当前位置:文档之家› 基于MATLAB的旋转倒立摆的控制与仿真分析

基于MATLAB的旋转倒立摆的控制与仿真分析

基于MATLAB的旋转倒立摆的控制与仿真分析
基于MATLAB的旋转倒立摆的控制与仿真分析

全国电子设计大赛旋转倒立摆

全国电子设计大赛旋转倒 立摆 Prepared on 22 November 2020

目录 摘要 本设计综合考虑基础部分和发挥部分要点,采用mega128a为主控芯片,BTS7960驱动电机并在程序中涉及到pid算法对电机进行调控,在设计中,我们采用1000线编码器为角度传感器。在该简单控制装置中,我们实现了摆动,圆周运动和短时间的自动控制下的倒立。 关键字:倒立摆,mega128a,编码器 第一章系统方案比较与选择

总实现方案 方案一:用陀螺仪和加速度计通过卡尔曼数据融合得到角度,用此处的角度为载体用单片机进行数据处理,并调整电机。 方案二:用电位器做角度传感,通过单片机自带ADC来读取电位数值以此为依据来判断角度,并调整电机。 方案三:用编码器做角度传感器,通过读取编码器的输出脉冲来计算角度传感器的输出角度,用此角度做处理调整电机。 通过对两个方案的对比选择,方案一中的加速度计和陀螺仪算法实现复杂,我们在融入卡尔曼滤波后有明显滤波效果,但是由于圆周运动,会使得各个方向轴返回的数据出错,且波动大,会减弱卡尔曼的滤波效果,对于pid的精准调整还是远远达不到预期。在方案二中,考虑到电位器内部结构问题,虽然理论上电位器在转动过程中是线性的,但是考虑到每次停靠的电阻位可能会产生误差,最后考虑到我们最终选定的单片机ADC只有10位,在方案三中,由于实现编码器的功能实现方便简单,并能更多的趋近于精确值,因此最后我们采用了方案三。 主控制器方案比较与选择 为了完成在短时间快速采集并计算角度,主控器件必须有较高的CPU工作频率和存储空间。 方案一:采用51系列加强型STC12C5A60S2作为主控器件,用来实现题目所要求的各种功能。此方案最大的特点是系统规模可以做得很小,成本较低。操作控制简单。但是,我们在利用单片机处理高速信号快速扫描及电机控制时显得吃力, 51系列单片机很难实现这一要求。

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真 摘要 自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。 关键词:一级倒立摆PID控制器极点配置

Inverted pendulum controlling system simulation based on the MATLAB ABSTRACT Automatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software. KEY WORDS: First-order inverted pendulum PID controller pole-assignment

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

2013大学生电子设计大赛简易旋转倒立摆及控制装置(C题 )

2013年全国大学生电子设计竞赛试题 参赛注意事项 (1)9月4日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高 专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份 的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制 作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)9月7日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 简易旋转倒立摆及控制装置(C 题 ) 【本科组】 一、任务 设计并制作一套简易旋转倒立摆及其控制装置。旋转倒立摆的结构如图1所示。电动机A 固定在支架B 上,通过转轴F 驱动旋转臂C 旋转。摆杆E 通过转轴D 固定在旋转臂C 的一端,当旋转臂C 在电动机A 驱动下作往复旋转运动时,带动摆杆E 在垂直于旋转臂C 的平面作自由旋转。 二、要求 1.基本要求 (1)摆杆从处于自然下垂状态(摆角0°)开始,驱动电机带动旋转臂作 往复旋转使摆杆摆动,并尽快使摆角达到或超过-60°~ +60°; (2)从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,直至完成 圆周运动; (3)在摆杆处于自然下垂状态下,外力拉起摆杆至接近165°位置,外力 撤除同时,启动控制旋转臂使摆杆保持倒立状态时间不少于5s ;期间旋转臂的转动角度不大于90°。 图1 旋转倒立摆结构示意图

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

单级旋转倒立摆系统

《现代控制理论》课程综合设计 单级旋转倒立摆系统 1 引言 单级旋转倒立摆系统一种广泛应用的物理模型,其物理模型如下:图示为单级旋转倒立摆系统原理图。其中摆的长度1l =1m ,质量1m =0.1kg ,横杆的长度2l =1 m ,质量2m =0.1kg ,重力加速度20.98/g m s =。以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出。控制的目的是当横杆在水平方向上旋转时,将倒立摆保持在垂直位置上。 图1 单级旋转倒立摆系统模型 单级旋转倒立摆可以在平行于纸面3600的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的推动下,摆杆仍然保持竖直向上状态。在横杆静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆微小的扰动下,就会使倒立摆的平衡无法复位,这时必须使横杆在平行于纸面的方向通过位移产生相应的加速度。作用力与物体位移对时间的二阶导数存在线性关系,故单级倒立摆系统是一个非线性系统。 本文综合设计以以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出,建立状态空间模型,在原有系统上中综合带状态观测器状态反馈系统,从而实现当横杆在旋转运动时,将倒立摆保持在垂直位置上。 2 模型建立 本文将横杆和摆杆分别进行受力分析,定义以下物理量:本文将横杆和摆杆

分别进行受力分析,定义以下物理量:M 为加在横杆上的力矩;1m 为摆杆质量; 1l 为摆杆长度;1I 为摆杆的转动惯量;2m 为横杆的质量;2l 为横杆的长度;2I 为横杆的转动惯量;1θ为横杆在力矩作用下转动的角度;2θ为摆杆与垂直方向的夹角;N 和H 分别为摆杆与横杆之间相互作用力的水平和垂直方向的分量。倒立摆模型受力分析如图2所示。 图2 倒立摆模型受力分析 摆杆水平方向受力平衡方程: 2 111222(0sin )2 l d N m l dt θθ=++ (1θ2l —横杆的转动弧长即位移) 摆杆垂直方向受力平衡方程: 211 1122(cos )22 l l d H m g m dt θ-=- 摆杆转矩平衡方程: 22111222sin cos 22 d l l J H N dt θθθ=- 横杆转矩平衡方程: 21 222 d M Nl J dt θ-= N

基于matlab的一级倒立摆自适应仿真

第一章绪论 1.1倒立摆系统的简介 1.1.1倒立摆系统的研究背景及意义 倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体

现的。非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。 无论哪种类型的倒立摆系统都具有如下特性[2]: (1)非线性倒立摆是一个典型的非线性复杂系统。实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。 (2)不确定性主要是指建立系统数学模型时的参数误差、量测噪声以及机械传动过程中的减速齿轮间隙等非线性因素所导致的难以量化的部分。 (3)欠冗余性一般的,倒立摆控制系统采用单电机驱动,因而它与冗余机构,比如说冗余机器人有较大的不同。之所以采用欠冗余的设计是要在不失系统可靠性的前提下节约经济成本或者节约有效的空间。研究者常常是希望通过对倒立摆控制系统的研究获得性能较为突出的新型控制器设计方法,并验证其有效性及控制性能。 (4)耦合特性倒立摆摆杆和小车之间,以及多级倒立摆系统的上下摆杆之间都是强耦合的。这既是可以采用单电机驱动倒立摆控制系统的原因,也是使得控制系统的设计、控制器参数调节变得复杂的原因。 (5)开环不稳定性倒立摆系统有两个平衡状态:垂直向下和垂直向上。垂直向下的状态是系统稳定的平衡点(考虑摩擦力的影响),而垂直向上的状态是系统不稳定的平衡点,开环时微小的扰动都会使系统离开垂直向上的状态而进入到垂直向下的状态中。 (6)约束限制由于实际机构的限制,如运动模块行程限制,电机力矩限制等。为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立

简易旋转倒立摆及控制装置

简易旋转倒立摆及控制装置(C 题) 参赛队员姓名: 指导教师姓名 参赛队编号: 参赛学校:

简易旋转倒立摆及控制装置(C 题) 摘要:简易旋转倒立摆及控制装置是复杂的高阶闭环控制系统,控制复杂度较高。系统以飞思卡尔MK10DN512ZVLL10单片机为核心,以Mini1024j编码器为角度传感器,配合直流电机组成旋转倒立摆系统,经过充分的系统建模,并考虑单片机运算速度,最终确定采用改进的“模糊PID”控制算法,通过软件控制,可以满足基本部分要求和发挥部分要求。 系统的突出特点在于充分的力学理论分析,通过力学建模和控制系统仿真,获得了大量的定性分析结果,为系统的建立提供了很好的理论依据。 关键字:倒立摆模糊PID 力学建模状态机

一、系统方案 1. 系统方案论证与选择 倒立摆系统是一个复杂的快速、非线性、多变量、强耦合、自然不稳定的系统。对于该控制系统而言,合适的控制算法、精确的反馈信号、适合的电机驱动等都对系统的稳定性、控制精度及抗干扰性起重要作用。针对上述问题,分别设计多种不同的解决方案,并进行选择论证。 (1)控制算法选择 方案一:采用传统PID控制算法。 传统PID控制算法是运用反馈求和后的误差信号的比例(0阶位置项)、积分(误差累积项)、微分(1阶速度项)进行系统校正的一种控制算法。可用于被控对象的结构和参数不能完全掌握,或得不到的精确数学模型的情况,控制器的结构和参数必须依靠经验和反复调试来确定。 方案二:采用模糊PID控制算法 模糊PID控制算法根据PID控制器的三个参数与偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制器的三个参数,让PID参数可自整定。将模糊控制算法与传统PID控制算法巧妙结合,不但具有PID控制算法精度高等优点,又兼有模糊控制灵活、适应性强的优点。 综合考虑选择方案二的模糊PID控制算法。 (2)电动机选型 方案一:选择步进电动机 步进电动机是将电脉冲激励信号转换成相应的角位移或线位移的离散值控制电动机,这种电动机每当输入一个电脉冲就动一步。虽然控制时序和驱动电路相对复杂,但步进距离很小,保持力矩大,制动能力强。但步进电机速度只在一定范围可调,并且一般步进电机在不旋转时仍有若干相通电,功耗太大。 方案二:选择直流电动机 直流电动机控制简单,利用双极性PWM即可实现调速和正、反转,功率调节范围广、适应性好。直流电机的起动、制动转矩大,易于快速起动、停车,易于控制,且直流电机的调速性能好,调速范围广,易于平滑调节。 综上考虑选择方案二的直流电动机。 (3)传感器的选择 方案一:使用角位移传感器 角位移传感器是一个高精度的电位器,它输出为模拟量。但是在使用角位移传感器时,为得到其与竖直方向(即重力方向)的夹角,要使用重摆,且在角度变化小时,由于传感器自身扭矩,将不会发生角位移,从而得不到采样数据。 方案二:使用主轴编码器 主轴编码器采用与主轴同步的光电脉冲发生器,通过中间轴上的齿轮1:1地同步传动。一般是发光二极管发出红外光束,通过动、静两片光栅后,到达光电二极管,接收到脉冲信号,变换成数字量输出。按编码方式不同,分为增量式编码器和绝对编码器。前者输出脉冲,后者输出8421码。绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置,而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置

一级倒立摆地Simulink仿真

单级倒立摆稳定控制 直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。 图1 直线一级倒立摆系统 图2 控制系统结构 假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平位移,θ为摆杆的角位移,2 /8.9s m g =。控制的目标是通过外力u (t)使得摆直立向上(即0)(=t θ)。该系统的非线性模型为: u ml x m M ml mgl x ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθθθ ,其中231ml J =。 解: 一、 非线性模型线性化及建立状态空间模型 因为在工作点附近(0,0==θ θ )对系统进行线性化,所以 可以做如下线性化处理:32 sin ,cos 13!2!θθθθθ≈-≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0; 因此模型线性化后如下: (J+ml^2)θ’’+mlx ’’=mgl θ (a) ml θ’’+(M+m) x ’’=u (b) 其中23 1ml J = 取系统的状态变量为,,,,4321θθ ====x x x x x x 输出T x y ][θ=包括小车位移和摆杆的角位移. 即X=????????????4321x x x x =????? ???????''θθx x Y=??????θx =??????31x x 由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=m m M mg 3)(43-+-x3+m m M 3)(44-+u X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml l m M 3)(43-+-u 故空间状态方程如下: X ’=????????????'4'3'2'1x x x x =????????????????? ?-++-+-03)(4)(300100003)(4300 0010ml l m M g m M m m M mg ????????????4321x x x x + ???????? ??????????-+--+ml l m M m m M 3)(4303)(440 u

旋转倒立摆设计报告

旋转倒立摆 摘要: 倒立摆的控制是控制理论研究中的一个经典问题,通过旋转式倒立摆控制系统的总体结构和工作原理,硬件系统和软件系统的设计与实现等方面,对系统模型进行动力学分析,建立合适的状态空间方程,通过反馈方法实现倒立控制,通过反复的实验,记录,分析数据,总结出比较稳定可行的控制方法。 本系统采用STC89C52作为主控制芯片,WDJ36-1高精度角位移传感器作为系统状态测试装置,通过ADC0832将采集的模拟电压量转化为数字量,传送给STC89C52进行分析处理,并依此为依据控制电机的运转状态,间接地控制摆杆的运动状态。 通过不断地测量、分析,并调整系统控制的参数,基本达到了题目的要求,并通过此次的练习,进一步熟悉掌握了单片机的应用,对控制系统的了解和兴趣。 关键词:单片机最小系统; WDJ36-1角位移传感器; 旋转倒立摆;状态反馈;稳定性;

目录 1.系统方案 (4) 1.1 微控制器模块 (4) 1.2电机模块 (4) 1.3电机驱动模块 (4) 1.4角度传感器模块 (5) 1.5电源模块 (5) 1.6显示模块 (5) 1.7最终方案 (6) 2.主要硬件电路设计 (6) 2.1电机驱动电路的设计 (6) 2.2角度检测电路的设计: (7) 3.软件实现 (7) 3.1理论分析 (7) 3.2总体流程图 (7) 3.3平衡调节流程图 (9) 4 .系统理论分析及计算.................. . (10) 4.1系统分析 (10)

4.2 摆臂摆角的计算.................. . (10) 5.系统功能测试: (10) 5.1测试方案 (10) 5.2测试结果 (10) 5.3测试分析及结论 (10) 6.结束语 (11)

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

简易旋转倒立摆及控制装置

2013年全国大学生电子设计竞赛简易旋转倒立摆及控制装置(C题) 【本科组】 2013年9月7日

摘要 本题要求设计一个简易旋转倒立摆及控制系统,其中角度传感器、步进电机和单片机890C521是系统核心部件。系统接收角度传感器反馈的信号,通过PCF8591将接收的信号转换成数字信号,将数值送入单片机中进行计算,可得出摆杆的位置,进而单片机控制步进电机,对摆杆进行控制,达到所要的旋转或者倒立的控制目标。 关键词:简易旋转倒立摆步进电机单片机角度传感器 目录 1 设计任务及要求..................................................... 1.1 设计任务.................................................... 1.2 基本要求................................................... 2主控制器件的论证与选择............................................. 2.1控制器选用 .................................................. 2.2控制系统方案选择 ............................................ 2.3角度的获取模块论证与选择 .................................... 2.4步进电机及其驱动模块的选择 .................................. 2.5 AD/DA的选择 ................................................ 3 系统的硬件设计..................................................... 3.1总体电路框图 ................................................ 图3-1 系统框图..................................... 错误!未定义书签。 3.2系统电路与程序设计 .......................................... 3.2.1 STC89C52单片机最小系统............................... 3.2.2 PCF8591模块图如图3-2。............. 错误!未定义书签。 3.3.3 模块芯片TB6560AHQ原理图如图3-3。.................... 3.3.4 供电电源............................................. 4系统软件总体设计框图.............................. 错误!未定义书签。 5 测试方案与测试结果................................................. 6 总结............................................................... 参考文献............................................................. 附录.................................................................

倒立摆仿真报告

计算机控制系统课题报告 1.倒立摆基本背景: 倒立摆,Inverted Pendulum ,是典型的多变量、高阶次,非线性、强耦合、自然不稳定系统。倒立摆系统的稳定控制是控制理论中的典型问题,在倒立摆的控制过程中能有效反映控制理论中的许多关键问题,如非线性问题、鲁棒性问题、随动问题、镇定、跟踪问题等。因此倒立摆系统作为控制理论教学与科研中典型的物理模型,常被用来检验新的控制理论和算法的正确性及其在实际应用中的有效性。从 20 世纪 60 年代开始,各国的专家学者对倒立摆系统进行了不懈的研究和探索。 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。由中国的大连理工大学李洪兴教授领导的“模糊系统与模糊信息研究中心”暨复杂系统智能控制实验室采用变论域自适应模糊控制成功地实现了四级倒立摆。因此,中国是世界上第一个成功完成四级倒立摆实验的国家。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 2.倒立摆模型分析 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力F平行

于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 我们的分析对象是一阶倒立摆。很多国内实验都说可以合理的假设空气阻力为0,但查阅了更多的文献和真正仿真做出模型并在网络上开源的一些实验后,我认为这是不正确的。空气阻力或许可以忽略,但是对于运动过程中的所有阻碍都忽略那就太为理想。也就是说,我们需要自己假设一个阻碍模型,即收到的所有阻力等效成一个包含速度,位姿等的广义函数。当然,我们的时间精力和所学知识都还有限,却也不想太过简单。我选取了一个阻力和速度成正比的函数关系,来在以后的建模和仿真过程中来模拟倒立摆所受的一切阻碍。 3.1 倒立摆物理建模:基于经典牛顿力学 受力分析如上图。 那我们在本实验中定义如下变量: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度(0.3 m)

基于stm32的旋转倒立摆

基于stm32的旋转倒立摆

所在院系:工程训练中心 作者:岳伟杨博古元芮2017.7.21

基于stm32的单级旋转倒立摆控制系统的设计与实现 摘要 本文对单级旋转倒立摆的控制系统进行了研究,提出了以STM32F103为核心的控制器设计,在控制策略上采用经典控制理论PID的控制算法,实现对单级旋转倒立摆旋转臂及摆杆的同时闭环控制,通过传感器采集摆杆的状态数据,实时调整直流电机的转向和转速,以调整摆臂的角度,使摆杆恢复到动态平衡状态。在非平衡状态下,通过传感器的实时检测,能够通过功能键设计,使摆杆能稳定到一定的角度。最终测试结果表明系统控制策略有效。 关键词:STM32F103;直流减速电机;增量式PID 1引言 倒立摆控制系统是自动控制理论的重要研究平台,可对应于火箭垂直发射控制技术,因此对它的研究具有重大的实践意义和价值。目前对倒立摆的研究主要分为系统力学分析及建模,控制算法及仿真,而对实现手段少有研究。文章讨论了以STM32为核心的倒立摆控制器的设计与实现,它实现了经典双回路PID控制算法对旋转单级倒立摆的控制策略。 2方案设计与论证 2.1总体方案描述 整个系统分为系统模块、编码器模块、电机驱动模块、电机模块、电源模块、键盘模块、显示模块。各模块的系统框图如图1.1所示。

图 1.1 系统框图 2.2方案比较与选择 2.2.1芯片控制模块 方案一:采用传统的51系列单片机。 传统的51单片机为8位机,价格便宜,控制简单,但是运算速度慢,片内资源少,存储容量小,难以存储大体积的程序和实现快速精准的反应控制。并且受时钟限制,计时精度不高,外围电路也增加了系统的不可靠性。 方案二: 采用stm32f103单片机 stm32f103单片机,具有功能强大、效率高的指令系统,以及高性能模拟技术及丰富的外围模块。方便高效的开发环境使操作更加简便,低功耗是其它类单片机难以比拟的,集成度较高,编程相对简单。 综上,选择了性能跟好的stm32f103单片机。 2.2.2电机选择 方案一:普通直流伺服电机 普通直流伺服电机有价格低使用简单等优点,但其扭矩较小,可控性差,此系统要求控制精度高速度快,直流电机则不能满足要求。

小车倒立摆系统开题报告

开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下一步的研究(或设计)工作。 一、课题的目的意义: 倒立摆系统作为一个实验装置,形象直观,结构简单,构件组成参数和形状易于改变,成本低廉;作为一个被控对象,它又相当复杂,就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法方能使之稳定。 理论是工程的先导,倒立摆的研究具有重要的工程背景。机器人行走类似倒立摆系统,尽管第一台机器人在美国问世以来已有几十年的历史,但机器人的关键技术至今仍未很好解决。由于倒立摆系统的稳定与空间飞行器控制和各类伺服云台的稳定有很大相似性,也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。因此,倒立摆机理的研究又具有重要的应用价值,成为控制理论中经久不衰的研究课题。 文献综述(分析国内外研究现状、提出问题,找到研究课题的切入点,附主要参考文献,约2000字): 倒立摆系统的最初分析开始于二十世纪五十年代,是一个比较复杂的不稳定,多变量,带有强耦合特性的高阶机械系统。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统受到不确定因素的干扰。其控制方法和思路在处理一般工业过程中有很广泛的用途,此外,其相关的研究成果也在航天科技和机器人学习方面得到了大量的应用,如机器人行走过程中平衡控制,火箭发射中的垂直度控制和卫星飞行中的姿态控制等,因此,倒立摆系统是进行控制理论研究的理想平台。 倒立摆是机器人技术﹑控制理论﹑计算机控制等多个领域﹑多种技术的有机结合,其被控

相关主题
文本预览
相关文档 最新文档