当前位置:文档之家› 摩擦片材料概述

摩擦片材料概述

摩擦片材料概述
摩擦片材料概述

汽车制动系统摩擦片材料基本知识(2008-05-28 21:07:38)

标签:汽车

分类:技术精解

摩 擦 材 料

一、 概论 摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料。它主要包括制动器衬片(刹车片)和离合器面片(离合器片)。刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料是这种制动或传动装置上的关键性部件。它最主要的功能是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能。它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料是一种应用广泛又甚关键地材料。

摩擦材料是一种高分子三元复合材料,是物理与化学复合体。它是由高分子粘结剂(树脂与橡胶)、增强纤维和摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点是具有良好的摩擦系数和耐磨损性能,同时具有一定的耐热性和机械强度,能满足车辆或机械的传动与制动的性能要求。它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。

二、摩擦材料发展简史

自世界上出现动力机械和机动车辆后,在其传动和制动机构中就使用摩擦片。初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花和棉布会逐渐焦化甚至燃烧。随着车辆速度和载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。

石棉是一种天然的矿物纤维,它具有较高的耐热性和机械强度,还具有较长的纤维长度、很好的散热性,柔软性和浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维和其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能和使用寿命、耐热性和机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其他的各种耐热型的合成树脂相比价格较低,故从那时起,石棉石棉--酚醛型摩擦材料被世界各国广泛使用至今。

20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,N AO AO((少金属少金属))摩擦材料在欧洲的出现是一个发展的趋势。无石棉无石棉,,采用两种或两种以上纤维采用两种或两种以上纤维((以

无机纤维为主无机纤维为主,,并有少量有机纤维并有少量有机纤维))只含少量钢纤维、铁粉。NAO(少金属)型摩擦材料有助于克服半金属型摩擦材料固有的高比重、易生锈、易产生制动噪音、伤对偶(盘、鼓)及导热系数过大等缺陷。目前,NAO(少金属)型摩擦材料已得到广泛应用,取代半金属型摩擦材料。2004年开始,随汽车工业飞速发展,人们对制动性能要求越来越高,开始研发陶瓷型摩擦材料。陶瓷型摩擦材料主要以无机纤维和几种有机纤维混杂组成,无石棉,无金属。其特点为:

1. 无石棉符合环保要求;

2. 无金属和多孔性材料的使用可降低制品密度,有利于减少损伤制动盘(鼓)和产生制动噪音的粘度。

3. 摩擦材料不生锈,不腐蚀;

4. 磨耗低,粉尘少(轮毂)。

三、摩擦材料分类

在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。

材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。

1.按工作功能分 可分为传动与制动两大类摩擦材料。如传动作用的离合器片,系通过离合器总成中离合器摩擦面片的贴合与分离将发动机产生的动力传递到驱动轮上,使车辆开始行走。制动作用的刹车片(分为盘式与鼓式刹车片),系通过车辆制动机构将刹车片紧贴在制动盘(鼓)上,使行走中的车辆减速或停下来。

2.按产品形状分 可分为刹车片(盘式片、鼓式片)、刹车带、闸瓦、离合器片、异性摩擦片。盘式片呈平面状,鼓式片呈弧形。闸瓦(火车闸瓦、石油钻机)为弧形产品,但比普通弧形刹车片要厚的多,25~30mm 范围。刹车带常用于农机和工程机械上,属软质摩擦材料。离合器片一般为圆环形状制品。异性摩擦片多用于各种工程机械方面,如摩擦压力机,电葫芦等。

3.按产品材质分 可分为石棉摩擦材料、无石棉摩擦材料两大类。

A、 石棉摩擦材料分为以下几类:

a、 石棉纤维摩擦材料,又称为石棉绒质摩擦材料。生产:各种刹车片、离合器片、火车合成闸瓦、石棉绒质橡胶带等。

b、 石棉线质摩擦材料。生产:缠绕型离合器片、短切石棉线段摩擦材料等。

c、 石棉布质摩擦材料。生产:制造层压类钻机闸瓦、刹车带、离合器面片等。

d、 石棉编织摩擦材料。生产:制造油浸或树脂浸刹车带。石油钻机闸瓦等。

B、 无石棉摩擦材料分为以下几类:

a、 半金属摩擦材料。应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。

b、 NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片为短切纤维型摩擦块,离合器片为连续纤维型摩擦片。

c、 粉末冶金摩擦材料。又称烧结摩擦材料,系将铁基、铜基粉状物料经混合、压型,并在在高温下烧结而成。适用于较高温度下的制动与传动工况条件。如:飞机、载重汽车、重型工程机械的制动与传动。优点:使用寿命长;缺点:制品价格高,制动噪音大,重而脆性大,对偶磨损大。

d、 碳纤维摩擦材料。系用碳纤维为增强材料制成的一类摩擦材料。碳纤维具有高模量、导热好、耐热等特点。碳纤维摩擦材料是各种类型摩擦材料中性能最好的一种。碳纤维摩擦片的单位面积吸收功率高及比重轻,特别适合生产飞机刹车片,国外有些高档轿车的刹车片也使用。因其价格昂贵,故其应用范围受到限制,产量较少。在碳纤维摩擦材料组分中,除了碳纤维外,还使用石墨,碳的化合物。组分中的有机粘结剂也要经过碳化处理,故碳纤维摩擦材料也称为碳——碳摩擦材料或碳基摩擦材料。

四、摩擦材料的技术要求

摩擦材料是车辆与机械的离合器总成和制动器中的关键安全零件,在传动和制动过程中,主要应满足以下技术要求:

1.适宜而稳定的摩擦系数。

摩擦系数是评价任何一种摩擦材料的一个最重要的性能指标,关系着摩擦片执行传动和制动功能的好坏。它不是一个常数,而是受温度、压力、摩擦速度或表面状态及周围介质因素等影响而发生变化的一个数。理想的摩擦系数应具有理想的冷摩擦系数和可以控制的温度衰退。由于摩擦产生热量,增高了工作温度,导致了摩擦材料的摩擦系数发生变化。

温度是影响摩擦系数的重要因素。摩擦材料在摩擦过程中,由于温度的迅速升高,一般温度达200℃以上,摩擦系数开始下降。当温度达到树脂和橡胶分解温度范围后,产生摩擦系数的骤然降低,这种现象称为“热衰退”。严重的“热衰退”会导致制动效能变差和恶化。在实际应用中会降低摩擦力,从而降低了制动作用,这很危险也是必须要避免的。在摩擦材料中加入高温摩擦调节剂填料,是减少和克服“热衰退”的有效手段。经过“热衰退”的摩擦片,当温度逐渐降低时摩擦系数会逐渐恢复至原来的正常情况,但也有时会出现摩擦系数恢复得高于原来正常的摩擦系数而恢复过头,对这种摩擦系数恢复过头我们称之为“过恢复”。

摩擦系数通常随温度增加而降低,但过多的降低也是不能忽视。我国汽车制动器衬片台架试验标准中就有制动力矩、速度稳定性要求。(QC/T 239-1997 货车、客车制动器性能要求;QC/T 582-1999 轿车制动器性能要求;T564-1999 轿车制动器台架试验方法;QC/T 479-1999 货车、客车制动器台架试验方法),因此当车辆行驶速度加快时,要防止制动效能的下降因素。

摩擦材料表面沾水时,摩擦系数也会下降,当表面的水膜消除恢复至干燥状态后,摩擦系数就会恢复正常,称之为“涉水恢复性”。

摩擦材料表面沾有油污时,摩擦系数显著下降,但应保持一定的摩擦力,使其仍有一定的制动效能。

2.良好的耐磨性。

摩擦材料的耐磨性是其使用寿命的反映,也是衡量摩擦材料耐用程度的重要技术经济指标。耐磨性越好,表示它的使用寿命越长。但是摩擦材料在工作过程中的磨损,主要是由摩擦接触表面产生的剪切力造成的。工作温度是影响磨损量的重要因素。当材料表面温度达到有机粘结剂的热分解温度范围时,有机粘结剂如橡胶、树脂产生分解、碳化和失重现象。随温度升高,这种现象加剧,粘结作用下降,磨损量急剧增大,称之为“热磨损”。

选用合适的减磨填料和耐热性好的树脂、橡胶,能有效地减少材料的工作磨损,特别是热磨损,可延长其使用寿命。

摩擦材料的耐磨性指标有多种表示方法,我国GB5763-98“汽车制动器衬片”国家标准中规定的磨损指标(定速式摩擦试验机)100℃~350℃温度范围的每档温度(50℃为一挡)时磨损率。磨损率系样品与对偶表面进行相对滑动过程中做单位摩擦功时体积磨损量,可由测定其摩擦力的滑动距离及样品因磨损的厚度减少而计算出。但由于被测样品在摩擦性能测试过程中,受高温影响会产生不同程度的热膨胀,掩盖了样品的厚度磨损,有时甚至出现负值,即样品经高温磨损后的厚度反而增加。这就不能真实正确反映出实际磨损。故有的生产厂家除测定样品的体积磨损外,还要测定样品的重量磨损率。

3.具有良好的机械强度和物理性能。

摩擦材料制品在装配使用之前,有需进行钻孔、铆装装配等机械加工,才能制成刹车片总成或离合器总成。在摩擦工作过程中,摩擦材料除了要承受很高温度的同时,还要承受较大的压力与剪切力。因此要求摩擦材料必须具有足够的机械强度,以保证在加工或使用过程中不出现破损与碎裂。如:铆接刹车片:要求有一定的抗冲击强度、铆接应力、抗压强度等。粘结刹车片:盘式片要具有足够的常温粘结强度与高温(300℃)粘结强度,以保证摩擦材料与钢背粘结牢固,可经受盘式片在制动过程中高剪切力,而不产生相互脱离,造成制动失效的严重后果。离合器片要求具有足够的抗冲击强度、静弯曲强度、最大应变值以及旋转破坏强度,为了保证离合器片在运输、铆装加工过程中不致损坏,也为了保障离合器片在高速旋转的工作条件下不发生破裂。

4.制动噪音低。

制动噪音关系到车辆行驶的舒适性,而且对周围环境特别是对城市环境造成噪音污染。对于轿车和城市公交车来说,制动噪音是一项重要的性能要求。就轿车盘式片而言,摩擦性能良好的无噪音或低噪音刹车片成为首先产品。随汽车工业的发展,现对制动噪音人们越来越重视,有关部门已经提出了标准规定。一般汽车制动时产生的噪音不应超过85dB。

引起制动噪音的因素很多,因刹车片只是制动总成的一个零件,制动时刹车片与刹车盘(鼓)在高速与高压相对运动下的强烈摩擦作用,彼此产生振动,从而放大产生不同程度的噪音。

就摩擦材料而言,长期使用经验告诉我们,造成制动噪音的因素大致有:

(1) 摩擦材料的摩擦系数越高,越易产生噪音,达到0.45~0.5或更高时,极易产生噪音。 (2) 制品材质硬度高易产生噪音。

(3) 高硬度填料用量多时易产生噪音。

(4) 刹车片经高温制动作用后,工作表面形成光亮而硬的碳化膜,又称釉质层。在制动摩擦时会产生高频振动及相应的噪音。

盘产生振动的因素:

盘的变化,硬度公差

制动器振动 盘的热变化

盘的生锈

(1) 制动钳加黄油,隔离振动频率。

(2) 盘的变形、公差、硬度均布性等。

由此可知,适当控制摩擦系数,使其不要过高,降低制品的硬度,减少硬质填料的用量,避免工作表面形成碳化层,使用减震垫或涂胶膜以降低震动频率,均有利于减少与克服噪音。

5. 对偶面磨损较小。

摩擦材料制品的传动或制动功能,都要通过与对偶件即摩擦盘(鼓)在摩擦中实现。在此摩擦过程中,这一对摩擦偶件相互都会产生磨损,这是正常现象。但是作为消耗性材料的摩擦材料制品,除自身应该尽量小的磨损外,对偶件的磨损也要小,也就是应该使对偶件的使用寿命相对的较长。这才充分显示出具有良好的摩擦性能的特性。同时在摩擦过程中不应将对偶件即摩擦盘或制动鼓的表面磨成较重的擦伤、划痕、沟槽等过渡磨损情况。

五、摩擦材料的结构与组成

摩擦材料属于高分子三元复合材料,它包括三部分:

(1) 以高分子化合物为粘结剂;

(2) 以无机或有机纤维为增强组分;

(3) 以填料为摩擦性能调节剂或配合剂。

1. 有机粘结剂

摩擦材料所用的有机粘结剂为酚醛类树脂和合成橡胶,而以酚醛类树脂为主。它们的特点和作用是当处于一定加热温度下时先呈软化而后进入粘流态,产生流动并均匀分布在材料中形成材料的基体,最后通过树脂固化作用的橡胶硫化作用,把纤维和填料粘结在一起,形成质地致密的有相当强度及能满足摩擦材料使用性能要求的摩擦片制品。

对于摩擦材料而言,树脂和橡胶的耐热性是非常重要的性能指标。因为车辆和机械在进行制动和传动工作时,摩擦片处于200℃~450℃左右的高温工况条件下。此温度范围内,纤维和填料的主要部分为无机类型,不会发生热分解。而对于树脂和橡胶,有机类的来说,又进入热分解区域。摩擦材料的各项性能指标此时多会发生不利的变化(摩擦系数、磨损、机械强度等),特别是摩擦材料在检测和使用过程中发生的三热(热衰退、热膨胀、热龟裂)现象,其根源都是由于树脂和橡胶、有机类的热分解而致。因此选择树脂与橡胶对摩擦材料的性能具有非常重要的作用。选用不同的粘结剂就会得出不同的摩擦性能和结构性能。目前使用酚醛树脂及其改性树脂。如:腰果壳油改性、丁腈粉改性、橡胶改性及其它改性酚醛树脂作为摩擦材料的粘结剂。

对树脂的质量要求是:

(1) 耐热性好,有较好的热分解温度和较低的热失重。

(2) 粉状树脂细度要高,一般为100目~200目,最好在200目以上,有利于混料分散的均匀性,可降低树脂在配方中的用量。

(3) 游离粉含量低,以1%~3%为宜。

(4) 适宜的固化速度 40s~60s(150℃)和流动距离(120℃ 40~80mm)

2. 纤维增强材料

纤维增强材料构成摩擦材料的基材,它赋予摩擦制品足够的机械强度,使其能承受摩擦片在生产过程中的磨削和铆接加工的负荷力以及使用过程中由于制动和传动而产生的冲击力、剪切力、压力。

我国有关标准及汽车制造厂根据摩擦片的实际使用工况条件,对摩擦片提出了相应的机械强度要求。如:冲击强度、抗弯强度、抗压强度、剪切强度等。为了满足这些强的性能要求,需要选用合适的纤维品种增加、满足强度性能。

摩擦材料对其使用的纤维组分要求:

(1) 增强效果好。

(2) 耐热性好。在摩擦工作温度下不会发生熔断、碳化与热分解现象。

(3) 具有基本的摩擦系数。

(4) 硬度不宜过高,以免产生制动噪音和损伤制动盘或鼓。

(5) 工艺可操作性好。

3. 填料

摩擦材料组分中的填料,主要是由摩擦性能调节剂和配合剂组成。使用填料的目的,主要有以下几个方面:

(1) 调节和改善制品的摩擦性能、物理性能与机械强度。

(2) 控制制品热膨胀系数、导热性、收缩率,增加产品尺寸的稳定性。

(3) 改善制品的制动噪音。

(4) 提高制品的制造工艺性能与加工性能。

(5) 改善制品外观质量及密度。

(6) 降低生产成本。

在摩擦材料的配方设计时,选用填料必须要了解填料的性能以及在摩擦材料的各种特性中所起到的作用。正确使用填料决定摩擦材料的性能,在制造工艺上也是非常重要的。

根据摩擦性能调节剂在摩擦材料中的作用,可将其分为“增磨填料”与“减磨填料”两类。摩擦材料本身属于摩阻材料,为能执行制动和传动功能要求具有较高的摩擦系数,因此增摩填料是摩擦性能调节剂的主要成分。不同填料的增摩作用是不同的。

增摩填料的莫氏硬度通常为3~9。硬度高的增摩效果显著明显。5.5硬度以上的填料属硬质填料,但要控制其用量、粒度。(如氧化铝、锆英石等)

减磨填料:一般为低硬度物质,低于莫氏硬度2的矿物。如:石墨、二硫化钼、滑石粉、云母等。它既能降低摩擦系数又能减少对偶材料的磨损,从而提高摩擦材料的使用寿命。

摩擦材料是在热与较高压力的环境中工作的一种特殊材料,因此就要求所用的填料成分必须有良好的耐热性,即热稳定性,包括热物理效应和热化学效应等。

填料的堆砌密度对摩擦材料的性能影响很大。摩擦材料的不同的性能要求,对填料的堆砌密度的要求也是不同的.

汽车制动系统摩擦片材料基本知识

汽车制动系统摩擦片材料基本知识 摩擦材料 一、概论 摩擦材料就是一种应用在动力机械上,依靠摩擦作用来执行制动与传动功能的部件材料。它主要包括制动器衬片(刹车片)与离合器面片(离合器片)。刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料就是这种制动或传动装置上的关键性部件。它最主要的功能就是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能。它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料就是一种应用广泛又甚关键地材料。 摩擦材料就是一种高分子三元复合材料,就是物理与化学复合体。它就是由高分子粘结剂(树脂与橡胶)、增强纤维与摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点就是具有良好的摩擦系数与耐磨损性能,同时具有一定的耐热性与机械强度,能满足车辆或机械的传动与制动的性能要求。它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。 二、摩擦材料发展简史 自世界上出现动力机械与机动车辆后,在其传动与制动机构中就使用摩擦片。初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花与棉布会逐渐焦化甚至燃烧。随着车辆速度与载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。石棉就是一种天然的矿物纤维,它具有较高的耐热性与机械强度,还具有较长的纤维长度、很好的散热性,柔软性与浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维与其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能与使用寿命、耐热性与机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其她的各种耐热型的合成树脂相比价格较低,故从那时起,石棉-酚醛型摩擦材料被世界各国广泛使用至今。 20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,NAO(少金属)摩擦材料在欧洲的出现就是一个发展的趋势。无石棉,

高分子聚合物摩擦材料

高分子聚合物摩擦材料 作者:林荻淳 目录 1.摩擦磨损形式及机理 2.摩擦副材料设计要求 3.高分子聚合物摩擦特征 4.影响高分子聚合物摩擦性能因素 5.改善高分子聚合物摩擦磨损性能的方法 6.高分子聚合物摩擦材料选料标准及工程考虑因素 7.小结 1.摩擦磨损形式及机理: (1)粘着磨损 (2)磨料磨损 (3)疲劳磨损 (4)腐蚀磨损 2.摩擦副材料设计要求: 不仅要求具有耐磨性,还要求减摩性。 (1)足够的承载能力。在一定的工作条件下抗压强度、抗塑性形变能力、抗疲劳性能,以及相应的高温性能高温抗拉强度、高温抗蠕变性、高温抗疲劳强度 (2)良好的表面性能。即要有一定的塑性形变能力和良好的适应性,包括顺应性、嵌入性和磨合性。顺应性是指轴承材料靠表面的弹塑性变形补偿对中误差和顺应其他几何误差的能力。嵌入性是指轴承材料能嵌藏污物、颗粒以减轻挂上或磨料磨损的能力。磨合性是指轴承材料经短期轻载运转后能减少表面粗糙度使摩擦副表面相吻合的性质。 (3)良好的物理、化学性能。搞得导热性和热容量,热膨胀系数小、对边界润滑膜的吸附性强,抗腐蚀性好,以利于摩擦热导出防止咬合,以利于边界润滑膜的形成和保护 理想的滑动摩擦副简单图示: 2.2高分子材料与金属材料对比: 2.2.1高分子材料特点: 1、密度小 2、强度低,比强度搞 3、低弹性模量,高弹性 4、优良的减摩、耐磨、自润滑属性 5、可加工性好 6、导热性差 2.2.2金属材料特点: 1、弹性模量大、抗拉强度高

2、导热性高 3、表面硬度高 4、高温综合性能好,高温下抗拉轻度、抗蠕变性好 2.2.3摩擦中形变机理差异: 金属材料与高聚物材料在形变行为方面最大的差异是前者表现出弹塑性形变,而后者粘性行为对形变影响极大。与金属材料相比,聚合物导热性差,摩擦过程中产生的热量容易在接触区域积累,导致摩擦界面温度上升、摩擦过程中接触区域的温度对聚合物材料的摩擦学性能影响巨大。 3.高分子聚合物摩擦特征 3.1高分子聚合物摩擦特征:: 3.2高分子聚合物摩擦机理: 4.影响高分子聚合物摩擦系数、磨损的主要因素 4.1高分子聚合物影响摩擦性能内部因素: 4.1.1分子的化学结构(对称性,对称性增加摩擦系数降低。静摩擦系数与摩擦面的预取向有很大关系。特别地,带有环状结构的耐热性聚合物的摩擦系数与摩擦方向没有对应关系。) 4.1.2凝聚态的结构,结晶度(结晶度对不同聚合物的摩擦系数、磨损影响不同,较高结晶度获得较高弹性模量,增强抗拉抗蠕变能力)、分子链取向(影响较小,同拉伸方向降低摩擦系数、垂直拉伸方向增加摩擦系数) 4.1.3共聚共混成分。 4.2影响高分子聚合物摩擦性能外部因素: 4.2.1温度 4.2.2载荷 5.改善高分子聚合物摩擦磨损性能的方法: 5.2高分子聚合物改性 5.2.1 共聚共混 5.2.2 侧链改性

制动器摩擦片的磨损计算

1.制动器摩擦片的磨损计算 为了选择合理的摩擦片面积, 通常采用下列几种度量摩擦片磨损指标. 单位摩擦片面积车重T g 2/厘米公斤∑=F G g a T 式中 ?G ——汽车总重; ∑F ——总摩擦面积。 对于轻型汽车,T g 可取为0.5~2.0公斤/2厘米,中型汽车为2.0~2.9公斤/2 厘米,对于重型汽车为2.9~4.2公斤/2厘米。 2.摩擦片与制动鼓间的单位压力片P ,由下式计算出平均单位压力。 如02b R M βμ鼓蹄片=P 式中 蹄M —一个制动蹄的制动力矩; 单位压力片P 对摩擦片的磨损影响很大,当片P 增大时,磨损亦加速。 简单非平衡式制动器的片P 值如下: 紧蹄 0.1001=P ~14.0公斤/2 厘米 松蹄 02P =3.0~5.0公斤/2厘米 紧急制动时 最大P =25~30公斤/2厘米 3.单位摩擦功L 当汽车制动时,其全部动能转化为摩擦功。制动器摩擦片单位面积上所分到的摩擦功,是随着汽车制动时的速度大小而变化的。因此,单位摩擦功用下式计算: 22 /254厘米米公斤?=∑??F V G L 式中 ?V —汽车开始制动是速度,以公里/小时计。 ?V 可按汽车一般行驶速度30公里/小时和最大速度max ?V (或紧急制动时)来分别计算。 当以 ?V =30公里/小时制动时;

本车L=7~20公斤·米/2 厘米 当以最大车速max ?V 制动时; 本车L=30~70公斤·米/2厘米 从制动器的机构合理行来看,应使前后制动器的单位摩擦功接近相等。 六 制动器的升温计算 制动时制动器将汽车的动能转变为热能, 一部分的热传到空气中, 一部分则被制动部件 (主要是制动鼓)所吸收, 使其温度升高, 摩损加剧。 当汽车在水平道路上行驶,紧急制动时热量几乎全部被制动鼓所吸收。于是从速度?V 到完全停车,制动鼓的温升计算公式 C 10850012鼓 g c z V G ????=??τ 式中 ?V —汽车开始制动时速度 鼓g —每个制动鼓的重量, C-制动鼓的热容量, Z-制动鼓数量 在从速度?V =30公里/小时制动到完全停车的情况下, 制动鼓温度的升高不应超过15 ℃ 。 为了防止在长时间下坡时制动摩擦衬片发热过度, 建议采用辅助制动器。 我们曾在有关汽车制造和使用部门配合下, 在云南山区进行山区汽车制动试验。 试验表明, 山区制动器使用十分频繁, 平均每公里制动3 ~5 次, 每分钟制动4 ~6 次。 在下坡行驶时, 制动时间占整个一下坡行驶时间的61 χ 以上。在下云南568 坡时, 最高鼓温竞达582~600度和500℃ 左右.在这样高的温度下, 摩擦片的摩擦系数降低很多, 如不采用必要措施。制动就将失效。

陶瓷基摩擦材料的研究

陶瓷基摩擦材料的研究 白克江 (东营信义汽车配件有限公司山东东营257335) 摘要:本文通过对陶瓷基摩擦材料摩擦原理的探讨,分析了陶瓷配方的优异性,明确了摩擦性能调节剂在陶瓷配方中的重要作用,并利用国际先进的试验方法FMVSS135对配方性能进行了全面的研究。 关键词:陶瓷基摩擦材料摩擦性能调节剂 Abstract:The article analyzes the excellent of ceramics formula and makes clear the importance of friction regulator in ceramic formula by studying the principle of ceramic radicle and completely researching the formula function through the international advanced trial method FMVSS135. Keywords:Friction material of ceramic radicle Friction function regulator 一、前言 做为刹车片的摩擦材料,在满足人们正常使用中制动性能的同时,其使用寿命、环保性和舒适性也是人们非常关注的一个问题。而影响其使用寿命、环保性和舒适性的关键因素便是摩擦材料中基础增强材料和摩擦性能调节剂的选择和正确应用。 众所周知,石棉在摩擦材料中具有优秀的综合性能,但石棉有害健康,而且其在我国已经逐渐开始被禁用。半金属摩擦材料虽然因其比较优异的性能已经得到了广大用户的认可,但其易锈蚀、伤对偶、易发生噪音的缺点,一直在困惑着摩擦材料的研究者们,因此随着摩擦材料的发展,少金属和非金属摩擦材料应运而生,本文探讨的便是NAO摩擦材料中的一种:陶瓷基摩擦材料。 陶瓷基摩擦材料是一种利用无机矿物纤维和有机纤维做为增强材料,以改性树脂和橡胶粉为粘合剂,利用多种有机和无机材料做为摩擦性能调节剂配合加工而成的摩擦材料。其特点是无噪音、落灰少,不伤对偶、使用寿命长、无锈蚀。 二、基础摩擦材料的选择 1、增强纤维的选择 矿物纤维和陶瓷纤维的使用温度均可达到1000℃以上,具有良好的分散性能及高温稳定性,且价格比较便宜。这两种纤维的长径比比较小,虽然具有较大的比表面积,但其增强效果并不是十分的理想,因此本研究选用矿物纤维、陶瓷纤维及凯芙拉进行三元复合,来改善摩擦材料的高温摩擦性能和机械强度,以满

制动器摩擦片材料有哪些种类

制动器摩擦片材料有哪些种类 前言随着汽车的高速化和大型化,对制动器性能的要求越来越高。制动器性能与它本身的结构以及这一摩擦副的材料有关,而在很大程度上依靠摩擦片的材料。所以,研制了多种摩擦片,但绝大多数是以石棉为主要成分,加入各种提高摩擦性能的添加剂,与树脂一起制成。在摩擦片的使用范围内,要求摩擦力稳定而且大、耐磨性好、并且质量稳定。但是,含有这类有机物的材料具有难以解决的特性——那就是通常当温度升高时,摩擦力要发生复杂的变。 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。 1.按工作功能分可分为传动与制动两大类摩擦材料。如传动作用的离合器片,系通过离合器总成中离合器摩擦面片的贴合与分离将发动机产生的动力传递到驱动轮上,使车辆开始行走。制动作用的刹车片(分为盘式与鼓式刹车片),系通过车辆制动机构将刹车片紧贴在制动盘(鼓)上,使行走中的车辆减速或停下来。 2.按产品形状分可分为刹车片(盘式片、鼓式片)、刹车带、闸瓦、离合器片、异性摩擦片。盘式片呈平面状,鼓式片呈弧形。闸瓦(火

车闸瓦、石油钻机)为弧形产品,但比普通弧形刹车片要厚的多,25~30mm范围。刹车带常用于农机和工程机械上,属软质摩擦材料。离合器片一般为圆环形状制品。异性摩擦片多用于各种工程机械方面,如摩擦压力机,电葫芦等。 3.按产品材质分可分为石棉摩擦材料、无石棉摩擦材料两大类。A、石棉摩擦材料分为以下几类:a、石棉纤维摩擦材料,又称为石棉绒质摩擦材料。生产:各种刹车片、离合器片、火车合成闸瓦、石棉绒质橡胶带等。b、石棉线质摩擦材料。生产:缠绕型离合器片、短切石棉线段摩擦材料等。c、石棉布质摩擦材料。生产:制造层压类钻机闸瓦、刹车带、离合器面片等。d、石棉编织摩擦材料。生产:制造油浸或树脂浸刹车带。石油钻机闸瓦等。B、无石棉摩擦材料分为以下几类:a、半金属摩擦材料。应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。b、NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片为短切纤维型摩擦块,离合器片为连续纤维型摩擦片。c、

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 1608070421 指导教师:李同杰 日期: 2010年12月

盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:1608070421 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。 盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经

摩擦材料

摩擦材料(盘式片、鼓式片、制动蹄) ——指点行业运作迷津 (一)摩擦材料的应用领域及重要性 摩擦材料是用于运动中起传动、制动、减速、驻车等作用的功能配件,主要用于汽车、火车、飞机、摩托车、工程机械、船舶机械等的制动器、离合器中的刹车片、离合器面片、闸瓦(片)等,其中60%以上用于汽车工业。 汽车用制动器衬片俗称“刹车片”,按用途可分为两类:行车制动和驻车制动刹车片。行车制动又分为盘式制动和鼓式制动刹车片。 汽车用制动刹车片在汽车工业中属于关键的安全件,汽车的制动和驻车都离不开它,刹车片质量的优劣直接关系到使用者的生命财产安全,摩擦材料质量性能的好坏,直接影响这整车、整机的使用效果,虽然在主机中所占成本较小,但功能和地位十分显赫。 (二)摩擦材料行业现状 A—国外摩擦材料行业现状 1897年,在英国,一个名叫Aerber Frood的人创造行的发明了摩擦材料,并成立了FERODO公司,从此奠定了摩擦材料的发展基石。 100多年的发展,现状国外发达国家的刹车片行业已经发展到了一个全新的高度,无论是在制动刹车片的生产设备、技术及工艺上,还是在产品的质量个管理等方面均处于世界绝对领先地位,刹车片的生产已经精细化、完美化,甚至于艺术品化。 最重要的,同时也是中国摩擦材料行业基本上很难做到的一点:发达国家的刹车片生产企业和整车汽车生产商对刹车片的开发是同步的,从刹车片的选定到出样品,要经过噪声检测、台架试验、匹配试验以及冬、夏季路试等反复测试,直到其性能均达到要求并稳定后,才批量生产。 目前,从世界范围来看,摩擦材料行业早已经品牌化、规模化、标准化。对于先进的生产刹车片的技术工艺而言,国外大致分为三块:北美(半金属配方);欧洲(少金属配方)日本(NA——无石棉有机物配方)。国外行业规范,想进入其市场,刹车片生产企业的设备、技术、工艺、产品的质量都应匹配,同时通过其市场的质量认证标准。 B—中国摩擦材料行业现状 据不完全统计,我国国内现有摩擦材料生产企业超过600多家(若包括无生产许可证或小作坊式的,估计有800多家以上),销售产值约180亿人民币,其中70%产品为汽车用摩擦材料占30%,国外需求的摩擦材料占70%,产值前50各生产企业中,国外、合资、独资占30家。

关于摩擦材料

无石棉摩擦材料分为以下几类: a 半金属摩擦材料,应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。 b NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片为短切纤维型摩擦块,离合器片为连续纤维型摩擦片。 c 粉末冶金摩擦材料。又称烧结摩擦材料,系将铁基、铜基粉状物料经混合、压型,并在在高温下烧结而成。适用于较高温度下的制动与传动工况条件。如:飞机、载重汽车、重型工程机械的制动与传动。优点:使用寿命长;缺点:制品价格高,制动噪音大,重而脆性大,对偶磨损大。 d 碳纤维摩擦材料。系用碳纤维为增强材料制成的一类摩擦材料。碳纤维具有高模量、导热好、耐热等特点。碳纤维摩擦材料是各种类型摩擦材料中性能最好的一种。碳纤维摩擦片的单位面积吸收功率高及比重轻,特别适合生产飞机刹车片,国外有些高档轿车的刹车片也使用。因其价格昂贵,故其应用范围受到限制,产量较少。在碳纤维摩擦材料组分中,除了碳纤维外,还使用石墨,碳的化合物。组分中的有机粘结剂也要经过碳化处理,故碳纤维摩擦材料也称为碳——碳摩擦材料或碳基摩擦材料。 编辑本段5 摩擦材料的技术要求 5.1 适宜而稳定的摩擦系数 摩擦系数是评价任何一种摩擦材料的一个最重要的性能指标,关系着摩擦片执行传动和制动功能的好坏。它不是一个常数,而是受温度、压力、摩擦速度或表面状态及周围介质因素等影响而发生变化的一个数。理想的摩擦系数应具有理想的冷摩擦系数和可以控制的温度衰退。由于摩擦产生热量,增高了工作温度,导致了摩擦材料的摩擦系数发生变化。 温度是影响摩擦系数的重要因素。摩擦材料在摩擦过程中,由于温度的迅速升高,一般温度达200℃以上,摩擦系数开始下降。当温度达到树脂

盘式制动器结构和原理

盘式制动器结构和原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器 3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,

并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

摩擦材料

摩擦材料 一、概论 摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料。它主要包括制动器衬片(刹车片)和离合器面片(离合器片)。刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料是这种制动或传动装置上的关键性部件。它最主要的功能是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能。它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料是一种应用广泛又甚关键地材料。 摩擦材料是一种高分子三元复合材料,是物理与化学复合体。它是由高分子粘结剂(树脂与橡胶)、增强纤维和摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点是具有良好的摩擦系数和耐磨损性能,同时具有一定的耐热性和机械强度,能满足车辆或机械的传动与制动的性能要求。它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。 二、摩擦材料发展简史 自世界上出现动力机械和机动车辆后,在其传动和制动机构中就使用摩擦片。初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花和棉布会逐渐焦化甚至燃烧。随着车辆速度和载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。 石棉是一种天然的矿物纤维,它具有较高的耐热性和机械强度,还具有较长的纤维长度、很好的散热性,柔软性和浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维和其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能和使用寿命、耐热性和机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其他的各种耐热型的合成树脂相比价格较低,故从那时起,石棉-酚醛型摩擦材料被世界各国广泛使用至今。 20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,NAO(少金属)摩擦材料在欧洲的出现是一个发展的趋势。无石棉,采用两种或两种以上纤维(以无机纤维为主,并有少量有机纤维)只含少量钢纤维、铁粉。NAO(少金属)型摩擦材料有助于克服半金属型摩擦材料固有的高比重、易生锈、易产生制动噪音、伤对偶(盘、鼓)及导热系数过大等缺陷。目前,NAO (少金属)型摩擦材料已得到广泛应用,取代半金属型摩擦材料。2004年开始,随汽车工业飞速发展,人们对制动性能要求越来越高,开始研发陶瓷型摩擦材料。陶瓷型摩擦材料主要以无机纤维和几种有机纤维混杂组成,无石棉,无金属。其特点为: 1. 无石棉符合环保要求; 2. 无金属和多孔性材料的使用可降低制品密度,有利于减少损伤制动盘(鼓)和产生制动噪音的粘度。 3. 摩擦材料不生锈,不腐蚀; 4. 磨耗低,粉尘少(轮毂)。 三、摩擦材料分类 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。 材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。

刹车片原材料和制作工艺

一般分为粘结剂、增强纤维、摩擦性能调节剂、填料四大部份: 粘结剂:汽车摩擦材料中一般采用的是热固化型粘结剂,具体应用的有酚醛树脂(主要组成酚醛树脂一丁腈。质量标准 Q/HSY048—94,外观浅黄色至浅棕色黏稠液体 250℃ ≥7,剪切强度/MPa 300℃≥4,室温≥25 320℃≥3,特点及用途适用于汽车等机械的制动器、刹车片的粘接。施工工艺粘接面除油,打磨或喷砂后,用丙酮或乙酸乙酯擦净,涂两遍胶,晾20min;80℃烘20~40min后合拢,160~170℃固化3h)、三聚氰胺树脂、环氧树脂、硅树脂、聚酰胺树脂等。应用最广泛的是酚醛树脂及其改性树脂。改性的目的是改善树脂的高温性能。 增强纤维是摩擦材料也是主要的摩擦组元起增强基的作用,传统材料用的是石棉等矿物纤维,半金属汽车摩擦材料中使用的是钢纤维,同时加入少量铜纤维及其少量矿物纤维。近年来,增强纤维的种类也越来越多,其中最引人注目的是芳纶(Kevlar)的应用。有机纤维的加入,可以降低材料的密度、减小其磨损量,但同时也会降低材料的摩擦系数。为了提高摩擦材料在各温度段的稳定性及其纤维和粘结剂的亲和性能,在实际应用中往往采用多种纤维混合使用。 【刹车片增强纤维实验材料研究: 采用腰果油酚醛树脂作为基体,以硫酸钙、氟化钠及黑铁作为摩擦性能调节剂。采用经过表面处理的硅灰石和海泡石代替石棉作为增强材料。其中硅灰石分为粗(粒度为,颗粒长径比L:D>15)和细(粒度为)两种;海泡石也分为粗(粒度为密码,L:D>50)和细(粒度为,L:D>40)两种。试样基本配方为:基体材料20%,增强材料60%,其他填料20%,根据试验配方,在保持基本材料和填料比例不变的条件下,使用不同增强材料制备做试样。在就基体材料和调节剂不变时,采用1:6(质量分数)的硬脂酸改性细粒(,L:D>12)针状硅灰石和硬脂酸改性粗粒(,L:D>50)纤维状海泡石作为复合增强体所制备的刹车片的综合性能最佳。】 摩擦性能调节剂可以分为2类:(1)减摩材料:莫氏硬度一般小于2,它的加入可提高材料的耐摩性,减小噪音及降低摩擦系数。这类材料主要有:石墨、二硫化钼、铅、铜等。(2)摩阻材料:莫氏硬度一般大于4,它的加入可以增加材料的摩擦系数。大部分无机填料和部分金属及其氧化物属这一类。摩擦性能调节剂的加入主要是调节材料的热稳定性能以及其工作稳定性。 填料主要以粉末的形式加入。填料的作用很多,比如加入铜粉,作用是可在摩擦材料和对偶间形成转移膜,既能提高摩擦力矩和稳定摩擦系数,又能减小对对偶件的损伤,提高整个,可以提高材料的密度。硫酸钡摩擦副的耐磨性能。加入. 刹车片生产流程 原料混和:基本上刹车片是由钢纤、矿绵、石墨、耐磨剂、树脂及其它化学物质所组成, 而磨擦系数、耐磨指数及噪音值的大小,就是透过这些原料的比例分配进行调整。 热成型阶段:将混合好的原料倒入模具里,并重压成型

中国摩擦材料发展方向

中国摩擦材料发展方向 我国摩擦材料的未来发展方向,主要体现在三个大的领域方面,随着我国汽车产业的不断发展,做为汽车制动系统关键零部件之一的刹车片也得到了突飞猛进的发展。而今新能源时代到来之际,我国企业须认清国际摩擦材料行业的发展形势。以下是刹车片的三种重要材料:首先是纤维增强材料,纤维做为摩擦材料的骨架材料,不但对摩擦片的强度起着至关重要的作用,同时也对摩擦片的性能有着重要的影响。目前在欧美等发达国家和地区又开始对纤维的结构和理化性能提出了更为严格的要求,而木质纤维、无机晶须(硫酸钡晶须;碳酸钙晶须;钛酸钾晶须等)、矿物纤维、陶瓷纤维、碳纤维、各种有机合成纤维等给我们提供了大量的选择余地,但从成本等综合因素上来看晶体结构和水溶性纤维材料等将是我们未来摩擦材料中 的首选纤维。?刹车片的另一个重要材料是粘合剂。粘合剂是我们生产摩擦材料必不可少的材料,人们从最早利用纯酚醛树脂(固态和液态),到后来采用各种橡胶通过多种工艺对酚醛树脂进行改性,发展到今天使用多种无机物或有机物对树脂进行改性。目前已经不再是单纯的追求摩擦系数和磨损性能的稳定和提高,而是从摩擦片与刹车盘表面的相互作用去分析摩擦材料的工作原理。所以做为摩擦材料的粘合剂材料,不再仅限于树脂与橡胶,而是已经拓展到了利用金属粉末或金属硫化物在高温下所具有的特殊性能,来 减少树脂在摩擦材料中的使用比例,弥补树脂及橡胶在高温条件下的不足,改善高温时在刹车片与刹车盘之间形成的转移膜的结构与性能,进而提高摩擦片的摩擦性能以及其与刹车盘的磨损性能,从而达到提高制动的安全性能、舒适性能和环保性能。?因此,我们在采用高性能的树脂来提高摩擦材料性能的同时,应更多地关注和利用一些金属粉末或金属硫化物以改善摩擦过程中形成的转移膜的形状与结构,使静态摩擦系数与动态摩擦系数达到相对的平衡,确保刹车片与刹车盘具有良好的磨损性能的同时,达到提高摩擦材料的速度与压力敏感性、消除高温衰退、减少噪音、减少落灰的目的。最后就是摩擦性能调节剂:摩擦性能调节剂在改善摩擦材料综合性能过程中起着非常关键的作用,过去我们的摩擦材料技术工作者在材料品种 的选择上做了大量的研究,并且对其形状和结构也做了相应的探讨,但与世界先进的水平相比还有很大的差距,今后的研究工作不但要在选材上不断扩大应用范围,而且要对每种材料的粒度分布做出明确的规定, 并且对其理化性能提出详细的技术参数,同时在配方的研究过程中,对于同一种材料的应用,要根据其形状与粒度的进行多种型号的搭配使用,以确保其优点在摩擦材料中得到充分的发挥。 汽车刹车材料的发展趋势

盘式制动器制动计算

制动计算 制动系统方面的书籍很多,但如果您由于某事需要找到一个特定的公式,你可能很难找到。本文面将他们聚在一起并作一些的解释。他们适用于为任何两轴的车辆,但你的责任就是验证它们。并带着风险使用..... 车辆动力学 静态车桥负载分配 相对重心高度 动态车桥负载(两轴车辆) 车辆停止 制动力 车轮抱死 制动力矩 制动基本原理 制动盘的有效半径 夹紧力 制动系数 制动产生 系统压力 伺服助力 踏板力 实际的减速度和停止距离 制动热 制动耗能 动能 转动能量 势能 制动功率 干式制动盘温升 单一停止式温升 逐渐停止式温升 斜面驻车 车桥负荷 牵引力 电缆操纵制动的损失 液压制动器 制动液量要求 制动基本要求 制动片压缩性 胶管膨胀 钢管膨胀 主缸损失 制动液压缩性 测功机惯性

车辆动力学 静态车桥负载分配 这里:Mf=静态后车桥负载(kg);M=车辆总质量(kg);Ψ=静态车桥负载分配系数注:对于满载和空载的车辆的变化往往是不同的。 相对重心高度 这里: h=重心到地面的垂直距离(m);wb=轴距;X=相对重心高度; 动态车桥负载(仅适用于两轴车辆) 制动过程中车桥负载的变化与哪个车桥制动无关。它们只依赖于静态负载条件和减速度大小。 这里:a=减速度(g);M=车辆总质量(kg);Mfdyn=前桥动态负载(kg); 注:前桥负荷不能大于车辆总质量。后桥负荷是车辆质量和前桥负荷之间的差值,并不能为负数。它可能脱离地面。(摩托车要注意)! 车辆停止 制动力 总制动力可以简单地用牛顿第二定律计算。 这里:BF=总制动力(N);M=车辆总质量(kg);a=减速度(g);g=重力加速度(s/m2);车轮抱死 如果车轮不抱死只能产生制动力,因为轮子滑动摩擦力比滚动摩擦力低得多。在车轮抱死前特定车轴可能的最大制动力计算公式如下: 这里:FA=车桥可能的总制动力(N);Mwdyn=动态车桥质量(kg);g=重力加速度(s/m2);μf=轮胎与地面间摩擦系数; 制动力矩 决定了哪个车轮需要制动来产生足够的制动力,每个车轮扭矩的要求需要确定。对于某些规则,前部和后部制动器之间的分配是确定的。这可能是通过不同的刹车片大小或更容易使

纸基摩擦材料研究综述

北京科技大学 材料科学与工程选论 姓名:张欣悦 学号:B20130195 专业:材料科学与工程 班级:2013级博3班 二零一四年九月

纸基摩擦材料研究综述 1 纸基摩擦材料的发展概况 随着机电液一体化技术的飞速发展,各类新型液力驱动的湿式离合器和制动器得到广泛应用,在这种湿式离合器和制动器中是靠多对摩擦片传递扭矩,其中摩擦片大部分是采用纸基摩擦片,摩擦片既是关键零件又是易损件。图1所示是捷达宝来轿车M01自动变速低速档离合器K1的分解图,其摩擦片全部是纸基摩擦片。纸基摩擦片的外观如图2所示。 图1 捷达宝来轿车M01自动变速器离合器K1部件分解示意图 1. 弹性挡圈 2. 压盘 3. 内片 4. 外片 5. 压板 6. 波形弹簧垫圈 7. 弹性挡圈 8. 活塞盖 9. 弹簧 10. 活塞11. 带涡轮轴的离合器壳12. 圆形密封圈13. 活塞环

纸基摩擦材料是20世纪50年代出现的一种多孔的、高弹性的湿式摩擦材料,主要由纤维、粘结剂、摩擦性能调节剂、填料等组成,通常采用类似造纸的工艺生产,因而被称为“纸基”。纸基摩擦材料是一种在油介质中工作的新型摩擦材料,与其他摩擦材料相比,具有摩擦系数高、动/静摩擦系数接近、传送扭矩能力强、结合柔和、噪音小、不伤对偶等一系列优点,因而被广泛采用。纸基摩擦材料主要用于各类车辆和工程机械、机床、船舶、矿山机械等行业湿式离合器和制动器中,特别是作为汽车自动变速器中湿式离合器的摩擦材料,更具有广阔的应用前景。 图2 纸基摩擦材料摩擦片 国外纸基摩擦材料出现于五十年代末,其经历了从石棉纸基片到无石棉纸基材料,从轻载工况到重载工况,从低能量、低功率吸收到高能量、高功率吸收的发展过程,该种材料已广泛应用于汽车、船舶、工程机械、矿山机械等领域的离合器、制动器中。目前,世界上较大的机械传动制造商,在其湿式制动器和离合

刹车片基本知识

刹车片基本知识 刹车片也叫刹车皮。在汽车的刹车系统中,刹车片是最关键的安全零件,所有刹车效果的好坏都是刹车片起决定性作用,所以说好的刹车片是人和汽车的保护神。 刹车片是指固定在与车轮旋转的制动鼓或制动盘上的摩擦材料,其中的摩擦衬片及摩擦衬块承受外来压力,产生摩擦作用从而达到车辆减速的目的。 组成结构 刹车片一般由钢板、粘接隔热层和摩擦块构成,钢板要经过涂装来防锈,涂装过程用SMT-4炉温跟踪仪来检测涂装过程的温度分布来保证质量。其中隔热层是由不传热的材料组成,目的是隔热。摩擦块由摩擦材料、粘合剂组成,刹车时被挤压在刹车盘或刹车鼓上产生摩擦,从而达到车辆减速刹车的目的。由于摩擦作用,摩擦块会逐渐被磨损,一般来讲成本越低的刹车片磨损得越快。摩擦材料使用完后要及时更换刹车片,否则钢板与刹车盘就会直接接触,最终会丧失刹车效果并损坏刹车盘。 传统制造工艺中,在刹车片上使用的摩擦材料是由多种粘合剂或添加剂组成的混合物,并在其中添入纤维以提高其强度,起加固作用。刹车片生产厂家在关于使用材料的公布上特别是新配方上往往是守口如瓶的,当然,一些成分配料如:云母、硅石、橡胶碎片等是公开的。而刹车片制动的最终效果、抗磨损能力、抗温能力及其它性能将取决于不同成分间的相对比例。 刹车片原材料的组成 一般分为粘结剂、增强纤维、摩擦性能调节剂、填料四大部份:

粘结剂是摩擦材料中的一个最重要的组元,它可以影响材料的热衰退性能、恢复性能、磨损性能和机械性能。一般有热固性、热塑性、橡胶类、复合型类几种,汽车摩擦材料中一般采用的是热固化型粘结剂,具体应用的有酚醛树脂、三聚氰胺树脂、环氧树脂、硅树脂、聚酰胺树脂等。应用最广泛的是酚醛树脂及其改性树脂。改性的目的是改善树脂的高温性能。为了更大的提高粘结剂的高温性能,现在先进的汽车摩擦材料已经有些采用聚酰亚胺树脂,但目前这种树脂成本太高,普及不容易。 增强纤维是摩擦材料也是主要的摩擦组元起增强基的作用,传统材料用的是石棉等矿物纤维,半金属汽车摩擦材料中使用的是钢纤维,同时加入少量铜纤维及其少量矿物纤维。近年来,增强纤维的种类也越来越多,其中最引人注目的是芳纶(Kevlar)的应用。有机纤维的加入,可以降低材料的密度、减小其磨损量,但同时也会降低材料的摩擦系数。为了提高摩擦材料在各温度段的稳定性及其纤维和粘结剂的亲和性能,在实际应用中往往采用多种纤维混合使用。 摩擦性能调节剂可以分为2类:(1)减摩材料:莫氏硬度一般小于2,它的加入可提高材料的耐摩性,减小噪音及降低摩擦系数。这类材料主要有:石墨、二硫化钼、铅、铜等。(2)摩阻材料:莫氏硬度一般大于4,它的加入可以增加材料的摩擦系数。大部分无机填料和部分金属及其氧化物属这一类。摩擦性能调节剂的加入主要是调节材料的热稳定性能以及其工作稳定性。 填料主要以粉末的形式加入。填料的作用很多,比如说加入铜粉,它的作用是可以在摩擦材料和对偶间形成转移膜,既能提高摩擦力矩和稳定摩擦系数,有能减小对对偶件的损伤,提高整个摩擦副的耐摩性能。加入硫酸钡,可以提高材料的密度。

汽车制动摩擦材料的性能要求及影响因素分析

汽车制动摩擦材料的性能要求及影响因素分析 发表时间:2018-09-12T14:20:56.057Z 来源:《科技新时代》2018年7期作者:张国华 [导读] 本文围绕汽车制动摩擦材料的相关议题进行了探讨,分别论述了汽车制动摩擦材料摩擦磨损性能的影响因素。 杭州优纳摩擦材料有限公司浙江省杭州市 311404 摘要:本文围绕汽车制动摩擦材料的相关议题进行了探讨,分别论述了汽车制动摩擦材料摩擦磨损性能的影响因素,汽车制动摩擦材料热衰退性能的影响因素,以及启辰制动摩擦材料噪音及振动的影响因素,供相关人士参考。 关键词:摩擦材料、汽车、摩擦性能、热性能、影响因素 1引言 对于汽车生产来说,制动摩擦材料在汽车制动器、汽车离合器以及摩擦传动装置中起着关键的作用,在制动摩擦材料性能要求方面,不仅需要摩擦材料具备良好的摩擦磨损性能,同时在热衰退性能、振动性能以及减噪性能上也应有较良好的表现。在某种程度上制动摩擦材料性能的优劣将直接影响到汽车系统运行的安全性和可靠性。为此对汽车制动摩擦材料的性能进行分析和研究是十分重要且十分必要的。 2汽车制动摩擦材料摩擦磨损性能的影响因素 汽车制动摩擦材料的摩擦磨损性能主要与摩擦系数,摩擦稳定性以及磨损率有关,通常来说,摩擦材料需要在稳定适中的摩擦系数下尽可能拥有较低的材料磨损率。 (一)摩擦材料自身组分的影响 汽车制动摩擦材料是由多种材料所制成的复合型材料,因此在制作过程中各物料组分的不同会对摩擦材料的摩擦性能造成不同的影响。 磨料的影响。比如在摩擦材料中添加氧化铝、硫酸钡、锆英石、铬铁矿粉、硫化锑等金属填料,添加石墨等减磨材料,均可以使摩擦材料本身的摩擦性能得到改善和提升。根据添加物质性能的不同,也会对摩擦材料的性能产生不同的影响。比如添加氧化铝、锆英石、铬铁矿粉、硫化锑可以提高摩擦材料的高温摩擦系数;添加硫酸钡可以提高摩擦材料的热稳定性;添加石墨可以有效改善摩擦材料的热衰退性能,增加抗摩擦性能。 添加纤维的影响。在摩擦材料的制作过程中通过添加增强纤维可以提高材料的摩擦性能。在实际生产中,添加纤维有多种类型,如铜纤维、钢纤维等金属型纤维;玻璃纤维、陶瓷纤维等无机型纤维;芳纶纤维、纤维素纤维等有机型纤维等。金属型纤维在摩擦材料中起着骨架支撑的作用,但是由于金属的密度较大且对环境有一定的负面影响,因此在摩擦材料的制作中往往含量较低。有机型纤维在性能上具有较好的亲水性,同时在混合的过程中分散均匀度较好,因此可以提高摩擦材料的抗裂性能。此外由于该类型纤维对环境无污染,与其他物质的适应性好,因此应用较为普遍。无机型纤维在隔热性和减噪性方面表现良好,对环境无污染,但是在传热性上表现稍差,一般在应用时适当加入一些良好导热性的材料作为平衡。另外,无机纤维加入量过多容易导致摩擦材料的开裂,降低其摩损性能。 固体润滑剂的影响。固体润滑剂主要包括石墨、炭黑、氟化物等炭材料;硫、硒等硫族化合物;氮化硼;二硫化钼、硫化铅、硫化锌等金属硫化物。这些固体润滑剂有较低的莫氏硬度,可以在摩擦材料使用过程中发生有效的转移,以此来稳定摩擦材料的摩擦系数,减少摩擦噪音,提高摩擦材料的耐磨损性能。 (二)摩擦材料制作工艺的影响 不同的烧蚀或成型制作工艺也会对摩擦材料的摩擦性能造成影响。目前在摩擦材料的制作过程中多采用热压成型工艺。在热压成型过程中主要由加压、排气和固化三个基本环节。对于热压温度的控制需要参考模压树脂的差示扫描热量曲线中固化温度的变化情况。良好的热压成型工艺可以使树脂材料和其他物料结合程度得到改善,有效排出材料中的气体,控制摩擦材料成品中的含胶量,使摩擦材料成品拥有较好的密实度,提高摩擦材料的耐磨损性能。 3汽车制动摩擦材料热衰退性能的影响因素 摩擦材料的热衰退性能是影响摩擦材料使用寿命以及汽车运行安全与否的重要性能。通常情况下,高温会提高材料的热衰退性,若材料的热衰退十分严重,极容易导致汽车制动失效等故障,尤其是上下坡行驶过程中,摩擦材料的抗热衰退性对于行驶的安全十分必要。 (一)摩擦材料生产原料的影响 目前在摩擦材料的生产制造中,通常采用对树脂进行性能的优化,通过性能改良和优化来提高树脂的热分解温度,使摩擦材料能够在较高的温度条件下摩擦系数更加稳定,提高摩擦材料的抗热衰退性能。比如利用纳米金属材料对树脂进行导热性能的改良,纳米金属材料本身导热性能优异,与树脂原料结合后可以将摩擦表面产生的热量迅速地传递到材料内部,减少摩擦材料自身的温度差,减少树脂的热分解反应,提高摩擦材料的稳定性。另外,基于硫化锑在高温条件下容易生产硬度更高的氧化物,因此在原料中加入硫化锑不仅能够提高材料的耐磨损性,同时也起到了抗热衰退性的作用。 (二)摩擦材料制作工艺的影响 烧蚀技术涉及到摩擦材料的炭化,因此可以通过对烧蚀工艺优化来改善摩擦材料的抗热衰退性。为避免摩擦材料在高温过程中剧烈炭化,可以在烧蚀工艺前线对摩擦材料进行高温预处理,使材料在经过高温烧蚀过程中能够降低炭化的速率,提高摩擦材料的抗热衰退性。 4汽车制动摩擦材料噪音及振动的影响因素 随着汽车行业的不断发展,汽车制造技术也越来越贴合消费者的需求,从过去的功能性,美观性逐渐走向功能性、美观性、舒适性、环保性。对于汽车制动摩擦材料而言,越来越注重材料的降噪性能和抗振动性能。在降噪性能方面,可从摩擦材料的生产配方入手,通过降低原料中金属的含量来提高降噪性能。另外,由于摩擦材料中的孔隙率对降噪性能有着十分重要的影响,因此,可采用较高的显气孔率来

相关主题
文本预览
相关文档 最新文档