当前位置:文档之家› 电力防雷系统的设计概述(doc 30页)

电力防雷系统的设计概述(doc 30页)

电力防雷系统的设计概述(doc 30页)
电力防雷系统的设计概述(doc 30页)

电力防雷系统的设计概述(doc 30页)

电力防雷系统的设计

摘要

面对科技化的社会、国际化的中国,电力事业所占比重越来越大。电在日常生活中愈来愈重要。面对科技化的社会、国际化的中国,电力事业所占比重越来越大。电在日常生活中愈来愈重要。但自然现象雷电却威胁着世界上所有的高层建筑物和供电系统,不仅会使电力系统设备损坏,有时甚至还可能让整个电力系统瘫痪,造成难以估量的损失,会给人们的生活工作出行带来极其严重的影响。

直到现在,为了减少雷电事故的发生,提高供电的安全性和稳定性,人们积极采用多种防雷措施对电力系统进行保护。常用的措施有架设避雷线、安装避雷针和避雷器或采用接地保护,限制、降低、转移雷电事故发生时所产生的雷电过电压或过电流,从而保护建筑物和电力系统免遭雷击毁坏。

在高层建筑物上安装避雷装置不仅增加了其安全性还提高了土地的利用率,对于电力系统的防雷,不同的电力设备采用的相对应的防雷措施,既保证各设备安全稳定运行,又避免了各种雷击事故。提供优质、可靠、安全稳定的电能,为社会的进步、国家的发展奠定了良好的基础。

关键词:雷电;雷电过电压;防雷保护装置;电力系统;

目录

电力防雷系统的设计 (1)

摘要 (1)

abstract (2)

目录 (3)

引言 (5)

1 雷电放电和雷电过电压 (6)

1.1雷电的形成和危害 (6)

1.2雷电的种类 (6)

1.2.1直击雷 (6)

1.2.2传导雷 (7)

1.2.3感应雷 (7)

1.3雷电过电压的形成 (7)

1.3.1雷电波的侵入过程 (7)

1.3.2综合设备屡遭雷害的原因 (7)

2 防雷保护装置 (9)

2.1避雷装置的种类 (9)

2.2避雷针防雷原理及其保护范围 (9)

2.2.1避雷线防雷原理及其保护范围 (13)

2.2.2避雷器工作原理及其常用类型 (15)

3 电力系统防雷保护 (17)

3.1输电线路的防雷保护 (17)

3.1.1输电线路的耐雷水平和雷电跳闸率 (17)

3.1.2输电线路的防雷措施 (20)

3.2发电厂和变电所的防雷保护 (21)

3.2.1发电厂、变电所的雷电侵入过电压保护 (21)

3.2.2变电所的进线段保护 (22)

3.3变电所防雷的几个具体问题 (22)

4 接地保护 (26)

4.1接地的概念及分类 (26)

4.2 防雷接地保护系统的整体概念 (26)

4.2.1接地电阻、接触电压和跨步电压 (27)

4.2.2接地和接零保护 (27)

总结与展望 (29)

致谢 (30)

主要参考文献 (31)

引言

1.选题的目的意义

就像生活中总会遇见一些我们意想不到的人和事,对于雷电的产生我们也总是被动的。我们虽不能彻底消除它的发生,但我们可以试着预测和预防。以至于当它真正来的时候不会让我们措手不及。随着科学技术的不断发展人们的生活和工作方式都发生了很大的改变,这样的改变有好处可也有其不好之处。科技的发展给人们的日常生活和工作带去了福音的同时,对人们的要求也相应的提高了。就如现实生活中,自动控制系统是一种新的科技发明,电力的工作人对这种新型自动控制系统的防雷意识不足。所以一旦有雷电波入侵自动控制系统,可能会使整个电力系统瘫痪,造成不可估量的损失给电力生产和日常人们的生活带诸多不便,人们生活节奏就会扰乱。这就有必要要求人们应该提高防雷意识增加防雷知识,游刃有余的面对雷击事故的发生。

2.现间段国内外的研究现状

关于防雷问题一直备受关注,长期以来为了预防减少雷害事故,提高供电的可靠性稳定性,人们借助各种防雷的方法措施对电力系统进行防雷保护。雷电放电是大自然对外界的一种信号发射,随时随地都有可能发生,产生的雷电过电压可高达数百千伏,只有采取相应的防雷避雷措施才能将损失降到最低,保证人们日常生活的稳定节奏,国民经济的快速蓬勃。在国际上雷电已被列为最大危害的十种灾害之一,目前人们对雷害主要是设法去躲避和限制其的破坏性。

(1)避雷设备的发展

众所周知,在实际生活应用人们经常采用的避雷装置有避雷器、避雷线、避雷针,当面对不同的保护对象应采取与之相对应的避雷设备,综合考虑各种实际情况和经济运行条件,做到投资少效果好。与此同时为了提高避雷设备的灵敏度和安全性,避雷设备的结构一直在不断的改进、创新。

(2)接地材料的发展

在接地电阻方面,首先要考虑的是导体的热稳定性与在土壤中的耐腐能力以及导电性和其经济因素。随着社会的发展科学的进步接地材料的选择范围原来越广,为了降低接地电阻,增大接地体与土壤的有效接触面积,一般都是使用低电阻率的材料来做接地材料。人们利用各种材料进行接地,最常用的就属铜材、钢材、热镀锌等材料。

1 雷电放电和雷电过电压

1.1雷电的形成和危害

雷电极其壮观而又十分恐怖,它是伴有闪电和雷鸣的一种放电现象。雷电一般产生于对流发展旺盛的积雨云中,因此常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷风。富兰克林(Franklin)、黎赫曼(Phxmah)等众多著名科学家通过大量的实验证明阐述了雷电的形成,并建立了现代雷电学说。

雷电放电是一种自然力量的爆发造成的破坏性是不可估计的,且对人的生命、财产安全造成极大危害。早在1987年雷电就被列为危害最大的十种灾害之一。随着社会的发展人类走进电气化时代,对电的需求明显增大的同时,雷电的破坏范围也越来越大。地球上每年因雷害造成的损失巨大。当人们步入了电气时代之后,雷灾出现并对人类的有害影响可分为以下几种:

(1)受灾面扩大,从电力电网和高层建筑物这两个主要传统领域扩大到几乎覆盖任何一个行业,特别是与高新技术关系最为密切的关键领域。

(2)危及空间领域扩大,从最初的闪电直击和过电压波沿线路传输改变为空间闪电的脉冲电磁场,急速入侵到每一个角落造成灾害。从最开始的防直击雷、感应雷发展到防雷电电磁脉冲(LEMP)。

(3)造成的经济损失剧增,就雷电本身而言可能就是受雷设备自身被破坏,其经济损失并没有多大,可之后带来的一系列的问题却有可能造成难以估计的巨大的损失。甚至影响社会发展。

我们都知道一直以来,作为雷电本身它并没有变它一直存在,且影响巨大。伴随着科技的发展与进步,人类的日常生活工作在享受其带来的方便与享受的同时,也让电在日常生活中扮演着越来越重要的角色。人们沉浸在电力系统增加自动控制系统带来的便捷的同时,对自动控制系统的安全防雷知识和意识却非常模糊,一旦无孔不入的雷电波入侵微电子器件时,很容易造成微电子设备的失控或者损坏。为了保证我们的日常生活能正常稳定进行不受雷电影响,我们应该加强对雷电的预防和保护电气设备不受损坏的意识。我们应该站在科学技术的最前沿争当第一人,减少雷电事故的发生为人类带来福音。

1.2雷电的种类

1.2.1直击雷

监控立杆防雷设计方案

监控立杆防雷设计方案 1、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信 号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案

1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为 φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔离器。接地线一般采用40×4mm镀锌扁铁或25mm2以上多股绝缘铜缆,一端焊接到接地体上,另一端引到室内的等电位连接排上。接地体与引下线或接地线一般采用搭接焊,焊接处必须牢固无虚焊,同时为确保接地电阻不大于 4Ω,必须将接地体与建筑物大楼的基础地网可靠连接。对于监控中心及靠近建筑物的摄像头我们设计采用抽建筑物主钢筋的方法作联合接地,对于远离建筑的摄像头则需要在摄像头旁做一套人工接地体,具体如下地网设计方案。 3、电源系统的防雷 由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率,要比从信号线中进入的几率高得多,据统计,约有80%的雷击损坏电子设备的事故是由电源线引入的,因此应特别加强系统中 设备电源的防雷措施。 1)在控制大楼总配电柜处,安装第一级加强型电源防雷器; 2)在中心控制室的监控系统配电箱处,安装第二级标准型电源防雷器;

浅谈电力系统自动化防雷措施

浅谈电力系统自动化防雷措施 发表时间:2018-05-14T15:56:18.500Z 来源:《电力设备》2017年第34期作者:李一兵 [导读] 摘要:电力系统容量在不断的增加,同时自动化水平也在不断的提高,电力系统普遍使用了一些计算机、RTU 和其他微电子设备来进行工作。 (国网山东龙口市供电公司山东龙口 265701) 摘要:电力系统容量在不断的增加,同时自动化水平也在不断的提高,电力系统普遍使用了一些计算机、RTU 和其他微电子设备来进行工作。但是在雷雨季节,一些电力局调度大楼和电力局所属自动化显示系统、通信联络系统(Modem、载波机、程控交换机等)等通常会因为受到雷击而受到损坏,直接和间接经济损失都是非常大的。虽然有些电力调度自动化系统使用了一些防雷措施,但是还是频繁的出现雷害事故,因此笔者针对上述问题进行一个综合的分析。 关键词:电力系统;自动化;防雷;措施 1 雷击产生的原因 雷击是一种自然现象,它能释放出巨大的能量、具有极强大的破坏能力。当雷电放电路径不经过防雷保护装置时,放电过程中产生强大的瞬变电磁场在附近的导体中感应到强大的电磁脉冲,称感应雷。感应雷可通过两种不同的感应方式侵入导体。 一种是在雷云中电荷积聚时,附近导体会感应相反的电荷,当雷击放电时,雷云中电荷迅速释放,而导体中的静电荷在失去雷云电场束缚后也会沿导体流动寻找释放通道,就会在电路中形成静电感应,其次是在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,附近的导体中就会产生很高的感生电动势,在电路中形成电磁感应,感应雷沿导体传播,损坏电路中的设备或设备中的器件。 信息系统中系统接口多,线路长,给感应雷的产生、耦合和传播提供了良好环境,而信息系统设备随着科技的发展,集成度越来越高,抗过电压能力越来越差,极易受感应雷的袭击,并且损害的往往是集成度较高的系统核心器件,所以更不能掉以轻心,感应雷可以来自云中放电,也可以来自对地雷击。而信息系统与外界连接有各种长距离电缆可在更大范围内产生感应雷,并沿电缆传入信息系统。所以防感应雷是电力系统特别是微电子技术应用比较广泛的变电站综合自动化系统内,因而信息系统防雷是电力系统保证安全的重点。 2 电力系统雷击防护器的工作原理 电力系统目前的防雷器多采用两种工作方式:开路方式与短路方式。开路方式是指在防雷器遇到瞬间过电压时开路从而隔离设备,如隔离变压器、电感器、光隔离器类防雷器便是采用此种原理。短路方式是指在防雷器遇到瞬间过电压时对地短路使雷电流导入大地,从而保护电子设备。由于短路方式防雷器本身承受反压低,设备经济简单,所以应用比较广泛。其保护原理,短路方式防雷器多为一个或几个功能模块的组合,由于各个模块对雷击防护性能有一些区别,所以在选择避雷器时最好有所了解。其中抑制二极管及限流电阻模块可精密控压,但泄流较小;压敏电阻模块启动电压低、启动快,但同样泄流小,过载能力低;气体放电管模块泄流大,但启动电压较高。此外为防止较大过电压冲击。 3 微电子器件耐冲击水平与TVS管特性 微电子器件中 TTL 数字电路的抗冲击能力最弱,10V、30ns 脉宽的冲击电压可使TTL电路损坏;雷电流产生的磁场达 0.07 × 104T 时可使微电子器件误动,无电磁异蔽时即使雷电流通道远在 1km 处,也可能使微电子设备误动。为使微电子器件遇雷击时不致损坏,有效的办法是选用新型保护器件——TVS 管。 TVS 管即瞬态电压抑制器。当其两极受到反向瞬态高能量冲击时,它能以 10-12s 量级的速度,将两级间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值(一般小于 2 倍额定工作电压),有效的保护电子电路中的精密元器件免受各种浪涌脉冲的破坏。 TVS 管的正向特性与普通二级管相同,反向特性为典型的 PN 结雪崩器件。在瞬态脉冲电流的作用下,流过 TVS 管的电流,由原来的反向漏电流 ID 上升到 IR(25℃下,IR = 1mA )时,其两极呈现的电压由额定反向关断电压Uoff 上升到击穿电压 UBR,TVS管被击穿。随着峰值脉冲电流的出现,流过TVS 管的电流达到峰值脉冲电流 Ipp,其两极的电压被箝位到预定的最大箝位电压 Uc 以下;其后,随着脉冲电流按指数衰减,TVS管两极电压不断下降,最后恢复到起始状态。这就是 TVS 管抑制出现的浪涌脉冲功率,保护电子元件的过程。 TVS 管的显著特点为:响应速度快(10-12s 级)、瞬时吸收功率大(数千瓦)、漏电流小(10-9A 级)、击穿电压偏差小(± 5%UBR 与± 10%UBR 两种)、箝位电压较易控制(箝位电压 Uc 与击穿电压 UBR 之比为 1~1.4)、体积小等。它对保护装置免遭静电、雷电、操作过电压、断路器电弧重燃等各种电磁波干扰十分有效,可有效地抑制共模、差模干扰,是微电子设备过电压保护的首选器件。 4 接地电阻与屏蔽 4.1 接地 良好的接地是防雷中至关重要的一环。接地电阻值越小过电压值越低。因此,在经济合理的前提下应尽可能降低接地电阻。通信调度综合楼的通信站应与用一楼内的动力装置共用接地网并尽可能与防雷接地网直接相连。通信机房内应敷设均压带并围绕机房敷设环行接地母线。在电力调度通信综合楼内,需另设接地 网的特殊设备,其接地网与大楼主地网之间可通过击穿保险器或放电器连接,以保证正常时隔离,雷击时均衡电位。 接地的其他方面均应严格按有关规程办理。 4.2 屏蔽 屏蔽是利用各种金属屏蔽体来阻挡和衰减施加在计算机等设备上的电磁干扰或过电压所产生的巨大能量。对计算机系统来说具体可分为建筑物屏蔽、设备屏蔽和各种线缆包含管道的屏蔽。建筑物的屏蔽可利用建筑物钢筋、金属构架、金属门窗、地板等均相互焊接或可靠连接在一起,形成一个法拉第笼保护,并通过接地网可靠的电气连结,形成初级屏蔽网。设备的屏蔽应该对计算机设备耐电压能力进行严格且严密的调查,按IEC划分的防雷区(LPZ)施行多级屏蔽。在此强调二点注意事项。其一是屏蔽管线的接地,一般要求入户线采用地下电缆入户,其电缆金属护层,在前后两端做良好接地。测量结果表明,电线电缆屏蔽层一端接地时可将高频干扰电压降低一个数量级,两端接地时可降低两个数量级。其二是使用金属丝编制网屏蔽电缆,因其重量轻,使用方便而被广泛应用,但是在电磁波频率较高时,其波

常用的防雷典型电路

防雷器基本电路图目录 一、交流电源防雷器 (一)单相并联式防雷器(电路一~电路三) 1~3(二)三相并联式防雷器(电路一~电路三)4~6(三)单相串联式防雷器(通用安全保护电路)7(四)三相串联式防雷器(通用安全保护电路)8二、通信机房用直流电源防雷器 (一)并联式防雷器 1、正极接地(–48V)直流电源 9 2、负极接地(+24V)直流电源 10 3、正负对称(±110V)直流电源 11 (二)串联式防雷器 1、正极接地(–48V)直流电源 12 2、负极接地(+24V)直流电源 13 3、正负对称(±110V)直流电源 14 三、通用二级信号防雷器 (一)双绞线型信号电路 通用电路一~通用电路五 15~19 (二)同轴线型信号电路 (1)外导体接地电路(通用电路一~通用电路三) 20~22 (2)外导体不接地电路(通用电路一~通用电路二) 23~24 (三)提高传输频率/速率的方法25

四、小功率电源变压器或开关电源保护电路(电路一~电路三) 26~28 五、通讯电子设备的保护电路(电路一~电路三)29~31 六、直流电源与信号同传的保护电路32 七、信号电路的双重二级保护方式33 八、检测/控制电路的保护(接地、不接地)34~35 九、单级信号防雷器 1、只用玻璃放电管的保护电路 36 2、只用半导体过压保护器的保护电路 37 3、只用TVS管的保护电路 38 4、复合单级保护电路 39 十、天馈防雷器 1、单级电路天馈防雷器 40 2、二级电路天馈防雷器 41 3、三级电路天馈防雷器 42 十一、防静电保护器 43

(一)单相并联式防雷器 电路一:最简单的电路 600V。当要求的通流容量≤3KA时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

变电所的防雷保护与接地装置的设计知识讲解

精品文档 第9章变电所的防雷保护与接地装置的设计 第10章变电所的防雷保护与公共接地装置的设计 10.1变电所的防雷保护 由设计任务书中气象资料得知,化纤工厂所在地区的年雷暴雨日数为20天。虽然发生雷暴的几率不属于高频地区,但是雷电过电压产生的雷电冲击波对供电系统的危害极大,因此必须对雷电过电压加以防护。 10.1.1 直击雷防护 根据GB50057-1994有关规定,在总降压变电所和车间变电所川(其所供负荷为核心负荷,且靠近办公区和生活区,考虑防雷保护)屋顶可装设避雷带,避雷带采用直径8mm勺圆钢敷设,并经两根引下线(直径8mm与变电所公共接地装置相连,引下线应沿建筑物外墙敷设。 10.1.2雷电波入侵的防护 1.35kV 架空线路上,在距总降压变电所1km的范围内,可架设避雷线。 2. 在35kV电源进线的终端杆上装设FZ-35型阀式避雷器。其引下线采用 25mm< 4mm镀锌扁钢,下边与公共接地装置焊接相连,上面与避雷器接地 端螺栓相连。 3. 在35kV总降压变电所主变压器的高压侧,装设JYN1-35-102型高压开关 柜,其中配有FZ-35型避雷器,靠近主变压器配置,其用来防护雷电波入侵 对主变压器造成的危害。 4. 在10kV车间变电所的高压配电室的母线上,装设GG-1A(F)-54型高压开关 柜,其中配有FS-10型避雷器,靠近主变压器配置,其用来防护雷电波入侵 对主变压器造成的危害。 10.2变电所公共接地装置的设计 10.2.1. 接地电阻的要求 根据GB50057-1994规定,对于1kV以上的小接地电流系统,公共接地装置 的接地电阻应满足以下条件: R E250且R E 10 I E 式中I E的计算可根据下列经验公式计算: U N(l oh 35〔cab ) I E 350 式中,U N为电网的额定电压,单位kV; l oh为与U N侧有电联系的架空线路 长度,单位为km;l cab为与U N侧有电联系的电缆线路长度,单位为km。 1. 总降压变电所公共接地装置的接地电阻计算:

浅谈电力系统防雷

浅谈电力系统防雷 摘要:电力生产发,送,变,用的同时性,决定了它每一个过程重要性。电力 系统要通过设计、组织,以使电力能够可靠、经济地送到用户。对供电系统最大 的威胁就是雷击引起的短路故障、接地故障,它会给系统带来巨大的破坏作用, 因此我们必须采取措施来防范它。 对于一个大电网,雷击引起故障发生的几率和雷电带来的扰动是相当大的,如果 没有防雷的保护装置,电网是不允许运行的。这就是防雷技术在实际应用中的重 要程度。正确安装避雷保护装置的必要性是显而易见的。但在系统复杂的内部连 接和易发雷电区域关系致使很难检查正确与否。因此有必要采取校验手段。防雷 的保护装置是分区域布置的,这样整个电力系统都得到了保护,而不存在保护死区。本论文较好的介绍了对雷电的产生基本理论知识,针对雷电的基本特征, 分析原始资料,充分保证电力系统安全稳定运行,实现了对防雷技术改革的目的、要求及措施,提出有益的建议,使每个电力职工增强电力设施的安全保护意识。 关键词:雷电防雷技术接地保护浪涌电压 绪论 雷电产生的原因 近年来,随着电子技术的飞速发展,自动控制系统在电力生产各个方面的使 用越来越广,电力职工在受益于微电子技术的极大方便的同时,也受到其一旦损 坏就损失巨大的困扰。实际上,在电力系统增加自动控制系统的时候,对自动控 制系统的安全防雷意识相对淡薄,一旦有雷电波侵入,设备损坏一般是巨大的, 有的甚至使整个系统瘫痪,造成无可挽回的损失。雷击是一种自然现象,它能释 放出巨大的能量、具有极强大的破坏能力。一直以来,致力于电力生产和电力设 备研究的人员通过对雷击破坏性的研究、探索,对雷电的危害采取了一定的预防 措施,有效地降低了雷害。 雷电产生的原因是大气中的放电现象。在大气层中,云层间或云和地之间的 电位差增大达到一定程度时,即发生猛烈放电现象(闪电)。可见,雷电的产生 首先与大气层中的云有关,如层积云、雨层云、积云、积雨云等,最重要的则是 积雨云,气象专业书中讲的积雨云就是指雷雨云。在积雨云的生成与发展的同时,云体会带有大量电荷,一般云体上部带正电荷,中部和下部带负电荷,底部又有 一部分带正电荷。当浓积云发展到积雨云阶段,其中有的区域电位梯度大到每厘 米几千伏特,甚至上万伏特时,才会有闪电发生。每次放电时的电流强度平均有 2万安培左右,放电时间很短,总的持续时间一般为0.2秒;个别的可达1.5秒。闪电有枝状、球状、片状、条状等多种形状,但经常见到的是枝状闪电,其平均 长度是2-3公里,也有可达20-30公里的。在闪电的同时,放电的路径上空气的 温度瞬息间可以增高几万度,空气因急剧增热而膨胀就会引起空气的剧烈振动、 冲击、爆炸,产生强烈的雷鸣(打雷),亦称雷暴。由于光速比声速快,故先见 闪电,后闻雷声。雷暴在气象学里,分锋面雷暴、气团雷暴、对流性雷暴、平流 性雷暴。 当雷电放电路径不经过防雷保护装置时,放电过程中产生强大的瞬变电磁场 在附近的导体中感应到强大的电磁脉冲,称感应雷。感应雷可通过两种不同的感 应方式侵入导体。一种是在雷云中电荷积聚时,附近导体会感应相反的电荷,当 雷击放电时,雷云中电荷迅速释放,而导体中的静电荷在失去雷云电场束缚后也 会沿导体流动寻找释放通道,就会在电路中形成静电感应,其次是在雷云放电时,

机房电源系统防雷设计(三级防雷)

机房电源系统防雷设计(三级防雷) a.电源第一级防雷 在机房所在楼层配电间总电源处并联安装一套雷科星LKX-B380/100型三相电源防雷箱,做 为电源的第一级防雷保护,共计1套。产品技术参数: 型号LKX-B380/100 标称通流容量In(kA, 8/20μs)60 最大通流容量Imax(kA, 8/20μs)100 保护水平(kV) 2.5 漏电流0.75U1mA (μA) ≤20 额定工作电压(V AC) 380 响应时间(ns) <25 持续工作电压(V AC) 385 工作温度(℃) -40~+85 b.电源第二级防雷 虽然已经在楼层总电源进线端安装了第一级的防雷器,但是当较大雷电流进入时,第一级防雷器可将绝大部分雷电流由地线泄放,而剩余的雷电残压还是相当高,因此第一级防雷器的安装,可以减少大面积的雷击破坏事故,但是并不能确保后接设备的万无一失还存在感应雷电流和雷电波的二次入侵的可能,需要在机房电源电源进线处安装电源第二级防雷器。 具体措施: 在机房总电源处并联安装一套雷科星LKX-B220/80型单相电源防雷箱,做为机房电源的第 二级防雷保护,共计1套。产品技术参数: 型号LKX-B220/80 标称通流容量In(kA, 8/20μs)40 最大通流容量Imax(kA, 8/20μs)80 保护水平(kV) 2.2 漏电流0.75U1mA (μA) ≤20 额定工作电压(V AC) 220 响应时间(ns) <25 持续工作电压(V AC) 385 工作温度(℃) -40~+85 c.电源第三级防雷 虽然已经安装了第二级的防雷器,但是当较大雷电流进入时,前二级防雷器可将绝大部分雷电流由地线泄放,而剩余的雷电残压还是相当高,还存在感应雷电流和雷电波的再次入侵的可能,需要在UPS电源进线处安装电源第三级防雷器。 具体措施:

高电压防雷设计

摘要 根据设计任务书的要求,本次设计为110kV变电所的防雷设计,变电所是电力系统中重要组成部分,而且变电所的电气部分要装设合理的避雷装置和接地装置,因此,它是防雷的重要保护对象。 如果变电所发生雷击事故,将造成大面积的停电,给人民生活和社会生产带来重大不便,还有可能给国家造成大经济损失,这就要求防雷措施必须十分可靠变电所的防雷设计应做到设备先进、保护动作灵敏、安全可靠、维护方便,在此前提下,力求经济合理的原则。 本次设计,主要对变电所的主要设备进行选择,重点设计变电所的防雷部分,包括变电所进线段保护、防直击雷、防感应雷以及变电所二次设备的防雷。通过对各种避雷器的性能对比,结合变电所实际情况,确定变电所的避雷器的选择,并考虑变电所控制系统的防雷,提出防雷方案。 氧化锌避雷器以其优越的性能,越来越受到电力行业的关注。本次设计,将结合氧化锌避雷器性能的优点,并结合变电所设计的情况,讨论氧化锌避雷器在变电所中的应用前景。 关键词:变电所避雷器防雷保护

目录 1 引言 (1) 1.1 课题背景 (1) 1.2 课题研究的意义 (1) 2 系统设计方案的研究 (2) 2.1雷电对变电所的危害 (2) 2.1.1雷的直击和绕击危害 (2) 2.1.2雷电反击危害 (2) 2.1.3 感应雷危害 (3) 2.1.4雷电侵入波危害 (3) 2.2变电所简介 (4) 2.2.1变电所概述 (4) 2.2.2变电所主要任务 (4) 2.2.3变电所主接线 (4) 2.3变电所防雷措施 (5) 2.3.1变电所遭受雷击的来源 (5) 2.3.2变电所防雷具体措施 (6) 2.3.3变电所对直击雷防护 (6) 2.3.4变电所对雷电侵入波的防护 (6) 2.3.5变电站的进线防护 (7) 2.3.6变压器的防护 (7) 2.3.7变电所的防雷接地 (7)

电力系统防雷保护分析-

摘要 随着现代电子技术的不断发展,各种高、精、尖的电子设备不断推广和普及应用,计算机网络系统也广泛应用于电力、政府机关、学校、交通、公安、银行、证券、邮政等企事业单位中,由于这些网络系统的电子设备内部结构的高度集成化,耐过电压、耐过电流的水平极低、抗雷击能力,避雷针对这些电子设备的保护也无能为力,因而极易遭受雷电流的冲击而损坏,轻者使终端计算机和通信接口设备损坏、通信中断、各种信息无法传递;重者使网络主机损坏,致使网络瘫痪,工作无法进行,甚至会导I T管理员或在办公的其他工作人员因雷击而身亡。因此,为了使计算机网络系统正常运作,防止雷击而带惨重损失,有必要对计算网络系统进行综合雷电浪涌防护措施,除了要安装良好的避雷针、避雷器,还必须在电源系统、信号系统进行可靠、有效的防护工作,并具备可靠的接地装置。 关键词:计算机网络系统;高度集成化;避雷针;可靠的接地装置

目录 一、防雷保护的目的和意义 (1) 二、雷电危害及分类 (1) (一)雷电危害 (1) (二)雷击原因分析 (5) 三、发电厂及和变电所的防雷保护 (8) (一)发电厂、变电所的直击雷保护 (8) (二)变电所的进线段保护 (9) (三)变压器防雷保护的几个具体问题 (10) 四、气体绝缘变电站的防雷保护发电厂及和变电所的防雷保护 (11) (一)GIS变电站防雷保护 (11) (二)110kV 及以上进线无电缆的GIS变电 所 (11) (三)110kV 及以上进线有电缆的GIS变电所..............................................12 五、结语...................................................................................................................... 12 参考文献. (13)

监控系统立杆防雷设计方案

监控系统(立杆)防雷设计方案 编辑:万佳防雷负责人:杨帅一、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案 1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔

防雷系统设计方案

防雷系统设计方案

防雷系统设计方案 防雷系统发展 电的普遍使用促进了防雷产品的发展,当高压输电网为 千家万户提供动力和照明时,雷电也大量危害高压输变 电设备。高压线架设高、距离长、穿越地形复杂,容易 被雷击中。避雷针的保护范围不足以保护上千公里的输 电线,因此避雷线作为保护高压线的新型接闪器就应运 而生。在高压线获得保护后,与高压线连接的发、配电 设备依然被过电压损坏,人们发现这是由于“感应雷”在 作怪。(感应雷是因为直击雷放电而感应到附近的金属 导体中的,感应雷可经过两种不同的感应方式侵入导 体,一是静电感应:当雷云中的电荷积聚时,附近的导 体也会感应上相反的电荷,当雷击放电时,雷云中的电 荷迅速释放,而导体中原来被雷云电场束缚住的静电也 会沿导体流动寻找释放通道,就会在电路中形成电脉 冲。二是电磁感应:在雷云放电时,迅速变化的雷电流 在其周围产生强大的瞬变电磁场,在其附近的导体中产 生很高的感生电动势。研究表明:静电感应方式引起的 浪涌数倍于电磁感应引起的浪涌。雷电在高压线上感应 起电涌,并沿导线传播到与之相连的发、配电设备,当 这些设备的耐压较低时就会被感应雷损坏,为抑制导线

中的电涌,人们创造了线路避雷器。 早期的线路避雷器是开放的空气间隙。空气的击穿电压很高,约500kV/m,而当其被高电压击穿后就只有几十伏的低压了。利用空气的这一特性人们设计出了早期的线路避雷器,将一根导线的一端连在输电线上,另一根导线的一端接地,两根导线的另一端相隔一定距离构成空气间隙的两个电极,间隙距离确定了避雷器的击穿电压,击穿电压应略高于输电线的工作电压,这样当电路正常工作时,空气间隙相当于开路,不会影响线路的正常工作。当过电压侵入时,空气间隙被击穿,过电压被箝位到很低的水平,过电流也经过空气间隙泄放入地,实现了避雷器对线路的保护。开放间隙有太多的缺点,如击穿电压受环境影响大;空气放电会氧化电极;空气电弧形成后,需经过多个交流周期才能熄弧,这就可能造成避雷器故障或线路故障。以后研制出的气体放电管、管式避雷器、磁吹避雷器在很大程度上克服了这些毛病,但她们依然是建立在气体放电的原理上。气体放电型避雷器的固有缺点:冲击击穿电压高;放电时延较长(微秒级);残压波形陡峭(dV/dt较大)。这些缺点决定了气体放电型避雷器对敏感电气设备的保护能力不强。半导体技术的发展为我们提供了防雷新材料,比如稳压管,其伏安特性是符合线路防雷要求的,只是其经

电力系统的安全防雷参考文本

电力系统的安全防雷参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电力系统的安全防雷参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,随着电子技术的飞速发展,自动控制系统在 电力生产各个方面的使用越来越广,电力职工在受益于微 电子技术的极大方便的同时,也受到其一旦损坏就损失巨 大的困扰。实际上,在电力系统增加自动控制系统的时 候,对自动控制系统的安全防雷意识相对淡薄,一旦有雷 电波侵入,设备损坏一般是巨大的,有的甚至使整个系统 瘫痪,造成无可挽回的损失。 一雷击产生的原因 雷击是一种自然现象,它能释放出巨大的能量、具有 极强大的破坏能力。一直以来,致力于电力生产和电力设 备研究的人员通过对雷击破坏性的研究、探索,对雷电的 危害采取了一定的预防措施,有效地降低了雷害。

当雷电放电路径不经过防雷保护装置时,放电过程中产生强大的瞬变电磁场在附近的导体中感应到强大的电磁脉冲,称感应雷。感应雷可通过两种不同的感应方式侵入导体。一种是在雷云中电荷积聚时,附近导体会感应相反的电荷,当雷击放电时,雷云中电荷迅速释放,而导体中的静电荷在失去雷云电场束缚后也会沿导体流动寻找释放通道,就会在电路中形成静电感应,其次是在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,附近的导体中就会产生很高的感生电动势,在电路中形成电磁感应,感应雷沿导体传播,损坏电路中的设备或设备中的器件。信息系统中系统接口多,线路长,给感应雷的产生、耦合和传播提供了良好环境,而信息系统设备随着科技的发展,集成度越来越高,抗过电压能力越来越差,极易受感应雷的袭击,并且损害的往往是集成度较高的系统核心器件,所以更不能掉以轻心,感应雷可以来自云中

低压电源系统浪涌保护器设计依据

低压电源系统浪涌保护器设计依据(节选) 《建筑物防雷设计规范》(GB50057-2010) 第4.3.6条 4、在电气接地装置与防雷接地装置共用或相连的情况下,应在低压电源线路引入的总配电箱、配电柜处装设Ⅰ级试验的电涌保护器。电涌保护器的电压保护水平值应小于或等于 2.5 kV。每一保护模式的冲击电流值,当无法确定时应取等于或大于 12.5 kA。 5、当 Yyn0型或 Dyn11型接线的配电变压器设在本建筑物内或附设于外墙处时,应在变压器高压侧装设避雷器;在低压侧的配电屏上,当有线路引出本建筑物至其他有独自敷设接地装置的配电装置时,应在母线上装设Ⅰ级试验的电涌保护器,电涌保护器每一保护模式的冲击电流值,当无法确定时冲击电流应取等于或大于 12.5 kA;当无线路引出本建筑物时,应在母线上装设Ⅱ级试验的电涌保护器,电涌保护器每一保护模式的标称放电电流值应等于或大于 5 kA。电涌保护器的电压保护水平值应小于或等于 2.5 kV。 6、低压电源线路引入的总配电箱、配电柜处装设I级实验的电涌保护器,以及配电变压器设在本建筑物内或附设于外墙处,并在低压侧配电屏的母线上装设I级实验的电涌保护器时,电涌保护器每一保护模式的冲击电流值,当电源线路无屏蔽层时可按本规范式(4.2.4-6)计算,当有屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于150kA。 《建筑物电子信息系统防雷技术规范》(GB050343-2012) 第5.4.3条电源线路浪涌保护器的选择规定: 3、进入建筑物的交流供电线路,在线路的总配电箱等LPZOA 或LPZOB 与LPZ1 区交界处,应设置Ⅰ类试验的浪涌保护器或Ⅱ类试验的浪涌保护器作为第一级保护;在配电线路分配电箱、电子设备机房配电箱等后续防护区交界处,可设置Ⅱ类或Ⅲ类试验的浪涌保护器作为后级保护;特殊重要的电子信息设备电源端口可安装Ⅱ类或Ⅲ类试验的浪涌保护器作为精细保护。使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源线路浪涌保护器。 4、浪涌保护器设置级数应综合考虑保护距离、浪涌保护器连接导线长度、被保护设备耐冲击电压额定值Uw 等因素。各级浪涌保护器应能承受在安装点上预计的放电电流,其有效保护水平Up/f应小于相应类别设备的Uw 。 5、LPZO 和LPZ1 界面处每条电源线路的浪涌保护器的冲击电流Iimp,采用当采用非屏蔽线缆时按公式(5.4.3- 1)估算确定;当采用屏蔽线缆时按公式

智能化系统防雷接地设计

智能化系统防雷接地设计 摘要针对建筑中弱电系统越来越庞大的现状,以智能化系统防雷接地为例,介绍了防雷接地系统、建筑物的防雷分区及分级保护。重点介绍了等电位接地技术。提出了不同供电接地系统的防雷方案,以供电气设计人员参考借鉴。 关键词智能化;防雷;接地设计 智能化系统的防雷接地十分重要,不论是智能化中心机房,还是通讯网络设备及终端设备都离不开系统的防雷接地。智能化系统是由千点万线组成的音频、视频通讯网络,如果接地不合格,系统就会出现杂音、串音,视频图像出现晃影,严重时可造成通讯网络阻断,更不能保护智能化系统线缆设备的安全。 1防雷分区 为了更好地运用各种防雷措施,合理地分配各自承担的雷电能量,将需要保护的空间按雷电电磁脉冲严酷程度分为不同层次的防雷区,进而对于在各防雷区的入口处进行等电位连接和电涌保护器配置提出防雷分区的划分。 防雷区LPZOA:此区中各对象会承受直击雷,从而流过全部雷电流,雷电磁场并未衰减。此区实际是建筑物顶部和上部侧面未受避雷针(网)保护的部分。 防雷区LPZOB:此区中各对象不会承受直击雷,但雷电电磁场并未衰减。此区实际是建筑物顶部和上部侧面避雷针(网)保护范围之内的部分。楼内没有屏蔽的窗口附近的空间也属此区,此区以避雷针(网)及接地装置进行防雷。 防雷区LPZ1:此区中各对象不会承受直击雷,但雷电流有所分流。如有屏蔽,电磁场会有所衰减。此区实际是在建筑物内部,雷电流分散到各引下线。现代建筑的钢筋结构就是一种屏蔽。此区的主要防雷措施是等电位连接和电涌保护器。 防雷分区LPZ2:如果需要进一步减少雷电流和电磁场,就要进一步引入防雷分区。此区所需防雷措施根据保护对象的需要而定。此区实际是在楼内的某个防雷和防电浪涌要求特别高的计算机房、通讯机房或监控室。进一步减少雷电电磁脉冲要求采用机房屏蔽和次级电涌保护器。 防雷分区LPZ3:如果需要再进一步减少雷电流和电磁场,就要再引入防雷分区。此区实际是在信息设备的机箱内或专用屏蔽室内。 2中心机房防雷接地设计 2.1防雷

弱电机房防雷技术设计说明

弱电机房防雷技术设计说明 1、弱电机房系统综合防雷方案: 一、工程概述 弱电系统由各类弱电设备以及传输线路组成,系统采用了大量的集成元件,在雷击发生时,传输线路感应到雷电磁场产生过电压,可高达几千伏,对集成元件有较大的危害。监控系统中的传输线路许多处于LPZ0A非防雷区域。系统走线在布线阶段没有考虑与防雷引下线保持足够的距离,这些都为系统的安全运行留下了隐患。 一般认为,雷电的防护措施有隔离、等电位、钳位、均压、滤波、屏蔽、过压过流保护、接地等方法将雷电过电压、过电流及雷击电磁脉冲消除在设备外围,从而有效地保护各类设备。目前主要采用气体放电管、放电间隙、高频二极管、压敏电阻、瞬态二极管、晶闸管、高低通滤波器等元件根据不同频率、功率、传输速率、阻抗、驻波、插损、带宽、电压、电流等要求,组合成电源线、天馈线、信号线系列电涌保护器(SPD)安装在微电子设备的外连线路中,地线按共用接地原则接入系统的地线,才不至于造成电位反击。只有设计合理、安装合格,电涌保护器才能有效的防御雷电。

系统综合防雷在设计时主要采用以下标准,供设计时参考。 (1)IEC61024《建筑物防雷》 (2)IEC61312《雷电电磁脉冲的防护》 (3)ITU K25《光缆的防雷》 (4)GB50343《建筑物电子信息系统防雷技术规范》 (5)GB50057-94《建筑物防雷设计规范》 (6)GB50174-93《电子计算机机房设计规范》 (7)GB50200-94《有线电视系统工程技术规范》 (8)GB50198-94《民用闭路监视电视系统工程技术规范》 (9)GB/T50311-2000《建筑与建筑群综合布线系统工程设计规范》 二、雷击防护措施 (一)直击雷防护 直击雷防护包括弱电机房建筑物直击雷防护和系统前端设备直击雷防护,本方案在假定弱电机房控制室已完善直击雷防护措施的前提下进行,否则必须完善雷防护措施。 (二)机房弱电系统感应雷防护

防雷保护和接地设计

防雷保护和接地设计 7.1 直击雷保护 7.1.1 保护对象 屋外配电装置,包括组合导线、母线廊道。 7.1.2保护措施 ①110KV配电装置装设避雷针或装设独立避雷针;②主变压器装设独立避雷针;③屋外组合导线装设独立避雷针。 7.1.3 避雷针装设应注意的问题 应妥善采用独立避雷针和构架避雷针,其联合保护范围应覆盖全所保护对象。根据《电力设备过电压保护技术规程》SDJ —76规定:独立避雷针(线)宜设独 7 立的接地装置,避雷针及其接地装置与道路或出入口等的距离不宜小于3m。110KV及以上的配电装置,一般将避雷针装在其构架或房顶上;6KV及以上的配电装置,允许将避雷针装在其构架或房顶上;35KV及以下高压配电装置,构架或房顶上不宜装设避雷针。装在构架上的避雷针应与接地网连接,并应在其附近装设集中接地装置。避雷针与主接地网的地下连接点至变压器接地线与主接地网的地下连接点,沿接地体的长度不得小于15m。在主变压器的门型构架上,不应装设避雷针、避雷线。 110KV及以上配电装置,可将线路的避雷线引接到出线门型架上;35KV配电装置可将线路的避雷线引接到出线门型架上,但应集中接地装置。 我国规程规定: (1)110KV及以上的配电装置,一般将避雷针在构架上。但是在土壤电阻率ρ﹥Ω? 1000m的地区,仍宜装设独立避雷针,以免发生反击; (2)35KV及以下的配电装置应采用独立避雷针来保护; (3)10KV的配电装置,在ρ﹥Ω? 500m的地区宜采用独立避雷针,在ρ﹤500m的地区容许采用构架避雷针。 Ω? 变电站的直击雷防护设计内容主要是选择避雷针的指数、高度、装设位置、验算它们的保护范围、应有的接地电阻、防雷接地装置的设计等。 7.2 雷电侵入波保护 7.2.1 保护措施 避雷器结合进线段保护。装设阀式避雷器是变电站对雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值.但是为了使阀式避雷器

浅谈电力系统的安全防雷(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅谈电力系统的安全防雷(新版)

浅谈电力系统的安全防雷(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 近年来,随着电子技术的飞速发展,自动控制系统在电力生产各个方面的使用越来越广,电力职工在受益于微电子技术的极大方便的同时,也受到其一旦损坏就损失巨大的困扰。实际上,在电力系统增加自动控制系统的时候,对自动控制系统的安全防雷意识相对淡薄,一旦有雷电波侵入,设备损坏一般是巨大的,有的甚至使整个系统瘫痪,造成无可挽回的损失。 1雷击产生的原因 雷击是一种自然现象,它能释放出巨大的能量、具有极强大的破坏能力。一直以来,致力于电力生产和电力设备研究的人员通过对雷击破坏性的研究、探索,对雷电的危害采取了一定的预防措施,有效地降低了雷害。 当雷电放电路径不经过防雷保护装置时,放电过程中产生强大的瞬变电磁场在附近的导体中感应到强大的电磁脉冲,称感应雷。感应雷可通过两种不同的感应方式侵入导体。一种是在雷云中电荷积聚时,

低压配电系统防雷设计方案

低压配电系统防雷设计方案探讨 摘要:在防雷设计时,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施,建立完善的雷电浪涌过电压保护措施,根据被保护建筑物的特点和低压电源系统的形式选择和安装电涌保 护器。每年雷雨季节前应对运行中的防雷器进行一次检测,雷雨季节中要加强外观巡视,如检测发现异常应及时处理。 关键词:供电系统,防雷,设计方案 abstract: in the lightning protection design, except when the sings rem measures should be considered outside, still should consider lightning electromagnetic impulse protective measures, set up perfect lightning surge overvoltage relaying protection measures, according to the characteristics of the building to be protected and low voltage power supply system in the form of choice and installation surge protector. each year before the operation of the thunderstorm season to lightning protection device into line one test, the thunderstorm seasons to strengthen appearance patrol, such as the detection of abnormal should handle in time. keywords: power supply system, lightning protection, design scheme 中图分类号:s611文献标识码:a 文章编号:

通信工程电源系统防雷技术规定

通信工程电源系统防雷技术规定 1 总则 1.0.1 为确保通信局(站)站内通信设备和工作人员的安全,以及站内通信设备的正常工作,防止通信局(站)由于电源系统引入的雷害,特制定本规定。 1.0.2 本规定对新建通信局(站)电源系统的防雷做出了技术要求,改建、扩 建通信局(站)电源系统的雷电防护亦可参照执行。 1.0.3 本规定是通信工程电源系统防雷设计、设备选型、防护器件选择、施工监督和日常维护的技术依据。通信电源防护器件应采用部级主管部门鉴定合格的 产品。 1.0.4 通信电源系统的防雷应根据电源设备类型、运行及接地方式、安装地点 环境条件,因地制宜合理制定雷电防护措施,做到经济合理,安全可靠。 通信电源系统的防雷应统筹设计、统筹施工,加强随工验收和维护管理。 雷电活动特别强烈的地区,还应根据当地的实践经验,适当加强防雷措施。 1.0.5 从交流电力网高压线路开始,到通信设备直流电源入口端,通信电源系统自身除应采取分级协调的防护措施外,还应与通信系统的防雷、建筑物的防雷、通信局(站)的接地及通信系统电磁兼容要求协调配合。 1.0.6 本规定与国家标准、规范相矛盾时,应以国家标准、规范为准。如执行本规定个别条款有困难时,应充分论述理由,提出采取措施的报告,报主管部门 审批。 2 术语 2.0.1 避雷器的残压 放电电流通过避雷器时,其端子间所呈现的电压。

2.0.2 避雷器的持续运行电压 在运行中允许持久地施加在避雷器端子上的工频电压有效值。 2.0.3 雷电活动特别强烈地区 年平均雷暴日数超过90天的地区,或根据运行经验,雷害特别严重的地区。 2.0.4 模拟雷电冲击电压波 摸拟雷电冲击电压波如图2.0.4所示。图中: 1. 视在原点O 1 是指通过波前上A点(电压峰值的30%处)和B点(电压峰 值的90%处)作一直线与横轴相交之点。 2. 时间T指电压波上A,B两点间的时间间隔。 3. 波前时间T 1指由视在原点O 1 到D点(=1.67T处)的时间间隔。 4. 半峰值时间T 2指由视在原点O 1 到电压峰值,然后再下降到峰值一半处的时间间隔。 2.0.5 模拟雷电冲击电流波 模拟雷电冲击电流波如图2.0.5所示。图中: 1. 视在原点O 1 是指通过波前上C点(电流峰值的10%处)和B点(电流峰 值的90%处)作一直线与横轴相交之点。 2. 时间T指电流波上C,B两点间的时间间隔。 3.波前时间T 1指由视在原点O 1 到E点(=1.25T处)的时间间隔。 4. 半峰值时间指由视在原点O 1 到电流峰值,然后再下降到峰值一半的时间 间隔。 3 通信电源系统防雷与接地的组成

相关主题
文本预览
相关文档 最新文档