当前位置:文档之家› 化学反应工程教学分析

化学反应工程教学分析

化学反应工程教学分析
化学反应工程教学分析

化学反应工程教学分析

[摘要]化学反应工程是化工类专业的核心课程之一,也是化工生产中关键的工业反应过程的技术基础。化学反应工程应用理论推演、结合工程实际的研究方法,给出可用于工程设计及放大的宏观规律与数学模型。学习化学反应工程学要掌握它处理问题的方法,提高分析问题和解决问题的能力。本文根据本课程的特点以及我校实际情况,从教材选用、突出重点难点、结合实验教学等方面对化学反应工程的教学进行探讨。

化学反应工程是一门工程技术学科,是化学工程与工艺专业的核心课程之一,该课程与物理化学、化工热力学、化工原理等课程紧密相关。化学反应工程是使化学反应实现工业化的一门学科,化学反应工程的研究,一方面要认识、判断各种化学反应的热力学和动力学规律;另一方面还要归纳各种物理因素对化学反应过程的影响,然后综合和总结出一些具有普遍意义的观点和概念,用以指导工业反应过程的生产和开发研究。化工动力学主要研究在工业生产条件下,化学反应进行的机理和速率,而在不同的反应器内传递过程和影响影响化学动力学的主要因素-温度和浓度的变化规律是各不相同的,所以反应工程学的另一任务就是研究反应器内这些因素的变化规律,找出最优工况和最好的反应器形式,

以获得最大的经济效益[1]。化学反应工程以工业反应过程为主要研究对象,具体研究内容涉及均相反应以及非均相反应动力学特性,以及流动、传递过程对反应的影响,讨论反应器的选型、设计计算和最优化。化学反应工程对化学产品及过程的开发和反应器的设计放大起着重要的作用。化学反应工程涉及到的数学模型较多,反应器种类繁多,难点较多。本文从以下几点进行探讨。

1选用教材

化学反应工程教材较多,我校使用的教材是郭锴主编的《化学反应工程》第三版,该教材的特点是内容精炼,基本概念准确、清晰,基本原理分析透彻,基本方法能学以致用,突出课程的重点和难点[2]。该教材内容包括绪论、均相单一反应动力学和理想反应器,复合反应与反应器选型,非理想流动反应器,气固相催化反应本征动力学,气固相催化反应宏观动力学,气固相催化反应固定床反应器,气固相催化反应流化床反应器,气液相反应过程与反应器,反应器的热稳定性和参数灵敏性。该教材内容编排由均相反应到非均相反应,由理想反应器到非理想反应器,内容安排由简单到复杂易于学生理解接受,课后习题较多而且题型丰富,难度跨度大,有助于学生对教材内容的巩固。化学反应工程课程涉及的内容较多,一本教材内容总是有限的,我们在教学过程中以其它教材作为辅助教材,如朱炳辰主编的《化学反应工

反应工程教学大纲

《化学反应工程》课程教学大纲 课程性质、目的和任务 课程性质: 化学反应工程是以化学反应器原理为主要线索,主要研究化学反应过程需要解决的工程问题,是化工生产的龙头、关键和核心,是一些基础学科诸如物理化学、传递过程、化学工艺等相互渗透与交叉而演变成的边缘学科,其内容主要涉及化学反应动力学、反应器中传递特性、反应器类型结构、数学建模方法、操作分析及反应器设计,具有高度综合性、广泛基础性和自身独特性。 课程目的与任务: 一是培养学生将物理化学、传递过程、化学工艺、化工热力学、控制工程等学科知识用之于化学反应工程学的综合能力; 二是使学生掌握化学反应工程学科的理论体系、研究方法,了解学科前沿; 三是使学生初步具备改进和强化现有反应技术和设备、开发新的反应技术和设备、解决反应过程中的工程放大问题以及实现反应过程中最优化的能力 教学基本要求 通过本课程的教学,要使学生系统地掌握化学反应动力学规律、传递过程对化学反应的影响规律,掌握反应器设计、过程分析及最佳化方法。教学内容及要求(含学时分配) 第一章绪论(2学时) (一)教学内容 化学反应工程学在化学工业中的地位、研究内容及研究方法 (二)教学要求 了解化学反应工程学的任务和范畴、内容和分类及研究方法,达到使学生对化学反应工程学科有一个宏观的接触和把握。 第二章均相反应的动力学和理想反应器(8学时) (一)教学内容 2 均相单一反应动力学和理想反应器 2.1概念与术语 化学反应式、化学计量方程、反应程度、转化率、化学反应速率、反应动力学方程、化学反应的分类 2.2单一反应动力学

1.等温恒容过程反应动力学方程及动力学方程建立方法(微分法、积分法、最小方差解析法); 2.等温变容过程的膨胀因子δA、膨胀率εA; 3.变容系统组分浓度、摩尔分数、分压和反应速度与转化率的关系。2.3理想反应器 间歇反应器;平推流反应器;全混流反应器 (二)教学要求 1.要求学生了解化学反应式、化学计量方程、反应程度、转化率、反应活化能概念及阿仑尼乌斯方程; 2.要求学生理解基元反应与质量作用定理、单程转化率与全程转化率的区别、化学反应式与化学计量方程的区别; 3.掌握化学反应速率的表征、反应动力学方程、反应级数以及基本反应类型。 4.要求学生了解动力学方程建立方法微分法、积分法和最小方差解析法; 5.要求学生理解0级、1级、2级,n>1级、n<1级不可逆反应中反应时间、转化率与初始浓度之间的变化关系; 6.要求学生掌握等温恒容过程反应动力学方程式、等温变容过程的膨胀因子δA、膨胀率的表达式以及所表达的反应速率方程。 7.掌握理想反应器的设计方程,会灵活运用这些设计方程计算完成给定任务所需的反应器体积。 第三章复合反应与反应器选型(10学时) (一)教学内容 3复合反应与反应器选型 3.1复合反应动力学 3.1.1复合反应速率表达式及动力学方程确定; 3.1.2可逆反应速度表达式及动力学特征; 3.1.3自催化反应速度表达式及动力学特征; 3.1.4平行反应速度表达式及动力学特征; 3.1.5连串反应速度表达式及动力学特征。 3.2组合理想反应器的设计 3.2.1.理想流动反应器的联操作及平推流反应器的并联操作和全混流反应器的并联操作; 3.2.2理想流动反应器的串联操作,涉及平推流反应器的串联操作和全混流反应器的串联操作; 3.2.3循环反应器。

最新化学反应工程复习+公式指导

化学反应工程复习总结 1 一、知识点 2 1.化学反应工程的研究对象与目的,研究内容。 3 化学反应工程的优化的技术指标。 4 2.化学反应动力学 5 转化率、收率与选择性的概念。 6 反应速率的温度效应和活化能的意义。 7 反应速率的浓度效应和级数的意义。 8 3.理想反应器与典型反应特征 9 理想反应器的含义。 10 等温间歇反应器的基本方程。 11 简单不可逆反应和自催化反应的特征和计算方法。 12 可逆反应、平行反应和串联反应的动力学特征和计算方法。 13 4.理想管式反应器 14 管式平推流反应器的基本方程 15 典型反应的计算。 16 停留时间、空时和空速的概念。 17 膨胀因子和膨胀率的概念。 18

5.连续流动釜式反应器 19 全混流模型的意义。 20 全混流反应器的基本方程 21 全混流反应器的计算。 22 循环反应器的特征与计算方法。 23 返混的概念、起因、返混造成的后果。 24 返混对各种典型反应的利弊及限制返混的措施。 25 6.停留时间分布与非理想流动 26 停留时间分布的意义,停留时间分布的测定方法。 27 活塞流和全混流停留时间分布表达式,固相反应的计算方法。 28 多釜串联模型的基本思想,模型参数 29 微观混合对反应结果的影响。 30 7.反应器选型与操作方式 31 简单反应、自催化和可逆反应的浓度效应特征与优化。32 平行反应、串联反应的浓度效应特征与优化。 33 反应器的操作方式、加料方式。 34 8.气固催化反应中的传递现象 35 催化剂外部传递过程分析,极限反应速率与极限传递速率。 36

Da和外部效率因子的定义及相互关系。流速对外部传递过程的影响。 37 催化剂内部传递过程分析,Φ和内部效率因子的定义及相互关系。 38 扩散对表观反应级数及表观活化能的影响。 39 一级反应内外效率因子的计算。 40 内外传递阻力的消除方法。 41 9.热量传递与反应器热稳定性 42 定态、热稳定性、临界着火温度、临界熄火温度的概念。 43 催化剂颗粒热稳定性条件和多态特性。 44 全混流反应器、管式固定床反应器热稳定条件。 45 最大允许温差。 46 绝热式反应器中可逆放热反应的最优温度分布。 47

化学反应工程试题集及复习题

化学反应工程考试总结 一、填空题: 1.所谓“三传一反”是化学反应工程学的基础,其中“三传”是指质 量传递、热量传递和动量传递,“一反”是指反应动力学。 2.各种操作因素对于复杂反应的影响虽然各不相同,但通常温度升 高有利于活化能高的反应的选择性,反应物浓度升高有利于反应级数大的反应的选择性。 3.测定非理想流动的停留时间分布函数时,两种最常见的示踪物输 入方法为脉冲示踪法和阶跃示踪法。 4.在均相反应动力学中,利用实验数据求取化学反应速度方程式的 两种最主要的方法为积分法和微分法。 5.多级混合模型的唯一模型参数为串联的全混区的个数N ,轴 向扩散模型的唯一模型参数为Pe(或Ez / uL)。 6.工业催化剂性能优劣的三种最主要的性质是活性、选择性和稳 定性。 7.平推流反应器的E函数表达式为 , () 0, t t E t t t ?∞= ? =? ≠ ?? ,其无 因次方差2θσ= 0 ,而全混流反应器的无因次方差2θσ= 1 。 8.某反应速率常数的单位为m3 / (mol hr ),该反应为 2 级 反应。 9.对于反应22 A B R +→,各物质反应速率之间的关系为 (-r A):(-r B):r R= 1:2:2 。

10.平推流反应器和全混流反应器中平推流更适合于目的产 物是中间产物的串联反应。 →+,则其反应速率表达式不能确11.某反应的计量方程为A R S 定。 12.物质A按一级不可逆反应在一间歇反应器中分解,在67℃时转化 50%需要30 min, 而在80 ℃时达到同样的转化率仅需20秒,该反应的活化能为 3.46×105 (J / mol ) 。 13.反应级数不可能(可能/不可能)大于3。 14.对于单一反应,在相同的处理量和最终转化率条件下,选择反应 器时主要考虑反应器的大小;而对于复合反应,选择反应器时主要考虑的则是目的产物的收率; 15.完全混合反应器(全混流反应器)内物料的温度和浓度均一, 并且等于(大于/小于/等于)反应器出口物料的温度和浓度。 二.单项选择 10.(2) B 1、气相反应CO + 3H2CH4 + H2O进料时无惰性气体,CO与2H以1∶2 δ=__A_。 摩尔比进料,则膨胀因子CO A. -2 B. -1 C. 1 D. 2 2、一级连串反应A S P在间歇式反应器中,则目的产物P C___A____。 的最大浓度= max ,P

化工安全工程---教学大纲

化工安全工程课程教学大纲 英文名称:Chemical Safety Engineering 课程编号:721352100 学时数:32 其中实验学时数:0 课外学时数:0 学分数:2 适用专业:安全工程专业 一、课程的性质、目的和任务 《化工安全工程》是安全工程专业的一门专业选修课。 课程主要任务是针对化工生产可能遇到的安全生产技术方面的问题,介绍了化工安全工程学相关的基础知识,阐述了化工生产的主要危险性及其事故预防和控制的理论基础。通过本课程学习,使学生能够掌握化工生产中的安全理论知识,能够理论联系实际,灵活分析和解决化工生产中存在的危险,预防事故的发生。 二、课程教学内容的基本要求、重点和难点 通过对化学物质的危险性、化工反应过程和单元操作危险性以及化工企业公用系统及总平面布置的安全要求的分析,阐述了泄漏、燃烧、爆炸、毒害等化工生产的主要危险和有害因素的特点,并介绍了化工生产预防性检查及化工事故预案与事故处置,力图从机理上探究事故的原因及预防和控制对策,为化工安全生产提供理论和技术支持。 第1章概论 1.1 安全工程学基础 了解系统安全工程、安全系统工程、安全控制工程、安全人机工程、消防工程、安全卫生工程、安全管理工程、安全价值工程等安全工程学基础知识。 1.2 化工生产及其危险性 了解化学工业在国民经济中的地位,掌握化工生产的危险性。 1.3 化工事故的致因与控制理论 掌握化工事故的致因理论,了解化工事故控制理论。 第2章化工生产主要危险与危害 掌握物质泄漏、燃烧、爆炸、毒害等化工生产的主要危害的原因和控制规律。 2.1 泄露 了解泄漏事故的特点及主要原因,掌握泄漏事故易发位置和主要原因。掌握泄漏量计算及泄漏后的扩散规律。 2.2 燃烧 掌握闪燃与闪点、着火与燃点、自燃与自燃点等与燃烧相关的概念,了解燃烧的特征参数,掌握燃烧过程及燃烧类别;了解活化能理论、过氧化物理论、连锁反应理论等燃烧的基本理论,掌握可燃性三角图及应用。 2.3 爆炸 掌握爆炸及爆炸极限理论、爆轰、爆燃、压力波等概念,了解TNT当量法、TNO多能法等爆炸能量的相关计算,了解爆炸的其他伤害,掌握蒸气云爆炸与

化学反应工程

《化学反应工程》课程综合复习资料 一、填空题 1、全混流反应器的E 函数表达式为 ,其无因次方差2 θσ= ,而平推流反应器的无因次方差2θσ= 。 2、工业催化剂性能优劣的三种最主要的性质是 、 、和 。 3、在间歇反应器中进行一恒压气相反应32A B R +→,原料为A 和B 的混合物,其中A 含量为20%(mol),若物料初始体积为2升,则A 转化50%时,物料的总体积为 。 4、基元反应的分子数 (可能/不可能)是小数。 5、某液相反应A R →于50℃下在间歇反应器中进行,反应物A 转化80%需要10min ,如果于相同条件下在平推流反应器中进行,则达到同样的转化率需要的空时为 ;如果同样条件下在全混流反应器中进行,达到同样的转化率需要的空时 。 6、测定非理想流动的停留时间分布函数时,两种最常见的示踪物输入方法为 和 。 7、完全混合反应器(全混流反应器)内物料的温度和浓度 ,并且 (大于/小于/等于)反应器出口物料的温度和浓度。 8、多级混合模型的唯一模型参数为 ,轴向扩散模型的唯一模型参数为: 。 9、对于单一反应,在相同的处理量和最终转化率条件下,选择反应器时主要考虑 ;而对于复合反应,选择反应器时主要考虑的则是 。 10、对于反应23A B R +→,各物质反应速率之间的关系为:(-r A ):(-r B ):r R = 。 11、某重油催化裂化装置处理量为100吨重油/h ,未转化重油为6吨/h ,汽油产量为42吨/h ,则重油的转化率为_ _,工业上汽油的收率及选择性为_ _和_ _。 12、某反应的计量方程为A R S →+,则其反应速率表达式 。 13、反应级数 (可能/不可能)大于3, (可能/不可能)是0,基元反应的分子数 (可能/不可能)是0。 14、在一个完整的气—固相催化反应的七大步骤中,属于本征动力学范畴的三步为 、 和 。 15、在均相反应动力学中,利用实验数据求取化学反应速率方程式的两种最主要的方法为 和 。 16、对于一个在全混流反应器里进行的放热反应,一般可以出现三个定常态操作点M 1、M 2、M 3,如下图所示,其中M 1和M 3这两点我们称之为 的定常态操作点,M 2则称为 的定常态操作点。实际操作时,我们一般选择M 1、M 2、M 3中 做为操作点。 17、某一级液相反应在间歇式反应器中进行,5min 转化率为50%,则转化率达到80%需时间_____min 。 18、某反应的速率方程式为n A A r kC -= mol/(m 3 .h),则反应级数n 为2时,k 的单位为 _。 19、某反应的计量方程为A R S →+,则其反应速率表达式 。

化学反应工程基础知识总结(笔记)(可编辑修改word版)

化学反应工程基础知识总结(笔记) 1、化学反应工程是一门研究涉及化学反应的工程问题的学科。如何将其在工业规模上实现是化学反应工程的主要任务。 2、理想置换反应器的特点:①由于流体沿同一方向,以相同速度向前推进,在反应器内没有物料的返混,所有物料通过反应器的时间都是相同的②在垂直于流动方向上的同一截面,不同径向位置的流体特性是一致的③在定常态下操作,反应器内状态只随轴向位置改变,不随时间改变。 3、全混流反应器的特性①物料在反应器内充分返混②反应器内各物料参数均一③反应器的出口组成与器内物料组成相同④反应过程中连续进料与出料,是一定常态过程。 4、返混的定义:物料在反应器内不仅有空间上的混合而是有时间上的混合,这种混合过程称返混。 5、非均相催化反应过程步骤①反应组分从流体主体向固体催化剂外表面传递②反应组分从外表面向催化剂内表面传递③反应组分在催化剂表面的活性中心上吸附④在催化剂表面上进行化学反应⑤反应产物在催化剂表面上解吸⑥ 反应产物从催化剂内表面向外表面传递⑦反应产物从催化剂的外表面向流体主体传递 6、兰格缪尓(Langmuir)吸附模型条件①催化剂表面上活性中心分布是均匀的②吸附活化能和脱附活化能与表面吸附的程度无关③每个活性中心仅能吸附一个气相分子④被吸附分子间互不影响,也不影响空位对气相分子的吸附。 7、焦姆金(Temkhh)吸附模型: 一般吸附活化能随覆盖率的增加而增大,脱附活化能则随覆盖率的增加而减小,因此吸附热必然随覆盖率的增加而减小。 8、催化剂颗粒内气体扩散:多孔催化剂颗粒内的扩散现象是很复杂的。除扩散路径极不规则外,孔的大小不同时,气体分子扩散机理亦有所不同。当孔径较大时,分子的扩散阻力要是由于分子间碰撞所致,这种扩散通常所称的分子扩散或容积扩散。当微孔的孔径小于分子的平均自由程时,分子与孔壁的碰撞机会超过了分子间的相互碰撞,从而使分子与孔壁的碰撞成为扩散阻力的主要因素,称为克努森(Knudson)扩散。 9、一微拟均相非理想流模型①流体在床层中流动属非理想流动,但遵循轴向扩散模型②流体沿床层径向温度、浓度是均一的,仅沿轴向变化③流体与催化剂在同一截面处的温度、浓度相同。三个基本方程:动量、物料、热量衡算方程。 10、流体床反应器的特点①流体床反应器采用的催化剂颗粒直径远小于固定床反应器选用的颗粒直径。则流化床反应器中颗粒外表面积远大于固定床反应器中颗粒的外表面积②由于流化床反应器颗粒直径较小,催化剂颗粒的内扩

生物反应工程教学大纲

十堰职业技术学院 生物化工专业生物反应工程课程教学大纲 (60-70学时) 马俊林编 一、《生物反应工程》课程的性质和任务 《生物反应工程》是一门以生物学、化学工程学、计算机与信息技术等多学科为基础的交叉学科,它以生物反应动力学为基础,将传递过程原理、设备工程学、过程动力学及最优化原理等化学工程学方法与生物反应过程的反应特性方面的知识相结合,进行生物反应过程的分析与开发,以及生物反应器的设计、操作和控制等。 生物反应工程主要研究生物反应过程中带有共性的工程技术问题,因此,它在生物工业中起着举足轻重的作用,生物反应工程是工业生物技术的核心。 根据生物体的不同,生物反应过程可分为酶促反应过程,细胞反应过程(包括单一微生物细胞、多种微生物细胞的混合反应、动植物细胞培养等)和废水的生物处理过程。生物反应工程的研究内容就是研究各种生物反应过程的生物反应动力学、生物反应器和生物反应过程的放大与缩小等。 生物反应工程是生物化工专业的一门主干专业课。 二、《生物反应工程》课程的基本要求 通过本课的学习,要求学生了解生物反应工程研究的目的,生物反应工程学科的形成与沿革和生物反应工程领域的拓展。理解酶促反应动力学、微生物反应动力学、动植物细胞培养动力学的特征和生物反应器中的传质过程。掌握微生物反应过程的质量和能量衡算;动植物细胞的生长模型与培养条件。熟练掌握微生物反应器的操作和生物反应器的特征、操作及设计。 三、讲课内容 1、绪论 教学内容: 生物反应工程研究的目的;生物反应工程学的形成与沿革;生物反应工程的研究内容与方法;生物反应动力学;生物反应器;生物反应过程的放大与缩小。 教学要求:

《化学反应工程》试题及标准答案

《化学反应工程》试题及答案

————————————————————————————————作者:————————————————————————————————日期:

《化学反应工程》试题 一、填空题 1. 质量传递 、 热量传递 、 动量传递 和化学反应 称为三传一反. 2. 物料衡算和能量衡算的一般表达式为 输入-输出=累积 。 3. 着眼组分A 转化率x A 的定义式为 x A =(n A0-n A )/n A0 。 4. 总反应级数不可能大于 3 。 5. 反应速率-r A =kC A C B 的单位为kmol/m 3·h ,速率常数k 的因次为 m 3/kmol ·h 。 6. 反应速率-r A =kC A 的单位为kmol/kg ·h ,速率常数k 的因次为 m 3/kg ·h 。 7. 反应速率2 /1A A kC r =-的单位为mol/L ·s ,速率常数k 的因次为 (mol)1/2·L -1/2·s 。 8. 反应速率常数k 与温度T 的关系为2.1010000 lg +- =T k , 其活化能为 83.14kJ/mol 。 9. 某反应在500K 时的反应速率常数k 是400K 时的103倍,则600K 时的反应速率常数k 时是400K 时的 105 倍。 10. 某反应在450℃时的反应速率是400℃时的10倍,则该反应的活化能为(设浓度不变) 186.3kJ/mol 。 11. 非等分子反应2SO 2+O 2==2SO 3的膨胀因子2SO δ等于 -0.5 。 12. 非等分子反应N 2+3H 2==2NH 3的膨胀因子2H δ等于 –2/3 。 13. 反应N 2+3H 2==2NH 3中(2N r -)= 1/3 (2H r -)= 1/2 3NH r 14. 在平推流反应器中进行等温一级不可逆反应,反应物初浓度为C A0,转化率为x A ,当反应器体积增大到n 倍时,反应物A 的出口浓度为 C A0(1-x A )n ,转化率为 1-(1-x A )n 。 15. 在全混流反应器中进行等温一级不可逆反应,反应物初浓度为C A0,转化率为x A ,当反应器体积增大到n 倍时,反应物A 的出口浓度为 A A x n x )1(11-+-,转化率为A A x n nx )1(1-+。 16. 反应活化能E 越 大 ,反应速率对温度越敏感。 17. 对于特定的活化能,温度越低温度对反应速率的影响越 大 。 18. 某平行反应主副产物分别为P 和S ,选择性S P 的定义为 (n P -n P0)/ (n S -n S0) 。 19. 某反应目的产物和着眼组分分别为P 和A 其收率ΦP 的定义为 (n P -n P0)/ (n A0-n A ) 。 20. 均相自催化反应其反应速率的主要特征是随时间非单调变化,存在最大的反应速率 。 21. 根据反应机理推导反应动力学常采用的方法有 速率控制步骤 、 拟平衡态 。 22. 对于连续操作系统,定常态操作是指 温度及各组分浓度不随时间变化 。 23. 返混的定义: 不同停留时间流体微团间的混合 。

化学反应工程复习+公式指导

化学反应工程复习总结 一、知识点 1.化学反应工程的研究对象与目的,研究内容。 化学反应工程的优化的技术指标。 2.化学反应动力学 转化率、收率与选择性的概念。 反应速率的温度效应和活化能的意义。 反应速率的浓度效应和级数的意义。 3.理想反应器与典型反应特征 理想反应器的含义。 等温间歇反应器的基本方程。 简单不可逆反应和自催化反应的特征和计算方法。 可逆反应、平行反应和串联反应的动力学特征和计算方法。 4.理想管式反应器 管式平推流反应器的基本方程 典型反应的计算。 停留时间、空时和空速的概念。 膨胀因子和膨胀率的概念。 5.连续流动釜式反应器 全混流模型的意义。 全混流反应器的基本方程 全混流反应器的计算。

循环反应器的特征与计算方法。 返混的概念、起因、返混造成的后果。 返混对各种典型反应的利弊及限制返混的措施。 6.停留时间分布与非理想流动 停留时间分布的意义,停留时间分布的测定方法。 活塞流和全混流停留时间分布表达式,固相反应的计算方法。 多釜串联模型的基本思想,模型参数 微观混合对反应结果的影响。 7.反应器选型与操作方式 简单反应、自催化和可逆反应的浓度效应特征与优化。 平行反应、串联反应的浓度效应特征与优化。 反应器的操作方式、加料方式。 8.气固催化反应中的传递现象 催化剂外部传递过程分析,极限反应速率与极限传递速率。 Da和外部效率因子的定义及相互关系。流速对外部传递过程的影响。 催化剂内部传递过程分析,Φ和内部效率因子的定义及相互关系。 扩散对表观反应级数及表观活化能的影响。 一级反应内外效率因子的计算。 内外传递阻力的消除方法。 9.热量传递与反应器热稳定性 定态、热稳定性、临界着火温度、临界熄火温度的概念。 催化剂颗粒热稳定性条件和多态特性。

《工程力学》课程教学大纲

《工程力学》课程教学大纲 课程代码:070407 课程性质:专业必修总学时:32 学时 总学分:2 开课学期: 5 适用专业:化学工程与工艺 先修课程:机械制图、化工原理后续课程:化学反应工程大纲执笔人:FGFG 参加人:FGFHHH 审核人:FGFD 编写时间:2012 年8 月 编写依据:化学工程与工艺专业人才培养方案(2010 )年版 一、课程介绍 工程力学是研究有关物质宏观运动规律,及其应用的科学。综合了《理论力学》、《材料力学》、《金属学》、《机械设计》、《化工容器与设备》多门课程的部分内容,是一门多学科、理论与实用并重的机械类教学课程。这门课程有利于非机械类专业学生综合能力的培养,而又无须设置多门课程,比较符合培养复合型人才的需要,所以继化工工艺专业之后,像轻工、食品、制药、环保、能源等非机械类专业,也在开设类似或相同的课程。通过本课程的教学,使学生掌握杆件、平板、回转形壳体的基础力学理论和金属材料的基础知识,具备设计、使用和管理中、低压压力容器与化工设备的能力。 二、本课程教学在专业人才培养中的地位和作用 工程力学主要研究物体机械运动和杆件弹性变形的一般规律。它不仅是工科专业重要的技术基础课,而且是能够直接用于工程实际的技术学科。通过本课程的学习,可以开发学生的智力,培养学生敏锐的观察能力、丰富的想象能力、科学的思维能力,并为后续专业课程的学习和解决工程实际问题提供基本理论和方法。 化工、生物、轻工、食品及制药等工艺过程需要由设备来完成物料的粉碎、混合、储存、分离、传热、反应等操作。化工设备是化工、生物等工艺流程中的重要组成部分。所以,本课程是化工、生物等专业的专业课的基础。 三、本课程教学所要达到的基本目标 通过本课程的学习,使学生能够了解工程力学的基础知识,初步掌握它们在石油,化工中的基本应用,培养学生工程实践能力和创新能力,拓宽知识面,使学生进一步了解本课程。四、学生学习本课程应掌握的方法与技能 通过本门课的学习,要求学生了解内、外压容器的设计原则,掌握中、低压设计的一般方法,能准确为容器选配法兰、支座、人孔等零部件及标准件,了解塔设备、换热设备的工作原理与结构之间的关系,具备对塔设备和换热设备进行机械设计及校核的能力。 五、本课程与其他课程的联系与分工 化工机械基础是化学工程与工艺专业及应用化学等专业的一门重要专业技术基础课,是学习后续课程如化学反应工程、化工分离过程、化工工艺学的重要基础。 六、本课程的教学内容与目的要求 【第一章】物理的受力分析及其平衡条件(4学时) 1、教学目的和要求:了解如何从构件所受的已知外力求取未知外力。解决这个问题的步骤:第一步是通过受力分析,确定未知的约束反力力线方位;第二步是研究物体的受力平衡规律,利用这一规律求取未知外力。 2、教学内容: (1)力的概念及其性质 (2)刚体的受力分析 (3)平面汇交力系的简化与平衡 (4)力矩、力偶、力的平移定理

化学反应工程总结

、绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标一一技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 3. 工业反应动力学规律可表示为: r i f c (G ) f T (T ) a )浓度效应——n 工程意义是:反应速率对浓度变化的敏感程 度。 b )温度效应——E 工程意义是:反应速率对温度变化的敏感程 度。 E ---- cal/mol , j/mol T ----- K R = 1.987cal/mol.K = 8.314 j/mol.K 化学反应动力学 反应速率= 反应量 (反应时间)(反应 已知两个温度下的反应速率常数 k , 可以按下式计算活化能 工程问题 动力学问题

三、PFR与CSTR基本方程 1.理想间歇:t V R V o c Af dC A CA0( J ) x Af dx A XA0( J ) 2.理想PFR V R V o C Af dc A C A0 ( J) C A0 x Af dx A x A 0(「A) 3. CSTR 4. 图解法 V R C A0 C A C A0X A T /C A0 0 X Af X A 四、简单反应的计算 n=1,0,2级反应特征C A C A0(1 X A)浓度、转化率、反应时间关系式 基本关系式PFR(间歇)CSTR V R C Af dC A V R C A0 C A p V。C A0 (:)m v (「A) PFF H CSTR CSTR>PFR C A0X A k p C A0 X A k p n=0 n=1 n=2 C A0 kC A . 11 k p 丁 C A C A0 k p 1吒C A0

《化学工程基础》教学大纲

《化学工程基础》教学大纲 (四年制本科. 试行) 课程编号:03021111 课程性质:专业必修课 使用专业:应用化学 开设学期:第七学期 考核方式:闭卷笔试 一、教学目的与任务 《化学工程基础》的教学目的是:通过学习化学工程方面的知识,提高学生在化学、化工的应用开发方面的能力,使学生在科技成果转变为生产力的过程中较好地发挥应有的作用。从技术经济观点出发,将学生培养成为既具有扎实的基础理论知识,又能结合实际分析和解决实际问题的化学工作者。《化学工程基础》的教学重点是:重点学习“三传一反”的基本原理和方法,基本掌握流动体系的能量转换及流体阻力等运算、传热方程和传热强化途径、典型换热器计算、精馏中理论塔板数的求法、反应器类型及反应器体积的计算等。同时了解有关设备的性能和它所依据的理论,了解怎样运用技术经济观点分析和处理实际问题。《化学工程基础》的研究方法主要是理论解析和在理论指导下的实验研究,与相应内容安排6至8个实验。 二、与其它专业课程的关系 与《普通物理》、《高等数学》、《物理化学》等基础主干课和专业基础课联系十分密切,应在这三门先修课程的基础上进行教学。为《有机化学》、《无机化学》、《物理化学》等化学专业课方面知识的实际运用打下坚实的基础。 三、学时数及分配 总学时为70学时(其中讲授46学时,实验24学时),学时分配见下表。

四、讲授内容与要求:(分章节) 本大纲根据教育部理科化学教学指导委员会“理科应用化学专业化学教学基本内容”,以四年制本科人才培养规格为目标,按照化学工程基础学科的理论知识体系,提出了具体的教学要求。 第一章绪论 【教学要求】 1、基本掌握流动体系的能量转换及流体阻力等运算。 2、掌握传热方程和传热强化途径及典型换热器的计算。 3、初步了解化工生产工艺与化工生产流程的概念。 4、了解实验室研究与化工生产之间的差别。掌握化学工程学常用的几个基本概念,掌握国际单位制、工程单位制及其换算。 5、掌握化学工程学常用的几个基本概念,掌握国际单位制、工程单位制及其换算。 【教学内容】 1、化学工程基础课程的性质、内容要求和学习方法 2、化学工业概述 1)、化学工业发展概述 2)、我国化学工业的发展和现状 3)、化学式业的特点和发展趋势 3、化工生产过程与化学工程学科 1)、化工生产工艺与流程 2)、三废治理与环境保护 3)、化学工程学的内容 4)、化学工程学常用的几个基本概念 4、国际单位制、工程单位制及其换算 第二章流体流动与输送 【教学要求】 1、掌握理想流体与实际流体的概念。 2、掌握流体静力学方程及应用。 3、掌握流体流动的基本原理和规律。 4、掌握量纲分析方法求取阻力系数的方法。 5、掌握流体流动时的物料衡算、能量转换及流体在管道中的流动阻力等计算。 6、掌握离心泵的构造与工作原理及其主要性能参数,了解有关设备的性能和原理。

化学反应工程复习总结

化学反应工程复习总结https://www.doczj.com/doc/8f1647408.html,work Information Technology Company.2020YEAR

一、 绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标——技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 二、化学反应动力学 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 ) )((反应区反应时间反应量 反应速率= 3. 工业反应动力学规律可表示为: )()(T f C f r T i C i ?= a) 浓度效应——n 工程意义是:反应速率对浓度变化的敏感程度。 b) 温度效应——E 工程意义是:反应速率对温度变化的敏感程度。 已知两个温度下的反应速率常数k ,可以按下式计算活化能E : E ——cal/mol ,j/mol T ——K R = 1.987cal/mol.K = 8.314 j/mol.K 三、PFR 与CSTR 基本方程 1. 理想间歇:??-=--==Af A Af A x x A A A c c A A R r dx c r dc v V t 00) ()(00 反应结果r , 工程问题

2. 理想PFR : ??-=--==Af A Af A x x A A A c c A A R p r dx c r dc v V 00) ()(00τ 3. CSTR : ) ()(00A A A A A A R p r x c r c c v V -= --== τ 4. 图解法 四、简单反应的计算 n=1,0,2级反应特征 0(1)A A A c c x =- 浓度、转化率、反应时间关系式 PFR →CSTR ,CSTR ←PFR 基本关系式 PFR (间歇) CSTR 00 ()Af A c R A p c A V dc v r τ ==--? 0() A A R m A c c V v r τ-= =- n=0 0A A p c x k τ= 0A A p c x k τ= n=1 1 ln 1p A k x τ=- 0A A m A c c kc τ-= x x τ/c A0 τ

《工程化学》课程大纲

《工程化学》课程教学大纲 一、课程名称(中英文) 中文名称:工程化学 英文名称:Engineering Chemistry 二、课程编码及性质 课程编码:0701812 课程性质:专业选修课程,限定选修课 三、学时与学分 总学时:32 学分:2.0 四、先修课程 无 五、授课对象 本课程面向材料成型及控制工程专业学生开设,也可以供电子封装技术专业学生选修。 六、课程教学目的(对学生知识、能力、素质培养的贡献和作用) 本课程教学目的主要包括: 1. 掌握基础化学理论知识,拓宽视野,提高科学素质,学会用化学的眼光看世界; 2. 了解化学学科的概貌,并能够运用化学的理论、观点和方法正确认识和解决社会和生活中遇到的问题; 3. 了解材料制备、加工和使用过程中的基本化学问题,掌握基本化学原理和规律,能够运用化学基础理论解决材料工程技术中的相关化学问题。

表1 课程目标对毕业要求的支撑关系

七、教学重点与难点: 教学重点: 1)从微观粒子的运动出发,讲授原子、分子以及晶体的结构,原子、分子之间相互作用与材料性能之间的关系; 2)重点讲授热力学基本定律以及化学反应热,如何判断化学反应的方向和限度,反应速率及其影响因素; 3)重点学习溶液的通性以及溶液中的各种离子平衡,如何利用平衡关系实现沉淀的溶解和转化,电化学基础理论和反应方向的判断,如何避免金属的腐蚀。 4)重点学习的章节内容包括:第2章“物质结构基础”(7学时)、第3章“化学热力学初步”(8学时)、第4章“溶液化学与离子平衡”(7学时)、第6章“电化学与金属腐蚀”(6学时)。 教学难点: 1)通过本课程学习,要求掌握复杂体系和条件下的化学反应和平衡关系,通过各章节内容的融会贯通,能够分析和解决实际化学反应中可能遇到的具体问题。

化学反应工程试题分析

化学反应工程原理 一、选择题 1、气相反应CO + 3H 2 CH 4 + H 2O 进料时无惰性气体,CO 与2H 以1∶2摩尔比进料,则膨胀因子CO δ=__A_。 A. -2 B. -1 C. 1 D. 2 2 、一级连串反应A S P 在间歇式反应器中,则目的产物P 的最大浓度=max ,P C ___A____。 A. 122)(210K K K A K K C - B. 22/1120]1)/[(+K K C A C. 122 )(120K K K A K K C - D. 22/1210]1)/[(+K K C A 3、串联反应A → P (目的)→R + S ,目的产物P 与副产物S 的选择性P S =__C_。 A. A A P P n n n n --0 0 B. 00A P P n n n - C. 00 S S P P n n n n -- D. 00R R P P n n n n -- 4、全混流反应器的容积效率η=1.0时,该反应的反应级数n___B__。 A. <0 B. =0 C. ≥0 D. >0 5 、对于单一反应组分的平行反应A P(主) S(副),其瞬间收率P ?随A C 增大而单调下降,则最适合的反应器为____B__。 A. 平推流反应器 B. 全混流反应器 C. 多釜串联全混流反应器 D. 全混流串接平推流反应器 6、对于反应级数n >0的不可逆等温反应,为降低反应器容积,应选用____A___。 A. 平推流反应器 B. 全混流反应器 C. 循环操作的平推流反应器 D. 全混流串接平推流反应器 7 、一级不可逆液相反应A 2R ,30/30.2m kmol C A =, 出口转化率7.0=A x ,每批操作时间h t t 06.20=+,装置的生产能力为50000 kg 产物R/天,R M =60,则反应器的体积V 为_C_3 m 。 A. 19.6 B. 20.2 C. 22.2 D. 23.4 8、在间歇反应器中进行等温一级反应A → B ,s l mol C r A A ?=-/01.0,当l mol C A /10 =时,求反应至l mol C A /01.0=所需时间t=____B___秒。 A. 400 B. 460 C. 500 D. 560

《化学反应工程》课程教学大纲.doc

《化学反应工程》课程教学大纲 课程名称:化学反应工程 课程类型:必修课,专业课 总学时:54 讲课学时:54 实验学时:0 学分:3.0 适用对象:化学工程、化学工艺 先修课程:物理化学、化工工艺学、化工原理、化工热力学 一、课程性质、目的和任务 课程性质: 化学反应工程是以化学反应器原理为主要线索,主要研究化学反应过程需要解决的工程问题,是化工生产的龙头、关键和核心,是一些基础学科诸如物理化学、传递过程、化学工艺等相互渗透与交叉而演变成的边缘学科,其内容主要涉及化学反应动力学、反应器中传递特性、反应器类型结构、数学建模方法、操作分析及反应器设计,具有高度综合性、广泛基础性和自身独特性。 课程目的与任务: 一是培养学生将物理化学、传递过程、化学工艺、化工热力学、控制工程等学科知识用之于化学反应工程学的综合能力; 二是使学生掌握化学反应工程学科的理论体系、研究方法,了解学科前沿; 三是使学生初步具备改进和强化现有反应技术和设备、开发新的反应技术和设备、解决反应过程中的工程放大问题以及实现反应过程中最优化的能力 二、教学基本要求 通过本课程的教学,要使学生系统地掌握化学反应动力学规律、传递过程对化学反应的影响规律,掌握反应器设计、过程分析及最佳化方法。

四、课程的重点和难点 绪论 重点是化学反应工程的研究内容和方法。 第一章均相单一反应动力学和理想反应器 重点:①化学反应动力学方程②理想反应器设计方程 难点:动力学方称的建立;反应器设计计算 第二章复合反应与反应器选型 重点:复合反应动力学方程表达法;复合反应动力学特征分析;平推流反应器的串联和全混流反应器的串联。 难点:可逆反应吸热反应和放热反应动力学特点推导与分析;循环反应器设计方程的数学推导;复合反应(包括可逆反应、自催化反应、平行反应、连串反应)在PFR 和CSTR反应器的优化设计计算 第三章非理想流动反应器 重点:停留时间分布的概率函数及特征值;停留时间分布的实验测定;解决均相反应过程问题的近似法即活塞流模型、全混流模型、凝聚流模型、多级混合槽模型、轴向扩散模型的推导、结论及应用比较。 难点:停留时间分布实验测定;理想反应器两函数和两特征值;宏观流体、微观流体概念的理解;均相反应过程问题的近似法假设及推导。 第四章气固相催化反应本征动力学 重点:非均相催化反应速度的表达;非均相催化反应过程;双曲型本征动力学方程 难点:催化剂的结构及表征;兰格缪尔吸附模型、焦姆金吸附模型、弗鲁德里希吸附模型;双曲本征动力学方程的推理。 第五章气固相催化反应宏观动力学 重点:以颗粒为基准的有效扩散;西勒模数物理意义;球形催化剂上等温反应宏观反应动力学方程的假设、建立、数学求解; 难点:有效扩散的假设及推导;方程求解涉及二阶常微分方程的数学求解及泰勒级数近似处理 第六章气固相催化固定床反应器

化学反应工程总结

一、 绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标——技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 二、化学反应动力学 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 ) )((反应区反应时间反应量 反应速率= 3. 工业反应动力学规律可表示为: )()(T f C f r T i C i ?= a) 浓度效应——n 工程意义是:反应速率对浓度变化的敏感程度。 b) 温度效应——E 工程意义是:反应速率对温度变化的敏感程度。 已知两个温度下的反应速率常数k ,可以按下式计算活化能E : E ——cal/mol ,j/mol T ——K R = 1.987cal/mol.K = 8.314 j/mol.K 工程问题

三、PFR 与CSTR 基本方程 1. 理想间歇:??-=--==Af A Af A x x A A A c c A A R r dx c r dc v V t 00)()(00 2. 理想PFR : ??-=--==Af A Af A x x A A A c c A A R p r dx c r dc v V 00) ()(00τ 3. CSTR : ) ()(00A A A A A A R p r x c r c c v V -= --== τ 4. 图解法 四、简单反应的计算 n=1,0,2级反应特征 0(1)A A A c c x =- 浓度、转化率、反应时间关系式 PFR →CSTR ,CSTR →PFR 基本关系式 PFR (间歇) CSTR 00()Af A c R A p c A V dc v r τ ==--? 0() A A R m A c c V v r τ-= =- n=0 0A A p c x k τ= 0A A p c x k τ= n=1 1ln 1p A k x τ=- 0A A m A c c kc τ-= n=2 011p A A k c c τ=- 02 A A A m c c kc τ-=0 x Af x A τ/c A0 τ

《化工过程分析与综合》教学大纲

《化工过程分析与综合》教学大纲 课程编号: 课程名称:化工过程分析与综合/Analysis and Synthesis for Process Engineering 学时/学分:32/2 先修课程:化工热力学,传质与单元操作,化工数学,化学反应工程,分离工程 适用专业:应用化学,化学工艺,化学工程 开课学院:化学工程学院,化工系 一、课程的性质与任务 《化工过程分析与合成》是化学工程与工艺专业的核心专业基础课程之一,它是应用系统工程的观点和方法来研究化工过程系统的开发、设计、最优操作与控制的一门课程。本门课程的任务是使学生能运用系统工程的观点和方法来分析和合成化工过程,使化工过程系统在开发、设计、操作、管理等各个层面上达到最优化。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1.绪论 介绍化工过程系统工程的基本内容,基本概念。包括:过程系统稳态模拟与分析,过程系统动态模拟与分析,过程系统的优化,过程操作优化,间歇过程,反应路径合成,反应器网络合成,换热网络合成,质量交换网络合成,水网络合成,分离塔序列的综合,虚拟企业,供应链等概念。 2.过程系统稳态模拟与分析 内容包括:过程系统模拟的序贯模块法,面向方程法和联立模块法。 3.过程系统的优化 内容包括:线性规划,非线性规划,混合整数非线性规划。 4.生产过程操作优化 内容包括:序贯实验优化方法,统计分析,模式识别和可视化技术。 5.间歇过程 内容包含:过程动态模型及模拟,间歇过程的最优时间表,多产品间歇过程的设备设计与优化,间歇过程的控制模型。 6.换热网络合成 内容包含:换热网络合成--夹点技术,夹点法设计能量最优的换热网络,换热网络的调优。7.分离塔序列的综合 内容包含:直观推断法,数学规划法,分离序列能量集成。 (二)基本要求 掌握序贯模块法的基本原理,对一个较简单的工艺流程,能够确定单元模块的计算顺序,并在计算机上进行模拟分析。 掌握建立最优化数学模型的一般步骤和方法,对有约束的非线性规划问题,能够应用罚函数法转化为无约束问题,并用改进的随机搜索法求解。 能够应用序贯实验方法改进操作条件,能够建立统计优化操作模型,通过求解找到好的工艺

相关主题
文本预览
相关文档 最新文档