教学方法 讲授法、逆推分析法,探究法,讨论法,任务驱动法 五、设计思想 1.教材分析 本课教学内容为苏教版《技术与设计2》第四单元“控制与设计”的第二节“控制系统的工作过程与方式”。在学生学习了开环控制系统的基础上学习闭环控制系统的。上节课学生已经学习了开环控制系统,对系统的基本组成和工作过程已经了解,这节课主要是让学生接触闭环控制系统,在探究、对比、分析中掌握闭环控制系统的相关知识。通过本节课学习,能培养和提高学生的技术素养,激发学生学习技术的兴趣,能切身体会生活中的技术以及技术在生活中的应用。 2.学情分析 学生已经学习了开环控制系统的基础知识和系统、控制等基本概念,学会用系统方框图表达开环控制系统的工作过程,具有观察和使用简单控制系统的生活体验,这些已知知识和经验为教学中提供了条件,同时也为本节顺利进行闭环控制系统的学习提供了可能。 3.教学策略

功率控制

开环功控的目的是提供初始发射功率的粗略估计。它是根据测量结果对路径损耗和干扰水平进行估计,从而计算初始发射功率的过程。比如: 上行链路的开环功控的目的是调整物理随机接入信道的发射功率。UE在发射随机接入之前,总要长时间的测量CPICH的接收功率,以去掉多径衰落的影响。 根据系统消息中的导频功率、RTWP和下行导频实际接受功率来计算Preamble的功率 Preamble逐步抬升功率,直到被网络受到并回复 然后手机对最后一次Preamble功率进行一定修正以后在PRACH上发送RRC Connect Reque st网络收到RRC Conne ct Request消息后根据FA CH功率发送RRC Connect Setup 在该消息中SRNC为通知UE上行链路初始使用PCP(Power Control Preamble) 闭环功率控制的目标是使接收信号的SIR达到预先设定的门限值。在WCDMA中,上行链路和下行链路的闭环功率控制都是 由接收方NODEB 或UE 通过RAKE接收机产生的信号估计DPCH的功率,同时估计当前频段的干扰,产生 SIR估计值,与预先设置的门限相比较。如果估计值大于门限就发出TPC命令“1”(升高功率);如果小于门限就发出TPC命令“0”(降低功率)。接收到TPC命令的一方根据一定的算法决定发射功率的升高或降低。 外环功率控制目的是动态地调整内环功率控制的门限。因为WCDMA系统的内环功率控制是使发射信号的功率到达接收端时保持一定的信干比。然而,在不同的多径环境下,即使平均信干比保持在一定的门限之上,也不一定能满足通信质量的要求(BER或FER或BLER)。因此需要一个外环功率控制机制来动态地调整内环功率控制的门限,使通信质量始终满足要求。RNC或UE的高层通过对信号误码率(BER)或误块率(BLER)的估算,调整快速功率控制中的目标信噪比(SIR tar get),以达到功控的目的。由于这种功控是通过高层参与完成的,所以叫做外环功控。当收到的信号质量变差,即误码率或者误块率上升时,高层就会提高目标信噪比(SIR target)来提高接收信号的质量。常规外环功率控制算法采用与内环功率控制相近似的方式 上行内环功率控制频率为1500次/秒。物理专用控制信道DPCCH采用的无线帧长度为10ms,每帧有15个时隙,每个时隙都有功率控制比特,这样每10ms会对发射功率调整一次,每秒的调整次数为:15次/(10ms/1s)=1500次/秒 外环功控由RNC对基站发送Sir target作为内环功控的参照目标,SIR tar get的改变取决于CRC校验以及Bler tar get(外环功控的参照目标)所以外环工控的最高频率是1/TTI,TTI为10ms时是100。

西门子1000MW机组闭环控制简介

1000MW机组闭环控制简介 汤益琛 一、机组协调控制 协调控制的目的可以简单描述为:在维持机、炉能量平衡的前提下快速响应系统负荷需求。我厂1000MW机组的协调控制方式是以锅炉跟随为基础的机炉协调控制方式,即我们常说的锅炉控压力,汽机控负荷,特点是负荷响应快,主汽压力欠稳。 变负荷时的响 应优化 图1 协调控制示意图 1、负荷控制回路 通过查看DCS和DEH控制画面中可以发现,机组负荷指令N与汽轮发电机组最终响应的负荷指令是有区别的,因为协调控制是一种智能控制,是会根据自身特点和能力来灵活响应系统负荷需求的。 锅炉具有大惯性、大迟延的调节特性,压力拉回回路是当锅炉对主汽压力调节不足时,让响应速度快的汽轮机参与稳定主汽压力。即当主汽压力偏差较大时,汽机加负荷,开调门,抑制汽压上涨;反之,则减负荷、关调门。五号机的压力拉回回路的压力偏差动作值范围为0.35~0.8 MPa,六号机为0.15~0.8 MPa。该回路示意图如图2:

图2 压力拉回回路 一次调频优化主要是针对投AGC时,AGC指令与一次调频方向不一致,引起调频效果差而设计。简单说,就是当一次调频响应幅值>0.1MW时,暂停AGC指令响应,并增加1.5MW的一次调频效果。 信号补偿是因为DEH的负荷指令是通过硬接线从DCS模拟量输出的,存在信号衰减。为了还原失真的信号,此处将DEH收到的信号通过跨服务器AP间通讯传回DCS,进行差额补偿。 2、锅炉主控指令 主要由以下几部分组成: (1)、基本指令:单元负荷指令和频率校正叠加作为B-MASTER的基本指令,是机组稳定运行时的锅炉负荷,即汽机发多少,锅炉就烧多少。 (2)变负荷/压力速率:锅炉惯性、迟延大,加负荷若只靠基本指令作用,则变负荷、压力速度过慢,所以为了达到要求的变负荷/压力速率要求,必需增加额外的锅炉负荷。这与汽车提速的道理类似,起步时加大油门实现快速提速,等接近目标速度时逐渐减小油门,减小加速度。负荷和压力设定值产生的动态补偿就是为了实现这一过程,等到稳态时其输出为0. (3)锅炉蓄热补偿:锅炉压力的改变会引起锅炉蓄热的变化,变负荷(包括一次调频)初期都是通过增、耗锅炉蓄热来实现快速响应的。负荷变化幅度越大,压力变化越大,需补偿的锅炉蓄热就越大;一次调频幅度越大,需补偿的蓄热也就越大。六号机一次调频对锅炉蓄热的补偿是通过修正压力偏差实现的,五号机该回路未启用。锅炉蓄热补偿的数值和作用时间都很短,运行人员基本感觉不到它的作用。 (4)压力调节:以上几部分指令实现了稳态或暂态过程中机、炉能量的基本平衡,实现粗调。压力调节则实现了机、炉能量平衡的精细调节,维持了主汽压力的稳定。简单说就是主汽压力低了就加点锅炉出力,反之就减点。

《开环控制和闭环控制》教学设计

《开环控制和闭环控制》教学设计 一、教材分析 本节内容是粤科版《技术与设计2》第四章“控制与设计”的第一节。本节是针对“控制与设计”的了解性内容,是学习全章的导入和基础。让学生通过体验控制过程,了解控制的含义,体验如何进行控制,并对开环控制和闭环控制有一个基本的认识,同时能够感受控制与生活生产的密切关系。 二、学生分析 学生通过对《技术与设计2》中,前面三个专题“结构与设计”、“流程与设计”、“系统与设计”的学习,已经有了一定的技术素养,能够联系生活,在实践中区体验控制的重要。本节课内容相对比较简单,主要是激发学生对控制及其设计的兴趣,引起他们的重视,激发他们的学习热情,初步掌握控制中的思想和方法。 学生在前期学过一些开源硬件arduino的硬件知识和Mixly图形化编程软件的使用,为了让学生更好的理解开环控制和闭环控制的控制过程以及两者的区别、优缺点设计了运用arduino智能小车套件和Mixly图形化编程软件学生采用开环控制控制小车走S型路线而老师采用闭环控制然后进行PK的体验活动。 本节课主要是三个学习内容:控制的含义、开环控制和闭环控制、手动控制和自动控制。由于开环控制和闭环控制学生在生活中有遇到但很少听到,且比较复杂难以区分,而手动控制和自动控制学生在生活中经常遇到听得也比较多,比较容易区分,所以本节课将开环控制和闭环控制作为教学重点,用比较多的时间进行学习、体验和讲解,而将手动控制和自动控制放在控制系统的组成和描述一起学习。 三、教学目标 (一)知识与技能 1.理解控制的含义及其在生产生活中的应用; 2.了解开环控制和闭环控制并理解他们的区别,学生学会用简易的方框图简单的开环、闭环控制系统的基本组成和简单工作过程; 3.能利用开环控制和闭环控制的区别正确判断生产、生活中常见控制实例的类别; 4.理解开环控制和闭环控制的优缺点。 (二)过程与方法 通过案例分析,体验控制在生产生活中的应用。 (三)情感态度价值观 1.通过介绍控制案例和亲身体验控制,使学生对控制技木产生巨大熱情; 2.在学生小组讨论、合作学习中培养团队协作的能力。 四、教学重难点 重点:理解控制的含义,开环控制和闭环控制。 难点:1.理解控制反馈的概念。 2.开环控制与闭环控制的正确判断 五、教学策略 为了让学生更好的理解控制的含义,重点介绍了控制的三要素并增加了一些堂上练习。在学习开环控制和闭环控制时,为了学生更好的理解开环控制和闭环控制以及他们的区别,老师设计了两个体验活动:第一个是学生采用开环控制控制小车走S型路线而老师采用闭环控制然后进行PK,巡线任务也是机器人比赛中经常出现的任务,也比较有趣和有挑战性,也很少见到其他老师将其引入到控制系统的教学中,而且巡线可以通过开环控制和闭环控制实现,巡线效果区别也很明显,我将其引入教学中可以让学生更好的理解两种控制的区别和优缺点;第二个是蒙眼睁眼画人脸的小游戏,这个小游戏可以活跃课堂气氛,也比较生活化贴近学生生活,对应两种不同控制,区别也很明显。通过这两个活动,学生可以更深刻的认识到两种控制的区别以及控制过程,有助于学生对开环控制和闭环控制的正确分辨,能较好的突破难点。

利用ADL5330和AD8318实现闭环自动功率控制设计

利用ADL5330和AD8318实现闭环自动功率控制设计 电路功能与优势 本文所述电路利用一个VGA(ADL5330)和一个对数检波器(AD8318)提供闭环自动功率控制。由于AD8318具有较高的温度稳定性,而且AD8318 RF检波器可确保ADL5330 VGA 的输出端具有同样水平的温度稳定性,因此该电路在整个温度范围都能保持稳定。该电路还增加了对数放大器检波器,用来将ADL5330从开环可变增益放大器转换为闭环输出功率控制电路。AD8318与ADL5330一样,具有线性dB传递函数,因此Pout对设定点传递函数也遵循线性dB特性。 图1:ADL5330与AD8318配合在自动增益控制环路中工作 电路描述 虽然可变增益放大器ADL5330可提供精确的增益控制,但利用一个自动增益控制(AGC)环路也可以实现对输出功率的精密调节。图1显示在AGC环路中工作的ADL5330。增加对数放大器AD8318后,该AGC在较宽的输出功率控制范围具有更高的温度稳定性。ADL5330 VGA要在AGC环路中工作,必须将输出RF的样本反馈至检波器(通常利用一个定向耦合器并增加衰减处理)。DAC将设定点电压施加于检波器的VSET输入,同时将VOUT与ADL5330的GAIN引脚相连。根据检波器的VOUT与RF输入信号之间明确的线性dB关系,检波器调节GAIN引脚的电压(检波器的VOUT引脚为误差放大器输出),直到RF输入的电平与所施加的设定点电压相对应。GAIN建立至某一值,使得检波器的输入信号电平与设定点电压之间达到适当平衡。 AGC环路中工作的ADL5330与AD8318的基本连接如图1所示。AD8318是一款1 MHz 至8 GHz精密解调对数放大器,提供较大的检波范围(60 dB),温度稳定性为±0.5 dB。ADL5330的增益控制引脚受AD8318的输出引脚控制。电压VOUT的范围为0 V至接近VPOS。为避免过驱恢复问题,可以用阻性分压器按比例缩小AD8318的输出电压,以便与ADL5330的0 V至1.4 V增益控制范围接口。

PID闭环控制

~ PID控制 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 目录 概述 基本用途 现实意义 1系统分类开环控制系统 1闭环控制系统 1阶跃响应 1PID控制的原理和特点比例(P)控制 1积分(I)控制 1微分(D)控制

PID控制器的参数整定 1PID控制实现PID 的反馈逻辑 1打开 PID 功能 1目标信号与反馈信号 1目标值给定 1反馈信号的连接 1P 、 I 、 D 参数的预臵与调整比例增益 P 1积分时间 1微分时间 D 1P 、 I 、 D 参数的调整原则 展开 概述 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。PID(比例-积分-微分)控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为u(t)=kp(e(t)+1/TI

∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s) 其中kp为比例系数; TI为积分时间常数; TD为微分时间常数基本用途 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在

三相异步电机闭环调速设计

《控制系统设计》课程设计报告 学院:信息工程学院 姓名: 班级:11自动化 学号: 题目:三相异步电动机闭环调速系统设计与实践指导老师: 完成时间:2014年6月20日

目录 摘要............................................................... I 1概述.. (1) 1.1三相异步电动机的调速方法 (2) 1.2调压调速的简介 (3) 1.3课程设计的要求 (5) 2三相异步电动机调压调速系统的组成 (5) 3三相异步电动机调压调速系统的设计和实现 (8) 3.1三相异步电动机调压调速系统的电路 (8) 3.2闭环调速结构图 (10) 3.3 系统各部分参数的计算 (10) 4三相异步电动机调压调速系统的仿真 (13) 4.1MATLAB仿真的介绍 (13) 4.2电路的建模和参数设置........................ 错误!未定义书签。 4.3异步电机调压调速系统仿真模型................ 错误!未定义书签。 4.4仿真效果图 (17) 总结 (22) 参考文献 (23)

摘要 异步电动机具有结构简单、制造容易、维修工作量小等优点,早期多用于不可拖动。随着电力电子技术的发展,静止式变频器的诞生,异步电动机在可拖动中逐渐得到广泛的应用。实现电机调速有不少方法。研究电机调速,找出符合实际的调速方法能最大限度的节约能源,所以研究调压调速就显得很有必要。异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。 本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。 以转速单闭环调压调速系统为例,电机调速开环控制系统调速范围较小,采用速度作为负反馈的闭环控制系统解决了这个问题,使调速性能得到改善。 最后,经过理论分析建立模型后,基于Matlab语言开发仿真软件,并进行仿真实验,并且对仿真结果进行了一定的分析及改进。 关键词: 调压调速MATLAB三相异步电动机转速调节器

Buck电路闭环控制策略研究

编号 南京航空航天大学 电气工程综合设计报告题目Buck电路闭环控制策略研究 学生姓名班级学号成绩 张潼0311205 031120505 杨岚0311205 031120508 何晓微0311201 031120110 龚斌0311206 031120631 李博0311205 031020519 学院自动化学院 专业电气工程及其自动化 指导教师毛玲 二〇一五年一月

Buck电路闭环控制策略研究 摘要 首先,本文对Buck电路的3种闭环控制策略进行了原理分析,比较,并对Buck主功率级电路进行了原理分析和建模,最后完成主电路的参数设计。 其次,本文详细阐述了V2控制工作原理,推导V2控制环的传递函数,并且建立小信号模型,对控制器进行优化设计。最后使用SABER2007对BUCK电路的V2控制电路进行了时域频域仿真。 关键词:Buck电路,V2控制

目录 摘要 (i) Abstract ...................................................................................................... 错误!未定义书签。第一章概述......................................................................................................................... - 1 - 第二章Buck变换器控制方法简介……………………………………………………… 2.1电压型控制………………………………………………………………………………. 2.2电流型控制……………………………………………………………………………… 2.3 V2控制…………………………………………………………………………………… 第三章Buck变换器原理分析及建模……………………………………………………. 3.1 Buck 变换器传递函数…………………………………………………………………. 3.2Buck电路的边界条件……………………………………………………………………3.3主功率电路的参数设计……………………………………………………………….. 第四章V2控制电路分析及设计……………………………………………………….. 4.1V2控制原理分析 4.2 V2控制的buck变换器小信号模型 4.3V2控制器优化设计 第五章电路仿真………………………………………………………………………… 5.1V2控制策略频域仿真 5.2时域仿真电路和仿真波形

闭环温度控制和算法

附录Ⅲ温度控制与PID算法 下面的叙述以波峰焊及回流焊加热温区的温度控制为实例,简单地结合控制理论,以浅显的方式,将温度控制及PID算法作一个简单的描述。 1.温度控制的框图 这是一个典型的闭环控制系统,用于控制加热温区的温度(PV)保持在恒定的温度设定值(SV)。系统通过温度采集单元反馈回来的实时温度信号(PV)获取偏差值(EV),偏差值经过PID调节器运算输出,控制发热管的发热功率,以克服偏差,促使偏差趋近于零。例如,当某一时刻炉内过PCB 板较多,带走的热量较多时,即导致温区温度下降,这时,通过反馈的调节作用,将使温度迅速回升。其调节过程如下: 温度控制的功率输出采用脉宽调制的方法。固态继电器SSR的输出端为脉宽可调的电压UOUT 。当SSR的触发角触发时,电源电压UAN通过SSR的输出端加到发热管的两端;当SSR的触发角没有触发信号时,SSR关断。因此,发热管两端的平均电压为 Ud=(t/T)* UAN=K* UAN 其中K= t/T,为一个周期T中,SSR触发导通的比率,称为负载电压系数或是占空比,K的变化率在0-1之间。一般是周期T固定不便,调节t, 当t在0-T的范围内变化时,发热管的电压即在0-UAN之间变化,这种调节方法称为定频调宽法。下面将要描述的PID调节器的算式在这里的实质即是运算求出一个实时变化的,能够保证加热温区在外界干扰的情况下仍能保持温度在一个较小的范围内变化的合理的负载电压系数K。 第 57 页

2.温度控制的两个阶段 温度控制系统是一个惯性较大的系统,也就是说,当给温区开始加热之后,并不能立即观察得到温区温度的明显上升;同样的,当关闭加热之后,温区的温度仍然有一定程度的上升。另外,热电偶对温度的检测,与实际的温区温度相比较,也存在一定的滞后效应。 这给温度的控制带来了困难。因此,如果在温度检测值(PV)到达设定值时才关断输出,可能因温度的滞后效应而长时间超出设定值,需要较长时间才能回到设定值;如果在温度检测值(PV)未到设定值时即关断输出,则可能因关断较早而导致温度难以达到设定值。为了合理地处理系统响应速度(即加热速度)与系统稳定性之间地矛盾,我们把温度控制分为两个阶段。 第 58 页

步进电机全闭环控制

半导体器件应用网 https://www.doczj.com/doc/8f18835807.html,/news/194498.html 步进电机全闭环控制 【大比特导读】步进电机由于体积精巧、价格低廉、运行稳定,在低端行业 应用广泛,步进电机运动控制实现全闭环,是工控行业的一大难题。 步进电机由于体积精巧、价格低廉、运行稳定,在低端行业应用广泛,步进电机运动控 制实现全闭环,是工控行业的一大难题。 主要问题有两个,原点的不确定性和失步,目前,采用高速光电开关作为步进系统的原点,这个误差在毫米级,所以在精确控制领域,是不能接受的。另外,为了提高运行精度, 步进系统的驱动采用多细分,有的大于16,假如用在往复运动过程中,误差大的惊人。已 经不能适应加工领域。 为此,提出步进电机全闭环控制系统,以适应目前运动控制领域的需求。 1、硬件连接 硬件连接加装编码器,根据细分要求,采用不同等级的解析度编码器进行实时反馈。 2、原点控制 根据编码器的Z信号,识别、计算坐标原点,同数控系统相同,精度可以达到2/编码器解 析度×4。 3、失步控制 根据编码器的反馈数据,实时调整输出脉冲,根据失步调整程度,采取相应办法。 下图是电路原理 4、电路原理描述

半导体器件应用网 电路采用超大规模电路FPGA,输入、输出可以达到兆级的相应频率,电源3.3V,利用2596 开关电源,将24V转为3.3V,方便实用。输入脉冲与反馈脉冲进行4倍频正交解码后计算,及时修正输出脉冲量和频率。 5、应用描述 本电路有两种模式,返回原点模式和运行模式。当原点使能开关置位时,进入原点模式,反之,进入运行模式。 在原点模式,以同步于输入脉冲的频率输出脉冲,当碰到原点开关后,降低输出脉冲频率,根据编码器的Z信号,识别、计算坐标原点。返回原点完成后,输出信号。此信号及其数据在不断电的情况下,永远保持。 在运行模式,以同步于输入脉冲的频率输出脉冲,同时计算反馈数据,假如出现误差,及时修正。另外,大惯量运行时,加减速设置不合理的情况下,可能会及时反向修正。 6、技术指标 (1)输入输出相应频率:≤1M; (2)脉冲同步时间误差:≤10ms;(主要延误在反向修正,不考虑反向修正,≤10us) (3)重定位电气精度:≥2/编码器解析度×4/马达解析度×细分) (4)重定位原点电气精度≥2/编码器解析度×4/马达解析度×细分) (5)适应PNP,NPN接口 (6)适应伺服脉冲控制 (7)适应各种编码其接口 步进电机运动控制一旦解决上述问题,增加数百元成本的情况下可以实现全闭环控制,毫不逊色于伺服系统。特别是其价格低廉、控制简单、寿命长久的特点在某些场合,可能优于伺服系统。

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

LTE中的功率控制总结

LTE中的功率控制总结 1、LTE框图综述 2、LTE功率控制与CDMA系统功率控制技术的比较下表所示。 LTE CDMA 远近效应不明显明显 对抗快衰落 功控目的补偿路径损耗和阴影衰 落 功控周期慢速功控快速功控 功控围小区和小区间小区 具体功率目标上行:每个RE上的能量 整条链路的总发射功率 EPRE;

3、LTE当中上下行分别采用OFDMA和SC-FDMA的多址方式,所以各子载波之间是正交不相关的,这样就克服了WCDMA当中远近效应的影响。为了保证上行发送数据质量,减少归属不同eNodeB 的UE使用相同频率的子载波产生的干扰,同时也减少UE的能量消耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快衰落等。(质量平衡与信干噪比平衡的原则相结合使用,是现在功率控制技术的主流。) 4、功率控制方面,只是对上行作功率调整(采用慢速功率控制),下行按照参数配置进行固定功率的发送,即只有eNodeB对UE的发送功率作调整。LTE中,上行功率控制使得对于相同的MCS(Modulation And Coding Scheme), 不同UE到达eNodeB 的功率谱密度(Power Spectral Density,PSD单位带宽上的功率)大致相等。eNodeB 为不同的UE分配不同的发送带宽和调制编码机制MCS,使得不同条件下的UE获得相应不同的上行发射功率。 5、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。严格来说,LTE的下行方向

是一种功率分配机制,而不是功率控制。不同的物理信道和参考信号之间有不同的功率配比。下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。下行RS一般以恒定功率发射。下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。它的功率是根据UE反馈的CQI 与目标CQI的对比来调整的,是一个闭环功率控制过程。在基站侧,保存着UE反馈的上行CQI值和发射功率的对应关系表。这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。 下行功率分配以每个RE为单位,控制基站在各个时刻各个子载波上的发射功率。下行功率分配中包括提高导频信号的发射功率,以及与用户调度相结合实现小区间干扰抑制的相关机制。下行在频率上和时间上采用恒定的发射功率。基站通过高层指令指示该恒定发射功率的数值。在接收端,终端通过测量该信号的平均接收功率并与信令指示的该信号的发射功率进行比较,获得大尺度衰落的数值。 下行共享信道PDSCH的发射功率表示为PDSCH RE与CRS RE 的功率比值,即ρA和ρB。其中ρA表示时隙不带有CRS的OFDM 符号上PDSCH RE与CRS RE的功率比值(例如2天线Normal CP的情况下,时隙的第1、2、3、5、6个OFDM符号);ρB 表示时隙带有CRS的OFDM符号上PDSCH RE与CRS RE的功

步进电机全闭环控制系统实现技巧

步进电机全闭环控制系统实现技巧 步进电机因体积精巧、价格低廉、运行稳定等优点在各大行业中得到广泛应用。虽然步进电机已被广泛地应用,但是步进电机运动控制实现全闭环控制仍是工控行业的一大难题。 问题主要体现是原点的不确定性和失步现象。目前,采用高速光电开关作为步进系统的原点,这个误差在毫米级,所以在精确控制领域,是不能接受的。另外,为了提高运行精度,步进电机系统的驱动采用多细分,有的大于16,假如用在往复运动过程中,误差大的惊人。已经不能适应加工领域。 为此,提出步进电机全闭环控制系统,以适应目前运动控制领域的需求。 1、硬件连接 硬件连接加装编码器,根据细分要求,采用不同等级的解析度编码器进行实时反馈。 2、原点控制 根据编码器的Z信号,识别、计算坐标原点,同数控系统相同,精度可以达到2/编码器解析度×4。 3、失步控制

根据编码器的反馈数据,实时调整输出脉冲,根据失步调整程度,采取相应办法。 4、电路原理描述 电路采用超大规模电路FPGA,输入、输出可以达到兆级的相应频率,电源3.3V,利用2596开关电源,将24V转为3.3V,方便实用。输入脉冲与反馈脉冲进行4倍频正交解码后计算,及时修正输出脉冲量和频率。 5、应用描述 本电路有两种模式,返回原点模式和运行模式。当原点使能开关置位时,进入原点模式,反之,进入运行模式。 在原点模式,以同步于输入脉冲的频率输出脉冲,当碰到原点开关后,降低输出脉冲频率,根据编码器的Z信号,识别、计算坐标原点。返回原点完成后,输出信号。此信号及其数据在不断电的情况下,永远保持。 在运行模式,以同步于输入脉冲的频率输出脉冲,同时计算反馈数据,假如出现误差,及时修正。另外,大惯量运行时,加减速设置不合理的情况下,可能会及时反向修正。 6、技术指标 (1)输入输出相应频率:≤1M; (2)脉冲同步时间误差:≤10ms;(主要延误在反向修正,不考虑反向修正,≤10us) (3)重定位电气精度:≥2/编码器解析度×4/马达解析度×

双闭环控制系统

课程设计报告 课程课程设计 课题双闭环控制系统设计 班级 姓名 学号

目录 第1章双闭环系统分析.................................................................................. 错误!未定义书签。 系统介绍.................................................................................................... 错误!未定义书签。 系统原理.................................................................................................... 错误!未定义书签。 双闭环的优点............................................................................................ 错误!未定义书签。第2章系统参数设计...................................................................................... 错误!未定义书签。 电流调节器的设计.................................................................................... 错误!未定义书签。 时间参数选择.................................................................................... 错误!未定义书签。 计算电流调节参数............................................................................ 错误!未定义书签。 校验近似条件.................................................................................... 错误!未定义书签。 转速调节器的设计.................................................................................... 错误!未定义书签。 电流环等效时间常数:.................................................................... 错误!未定义书签。 转速环截止频率为............................................................................ 错误!未定义书签。 计算控制器的电阻电容值................................................................ 错误!未定义书签。第3章仿真模块.............................................................................................. 错误!未定义书签。 电流环模块................................................................................................ 错误!未定义书签。 转速环模块................................................................................................ 错误!未定义书签。第4章仿真结果.............................................................................................. 错误!未定义书签。 电流环仿真结果........................................................................................ 错误!未定义书签。 转速环仿真结果........................................................................................ 错误!未定义书签。 稳定性指标的分析.................................................................................... 错误!未定义书签。 电流环的稳定性................................................................................ 错误!未定义书签。 转速环的稳定性................................................................................ 错误!未定义书签。结论.................................................................................................................... 错误!未定义书签。参考文献............................................................................................................ 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档