当前位置:文档之家› 塑性成形工艺

塑性成形工艺

金属工艺学

授课教师:彭辉penghuihust@https://www.doczj.com/doc/8e2347893.html,

第三篇塑性成形工艺

金属的塑性成型

知识点:金属的塑性变形

金属塑性变形的实质塑性变形与组织、性能金属的可锻性

组织和性能

加工时的塑性变形

回复(温度)再

性能(加工硬化)

金属的塑性成型

本章重点:

1.了解金属塑性成型的理论基础;

2.掌握金属的塑性成型方法及工艺;

3.掌握薄板冲压成形工艺,包括各种成形模具

结构、基本工序和典形零件的工艺制定。

3.金属的塑性成型

3.1 概述

3.2 塑性成型的理论基础3.3塑性成型方法及工艺3.4薄板的冲压成型

3.5塑性成型常见的缺陷

3.1 概述

金属塑性成型:由利用金属在外力作用下所产生的塑性变形,来获得具有一定形状、尺寸和机械性能的原材料、毛坯或零件的生产方法,也称为压力加工。

金属塑性成型的基本生产方法锻压生产方式示意图

挤压拉

金属塑性成型的基本生产方法

3.2 塑性成型理论的理论基础

3.2.1 塑性变形理论及假设

3.2.2 金属变形过程中的组织与性能3.2.3 冷变形及热变形

3.2.4 影响塑性变形的因数

本节的重点:

1. 金属塑性成型的原理;

2. 纤维组织的形成及利用;

3. 金属可锻性及其影响因素。

3.2.1塑性变形理论及假设1 最小阻力定律

如果金属颗粒在几

个方向上都可移动,那

么金属颗粒就沿着阻力

最小的方向移动,这就

叫做最小阻力定律。圆

形、方形、矩形截面上

各质点在镦粗时的流动

方向,方形截面镦粗后

的截面形状。

3.2.1塑性变形理论及假设(续)

2 塑性变形前后体积不变的假设

3 变形程度的计算

?锻造比

代表变形程度大小。

用y表示

拔长:截面比Y拔= F0/F = L/L0

镦粗:高度比Y镦= F/ F0= H0/H

坯料拔长时横截面积的变化

3.2.1塑性变形理论及假设(续)

根据锻造比即可得出坯料的尺寸。例如采用拔长锻造时,坯料所用的截面F坯料的大小应保证满足技术要求规定的锻造比Y拔,即坯料截面积应为:F坯料= Y拔F锻件

3.2.2 金属变形过程中的组织与性能

纤维组织的利用原则:

1、将铸锭加热进行压力加工后,由于金属经过塑

性变形及再结晶,从而改变了粗大的铸造组织,获得细

化的再结晶组织。

2、同时还可以将铸锭中的气孔、缩松等结合在一起,使金属更加致密,其机械性能会有很大提高。

3、此外,铸锭在压力加工中产生塑性变形时,基体金属的晶粒形状和沿晶界分布的杂质形状都发生了变形,它们将沿着变形方向被拉长,呈纤维形状。这种结构叫

纤维组织。

3.2.2 金属变形过程中的组织与性能(续)

4、具有纤维组织的金属,各个方向上的机械

性能不相同。顺纤维方向的机械性能比横纤维方向

的好。金属的变形程度越大,纤维组织就越明显,

机械性能的方向性也就越显著。

使纤维分布与零件的轮廓相符合而不被切断;

使零件所受的最大拉应力与纤维方向一致,最大

切应力与纤维方向垂直。

实例:

当采用棒料直接经切削加工制造螺钉时,螺钉头

部与杆部的纤维被切断,不能连贯起来,受力时产生

的切应力顺着纤维方向,故螺钉的承载能力较弱(如图示)。

当采用同样棒料经局部镦粗方法制造螺钉时(如图示),纤维不被切断且连贯性好,纤维方向也较为有利,故螺钉质量较好。

3.2.3冷变形及热变形

冷变形

变形温度低于回复温度时,金属在变形

过程中只有加工硬化而无回复与再结晶现象,

变形后的金属只具有加工硬化组织,这种变

形称为冷变形。

热变形

变形温度在再结晶温度以上时,变形

产生的加工硬化被随即发生的再结晶所抵

消,变形后金属具有再结晶的等轴晶粒组

织,而无任何加工硬化痕迹,这种变形称

为热变形。

3.2.4 影响塑性变形的因素

可锻性——常用金属材料在经受压力加工产生塑性变形的工艺性能来表示。可锻性的优劣是以金属的塑性和变形抗力来综合评定的。

塑性是指金属材料在外力作用下产生永久变形,而不破坏其完整性的能力。

变形抗力是指金属对变形的抵抗力。

金属的可锻性取决于材料的性质(内因)和加工条件(外因)。

材料性质的影响(内因)

化学成分的影响

纯金属的可锻性比合金的可锻性好。钢中合金元素含量越多,合金成分越复杂,其塑性越差,变形抗力越大。例如纯铁、低碳钢和高合金钢,它们的可锻性是依次下降的。

金属组织的影响

纯金属及固溶体(如奥氏体)的可锻性好。碳化物(如渗碳体)的可锻性差。铸态柱状组织和粗晶粒结构不如晶粒细小而又均匀的组织的可锻性好

加工条件的影响(外因)

变形温度的影响

在一定的变形温度范围内,随着温度升高,原子动能升高,从而塑性提高,变形抗力减小,有效改善了可锻性。

若加热温度过高,晶粒急剧长大,金属力学性能降低,这种现象称为“过热”。若加热温度更高接近熔点,晶界氧化破坏了晶粒间的结合,使金属失去塑性,坯料报废,这一现象称为“过烧”。

金属锻造加热时允许的最高温度称为始锻温度。

不能再锻,否则引起加工硬化甚至开裂,此时停止锻造的温度称终锻温度。

变形速度的影响

一方面由于变形速度的增大,

回复和再结晶不能及时克服加工

硬化现象,金属则表现出塑性下

降、变形抗力增大,可锻性变坏。

另一方面,金属在变形过程

中,消耗于塑性变形的能量有一

部分转化为热能,使金属温度升

高(称为热效应现象)。变形速度越

大,热效应现象越明显,使金属

的塑性提高、变形抗力下降(图中a

点以后),可锻性变好。

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

金属塑性成形工艺

有色金属塑性加工趋势 冶金 金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。 近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。 近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。金属塑性加工设备以蒸汽向电力驱动进步。机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。 现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。 目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。 近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。生产线更趋大型化、专业化。产品单重大大增加。(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。模具的质量和使用效果、寿命得到极大的提高。(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

塑性成型工艺讲解

目录 第1章工艺分析......................................................... - 1 - 1.1设计任务书 ........................................................ - 1 - 1.2结构形状 .......................................................... - 1 - 1.3尺寸精度与粗糙度 .................................................. - 1 - 1.4 10钢材料性能 ..................................................... - 2 - 1.5工序 .............................................................. - 2 - 第2章生产方案制定..................................................... - 3 - 第3章模具类型与结构形式............................................... - 4 - 3.1 送料方式:........................................................ - 4 - 3.2 定位方式.......................................................... - 4 - 3.2.1 横向定位方式.................................................. - 4 - 3.2.2 纵向定位装置.................................................. - 4 - 3.3 出料方式.......................................................... - 5 - 3.4卸料方式 .......................................................... - 5 - 3.5推件装置 .......................................................... - 5 - 3.6导向装置 .......................................................... - 5 - 第4章工艺计算......................................................... - 6 - 4.1排样设计 .......................................................... - 6 - 4.1.1.方案一直排式................................................. - 6 - 4.1.2 方案二多排................................................... - 9 - 4.2压力中心的确定 ................................................... - 10 - 4.3冲压力与压力机的选择 ............................................. - 11 - 4.3.1冲裁力的计算.................................................. - 11 - 4.3.2压力机的选取.................................................. - 12 - 4.4刃口尺寸的计算 .................................................. - 12 -

材料成型工艺

. 问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? . . 27.板料冲压有哪些特点?主要的冲压工序有哪些? 28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点? 31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么? 32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

材料成型技术基础复习重点.

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固

塑性成型工艺及设备

塑性成型工艺及设备实验指导书 班级: 姓名: 学号: 南京农业大学工学院机械工程系 机械制造工艺教研室 2006年10月

目录 实验一双动液压机装配精度检验 (2) 一、实验目的 (2) 二、实验用工具及设备 (2) 三、实验内容及方法 (4) 四、实验数据整理 (7) 五、实验报告要求 (7) 实验二冷冲压模具安装及工艺参数实验 (8) 一、实验目的 (8) 二、实验内容 (8) 三、实验用设备、工具和材料 (8) 四、实验步骤 (8) 五、实验报告要求 (9) 实验三曲柄压力机拆装实验 (10) 一、实验目的 (10) 二、实验用工具及设备 (10) 三、实验内容及方法 (10) 四、实验报告要求 (10) 实验四塑料注塑成型实验 (11) 一、实验目的 (11) 二、实验用工具及设备 (11) 三、实验内容及其步骤 (11) 四、实验报告要求 (11)

实验一双动液压机装配精度检验 一、实验目的 1、了解双动液压机的结构及动作原理; 2、掌握双动液压机制造及装配精度检测内容及检验方法。 二、实验用工具及设备 1、工具:百分表、百分表架、检验平尺、直角尺等。 2、设备:YX28-300/500A框架液压机。 YX28-300/500A框架式液压机主要用于薄板拉深、弯曲、成形等工艺,也可以用于整形、较平、压装、落料、挤压等。适用于航空、汽车、拖拉机、机床、仪表、家电等制造行业。 该液压机包括:机身、拉伸滑块、拉伸缸、压边滑块、压边缸、液压垫、液压垫缸、润滑装置、液压控制系统、电气控制系统等部分。 结构简图见图1 图1-1 框架式液压机结构简图 1.压边缸 2.拉伸滑块 3.拉伸缸 4.压边滑块 5.机身 6.液压垫及液压垫缸 (1)机身 机身为闭式组合框架结构,上横梁、底座分别由四根方立柱支撑,通过四根拉杆和八个锁紧螺母紧固。机身中间设有拉伸滑块和压边滑块,每根方立柱上布置两条可调导轨,八条导轨分别做拉伸滑块及压边滑块导向用,通过推拉螺钉来调节导轨间隙和滑块运动精度。立柱和上横梁、底座用方键定位、上横梁开有一个拉伸缸安装孔和四个压边缸安装孔。拉伸滑块和压边滑块的下平面设有T型槽以固定模具用,底座中间孔内设有液压垫,并有导向板导向。

材料成形技术基础答案_第1版_施江澜_赵占西主编

第一章金属液态成形 1. ①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。 ②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。 ③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。 ④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。 2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。 3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。 缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。 4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。 浇不足是沙型没有全部充满。冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。 出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。 逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。 5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。 铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。 定向凝固主要用于体收缩大的合金,如铸钢、球墨铸铁等。同时凝固适用于凝固收缩小的合金,以及壁厚均匀、合金结晶温度范围广,但对致密性要求不高的铸件。 6. 不均匀冷却使铸件的缓冷处受拉,快冷处受压。零件向下弯曲。 10. 铸件的结构斜度指的是与分型面垂直的非加工面的结构斜度,以便于起模和提高铸件精度。 结构斜度是零件原始设计的结构;拔模斜度是为了造型拔模(起模)方便,而在铸件上设计的斜度。 无法起模,结构可改为下图所示;

金属塑性成形综述

金属塑性成形 摘要:金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。文章主要对塑性成形的基本方法、主要研究内容,发展趋势做了综合介绍。 一、引言 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。【1】 在现代制造技术中,人们广泛的利用金属材料生产各种零件和产品。金属加工方法多种多样,包括成型、切削等。金属塑性成形是其中一种重要的加工方法,是利用金属在外力作用下产生的塑性变形来获得具有一定形状、尺寸和力学性能的原材料、毛坯或零件的生产方法,因此也称为金属塑性加工或金属压力加工。 图1 传统金属塑性成形工艺 二、金属塑性成形的主要形式 金属塑性成形工艺的种类有很多,包括轧制、挤压、拉拔、锻造和冲压等基本工艺类型。随着技术的发展,也有很多新的成型方式出现,它们具备精密、高效、节能、节材、清洁等优点,得到广泛关注。

2.1 体积成型 金属体积成型是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要分为热态金属体积成型和冷温态金属体积成型。热态金属变形过程可分为热锻、轧制、挤压、拉拔、辗压等工艺技术;冷温态变形过程可分为冷锻、冷精轧、冷挤压、冷拔、冷辗扩等工艺。 2.2 板材成型 所谓板材成型是指用板材、薄壁管、薄型材等作为原材料进行塑性加工的成形方法。在忽略板厚的变化时,可视为平面变形问题来处理,板材成型可分为:冲裁、弯曲、拉延、胀形、翻边、扩孔、辊压等工艺技术。 2.3 粉末态金属成形 随着制粉技术的发展,其应用领域不断扩展,对于复杂形状的机械零件来说,它具有高效、精密成形的特点,但成本较高,机械性能不如整体金属材料。粉末态金属成形的工艺过程为制粉、造型、压实、烧结、精锻。 2.4半固态金属材料成形 70年代开发研究的新技术,原金属材料作过特殊前处理,当材料加热到一定温度时可使30%的金属材料处于融溶状态,其余70%的金属材料呈均匀细颗粒组织的固态。在此状态加压变形,其流动性特好,可成形结构形状特别复杂的零件,而变形杭力很小。 2.5 复合成形技术 现代的科学越来越相互交叉、渗透,出现许多边缘学科、交叉学科一样,材料成形技术也逐渐突破原有铸、锻、焊、粉末冶金等技术相互独立的格局,相互融合、渗透,产生了种类繁多的“复合成形技术”。【2】金属塑性的复合成型技术主要有两个方面 (1)各种成形工艺的组合优化达到优化工艺和产品的目的。 (2)铸、锻、焊、热处理等不同加工方法的组合。 三、金属塑性成形技术主要研究内容 由于压力加工中,少、无切屑的特点和精密加工技术的发展,使金属塑性成型理论的研究受到日益广泛的重视而进入工程应用的前列.一般认为,研究金属塑性科学的历史开始于Tresa在1864年提出的屈服准则,至今不过100多年,而首

常用的塑性成形方法

3.2 常用的塑性成形方法 常用的塑性成形方法有:自由锻、模型锻造、板料冲压、轧制、挤压、拉拔等。 3.2.1 自由锻及锻造件的生产与检验 3.2.2 模锻 3.2.3 板料冲压

3.2.1 自由锻件的生产与检验 1.自由锻简介 自由锻造是利用冲击力或压力, 使金属在上、下砧铁之间产生塑性 变形,从而获得所需形状、尺寸以 及内部质量的锻件的一种加工方法。 自由锻造分为手工和机器锻造两种。 机器锻造是自由锻的主要方法。 自由锻的特点及应用:①工具简 单,成本低;②周期短,应用广泛; ③适应性强;④自由锻是大型锻件 的唯一加工方法;但其锻件的精度 较低,加工余量大,劳动强度大, 生产率低。 自由锻主要应用于单件、小批 图3.2. 1自由锻图量生产,大型锻件的生产,修配, 新产品的试制等。

2.自由锻件的生产与检验 右图为齿轮自 由锻零件图,材料 为45钢,生产数量 20件,由于生产批 量小,应采取自由 锻。齿轮自由锻造 整个过程包括确定 其结构工艺性、工 艺规程制订和自由 锻锻件的检验等。 图3.2.2 齿轮零件图(1)自由锻件的结构工艺性 自由锻零件的结构工艺性具体要求见表3.2.1。

表3.2.1 自由锻零件的结构工艺性 本齿 轮的结构 工艺性较 好,满足 自由锻件 的设计, 适合自由 锻成形。

(2)制订自由锻件的工艺规程 自由锻工艺规程的主要内容包括:根据零件图绘 制锻件图、计算坯料的质量和尺寸、确定锻造工序、选择锻造设备、确定坯料加热规范和填写工艺卡片等。 1)绘制锻件图 锻件图是制定锻造工艺和检验的依据,绘制时主要考虑工艺余块、余量及锻件公差。为了便于了解零件的尺寸和检查锻件的实际加工余量,在图上用双点划线(或细实线)画出零件的轮廓形状。用粗实线画出锻件的轮廓形状,在尺寸线上面标注锻件的尺寸和公差,下面标注零件的名义尺寸,并加括号。

材料成型技术基础试题及答案

华侨大学材料成型技术基础考试试题及答案 1、高温的γ-Fe是面心立方晶格。其溶碳能力比α-Fe大,在1148℃时溶解度最大达到%。 2、铸件上的重要工作面和重要加工面浇注时应朝下。 3、球墨铸铁结晶时,决定其基体组织是共析石墨化过程;为使铸铁中的石墨呈球状析出,需加入稀土 镁合金(材料),这一过程称为球化处理。 4、单晶体塑性变形的主要形式是滑移变形,其实质是位错运动。 5、如果拉深系数过小,不能一次拉深成形时,应采取多次拉深工艺,并应进行再结晶退火。 5、镶嵌件一般用压力铸造方法制造,而离心铸造方法便于浇注双金属铸件。 6、锤上模锻的锻模模膛根据其功用不同,可分为模锻模膛、制坯 模膛两大类。 7、设计冲孔模时,应取凸模刃口尺寸等于冲孔件尺寸;设计落料模时,凹模刃口尺寸应等于落料 件尺寸,凸模刃口尺寸等于落料件尺寸减去模具间隙Z 。 8、焊接接头是由焊缝区,熔合区,及焊接热影响区组成。 9、埋弧自动焊常用来焊接长直焊缝和环焊缝。 10、要将Q235钢与T8钢两种材料区分开来,用 B 方法既简便又准确。 A、拉伸试验 B、硬度试验 C、弯曲试验 D、疲劳试验 11、在材料塑性加工时,应主要考虑的力学性能指标是 C 。 A 、屈服极限 B、强度极限 C、延伸率 D、冲击韧性 12、亚共析钢合适的淬火加热温度范围是 B 。 A、Ac1+30~50℃ B、Ac3+30~50℃ C、Acm+30~50℃ D、Accm+30~50℃ 13、有一批大型锻件,因晶粒粗大,不符合质量要求。经技术人员分析,产生问题的原因是 A 。 A、始锻温度过高; B、终锻温度过高; C、始锻温度过低; D、终锻温度过低。 14、模锻件的尺寸公差与自由锻件的尺寸公差相比为 D 。 A、相等 B、相差不大 C、相比要大得多 D、相比要小得多 15、铸件的质量与其凝固方式密切相关,灰铸铁的凝固倾向于 A ,易获得密实铸件。 A、逐层凝固 B、糊状凝固 C、中间凝固 16、铸件的壁或肋的连接应采用C。 A、锐角连接 B、直角连接 C、圆角连接 D、交叉连接 17、下列焊接方法中, B 可不需另加焊接材料便可实现焊接; C 成本最低。 A、埋弧自动焊 B、电阻焊 C、CO2气体保护焊 D、氩弧焊 1、细化晶粒可提高金属的强度和硬度,同时可提高其塑性和韧性。(√) 2、由于T13钢中的含碳量比T8钢高,故前者的强度硬度比后者高。(×) 3、当过热度相同时, 亚共晶铸铁的流动性随着含碳量的增多而提高。(√ )

金属塑性成型工艺

1、什么是锻造温度范围,为什么要制定加热规范 答:锻造温度范围是指开始锻造(始锻温度)与结束锻造(终锻温度)之间的温度区间。 制定加热规范是为了减少氧化,节省燃料,提高生产率。 2、 2.1 简述锻造的作用 答:锻造生产主要是为汽车、拖拉机、机车车辆、工程及动力机械、机床工具、航空航天与军工等提供关键零部件毛坯或成品零件。 2.2 简述锻造工艺方案的选择依据,各主要生产工序的作用 答:锻造工艺方案的选择依据有以下四点: 一、零件在使用中的强度要求; 二、锻件的年产量; 三、零件的形状、尺寸和技术条件; 四、现场设备条件。 各主要生产工序的作用有以下十点: 一、下料:将原材料切割成所需尺寸的坯料; 二、加热:为了提高金属的塑形,降低变形抗力,便于锻模成形; 三、锻造:得到所需锻件的形状和尺寸; 四、切向或冲孔:切去飞边或冲掉连皮; 五、热校正或热精压:使锻件形状和尺寸跟准确; 六、在砂轮上磨毛刺,切边所剩下的毛刺 七、热处理为保证合适的硬度和合格的力学性能,常用正火和调质 八、清除氧化皮为得到表面光洁的锻件,常用喷砂、喷丸、滚筒抛光、酸洗等方法 九、冷校正和冷精压近一步提高锻件的精度,降低表面粗糙度值 十、检查锻件质量 3、 3.1 试述设计锻件图时,确定分模面的原则 答:以最大投影面作为分模面。 3.2 分流降压腔的设计原则及分流腔的基本形式 答:分流降压腔的设计原则有以下几点 一、分流降压腔的位置应选择在模膛最好充满的部位,确保模膛完全充满后多余金属才分流。 二、多余金属分流时在模膛内所产生的压力应比模膛刚充满时所产生的压力略有增加,以免增加总的模锻力和加快模膛的磨损。 分流腔的基本形式有以下几种: 一、孔式分流腔 二、在毛坯上预留分流孔或形成减压轴 三、端部轴向分流孔 4、试述挤压的种类与基本方法,以及适用范围 答:挤压的种类分为三种,既冷挤压,温挤压,热挤压。 挤压的基本方法有正挤压、反挤压、复合挤压和径向挤压。 适用于机械、汽车、仪表、电器、轻工、宇航、船舶、军工等工业部门。 5、何谓板料的变形趋向性。

金属材料的塑性成形

第一章金属材料的塑性成形 1.1 概述 金属材料的塑性成形又称金属压力加工,它是指在外力作用下,使金属材料产生预期的塑性变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 金属材料固态成形的基本条件:一是成形的金属必须具备可塑性;二是外力的作用。 一、金属塑性成形的方法: (1)轧制将金属材料通过轧机上两上相对回转轧辊之间的空隙,进行压延变形成为型材的加工方法。如图所示:压机开坯、轧板、轧圆钢等。 图1.1 轧制 (2)挤压将金属置于一封闭的挤压模内,用强大的挤压力将金属从模孔中挤出成形的方法。 图1.2 挤压 (3)拉拔将金属坯料拉过拉拔模模孔,而使金属拔长、其断面与模孔相同的加工方法。 图1.3 拉拔 (4)自由锻造将加热后的金属坯料置于上下砧铁之间受冲击力或压力而变形的加工方法。 图1.4 自由锻造

(5)模型锻造(模锻)将加热后的金属坯料置于具有一定形状的锻造模具模膛内,金属毛坯受冲击力或压力的作用而变形的加工方法。 图1.5 模锻 (6)板料冲压金属板料在冲压模之间受压产生分离或变形而形成产品的加工方法。 图1.6 板料冲压 按金属固态成形时的温度,其成形过程分为两大类: (1)冷变形过程金属在塑性变形时的温度低于该金属的再结晶温度。 冷变形的特征——金属变形后产生加工硬化。 (2)热变形过程金属在塑性变形时的温度高于该金属的再结晶温度。 热变形的特征——金属变形后会再结晶,塑性好,消除内部缺陷,产生纤维组织。 金属塑性加工的特点: (1)材料利用率高 (2)生产效率高 (3)产品质量高,性能好,缺陷少。 (4)加工精度和成形极限有限。 (5)模具、设备费用高。 利用金属固态塑性成形过程可获得强度高、性能好的产品,生产率高、材料消耗少。但该方法投资大,能耗大,成形件的形状和大小受到一定限制。 二、金属塑性成形过程的理论基础 1、金属塑性变形的能力 金属塑性变形的实质——金属塑性变形是金属晶体每个晶粒内部的变形(晶内变形)和晶粒间的相对移动、晶粒的转动(晶界变形)的综合结果。 金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得毛坯或零件的难易程度。 可锻性用金属的塑性指标(延伸系数δ和断面减缩率Ψ)和变形抗力来综合衡量。 影响金属塑性的因素: (1)金属本身的性质——纯金属塑性优于合金;铁、铝、铜、镍、金、银塑性好;金属内部为单相组织塑性好;晶粒均匀细小塑性好。 (2)变形的加工条件 1)变形温度↑,塑性↑; 2)变形速度的影响; 3)压状态为三向压应力时塑性最好。

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 1.合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法? 答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 2.影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 3.分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 4.铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶偏析:产生于具有结晶温度围能形成固溶体的合

金。(因为不平衡结晶) 晶界偏析:(原因:①两个晶粒相对生长,相互接近、相遇;②晶界位置与晶粒生长方向平行。) (2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 5.铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 6.如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝呈氧化颜色冷裂纹:裂纹细小,呈连续直线状,缝有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何? 答:封闭式浇注系统:从浇口杯底孔到浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF<ΣF横ΣF横>F直下端>F 直上端)

塑性成形工艺与模具设计

第一章 塑性成形(塑性加工、压力加工):金属材料在一定的外力作用下,利用金属的塑性而使其成形为具有一定形状及一定力学性能的加工方法。 塑性成形工艺与其他加工工艺相比,特点: 1、材料利用率高 2、力学性能好 3、尺寸精度高 4、生产效率高 塑性成形工艺的分类 按加工对象的属性:一次塑性加工(轧制、挤压、拉拔等)、二次塑性加工 按塑性成形毛坯特点:体积成形(块形成形)、板料成形 轧制:纵轧、横轧、斜轧 挤压(坯料后端施加压力):正挤压、反挤压、复合挤压 拉拔(坯料前端施加压力) 板料成形(冲压、冷冲压、板料冲压),按性质分为:分离工序(落料、冲孔、切断、切边、剖切等)、成形工序(弯曲、拉深、翻边、胀形、扩口、缩口、旋压等) 体积成形,分为锻造(自由锻、模锻)、挤压(开式模锻、闭式模锻) 自由锻,主要用于单件、小批量生产、大锻件生产或冶金厂开坯。 冲压工艺分类 按变形性质分类: 1、分离工序 2、成形工序 *按基本变形方式分类: 1、冲裁 2、弯曲 3、拉深 4、成形 *按工序组合形式分类 1、简单工序 2、组合工序(1、复合冲压2、连续冲压 3、连续-复合冲压) 板料成形的失稳现象: 拉伸失稳(板料在拉应力作用下局部出现缩颈或断裂) 压缩失稳(板料在压应力作用下出现起皱) *板料冲压成形性能影响较大的力学性能指标: 1、屈服强度σs(小好)

2、屈强比σs/σb(小好) 3、伸长率 4、硬化指数n 硬化指数:单向拉伸硬化曲线可写成σ=cε^n,其中指数n即为硬化指数,表示在塑性变形中材料的硬化程度。 *Q:什么叫加工硬化和硬化指数?加工硬化对冲压成形有有利和不利的影响? A:加工硬化:指随着冷变形程度的增加,金属材料的强度和硬度指标都有所提高,但塑性、韧性有所下降的现象。 优:由于加工过硬化使变形抗力提高,又提高了材料承载能力。 缺:加工硬化变形越大,会使断面在局部地方易形成缩颈,容易被拉断不利于成形。 5、厚向异性系数γ(大好) 厚向异性系数越大,表示板料越不易在厚度方向上产生变形,不易出现变薄和增厚。 6、塑性成型基本规律: ①加工硬化规律;②卸载弹性恢复规律;③最小阻力定律;④塑性变形体积不变定律 第二章 *冲裁过程: 1、弹性变形阶段 2、塑性变形阶段 3、断裂分离阶段 *冲裁件质量指标 1、断面质量 2、尺寸精度(模具制造精度的影响、模具间隙的影响、材料性质厚度与轧制方向的影响、 零件形状尺寸的影响) 3、形状误差 *冲裁断面的组成 1、圆角带(小好) 2、光亮带(宽好)措施:减小间隙 3、断裂带(窄好) 4、毛刺(小好) *影响断面质量的因素: 1、材料性能的影响 2、模具间隙的影响 3、模具刃口钝利情况的影响 4、模具和设备的导向情况(影响最大) *间隙对模具寿命的影响(零件质量、冲裁力、模具寿命) 间隙小:引起冲裁力、侧压力、摩擦力、卸料力、推件力增大,甚至会使材料粘连刃口,这

塑性成形的优缺点

●组织、性能好 塑性成形可使金属内部组织发生改变,如塑性成形中的锻造等成形工艺可使金属的晶粒细化,可以压合铸造组织内部的气孔等缺陷,使组织致密,从而提高工件的综合力学性能、经过塑性加工将使其结构致密,粗晶破碎细化和均匀,从而使性能提高.此外,塑性流动所产生的流线也能使其性能得到改善。 ●材料利用率高,节省材料 塑性成形方法的材料利用率可达60%-70%,有的达85%-90%。材料利用率不如铸件,但由于材料性能提高,零件的尺寸可缩小,零件寿命高,也可以节省原材料、金属塑性加工是金属整体性保持的前提下,依靠塑性变形发生物质转移来实现工件形状和尺寸变化的,不会产生切屑,因而材料的利用率高得多。 ●尺寸精度高,提高制件的强度 工件的尺寸精度高,不少塑性成形方法可达到少无切削加工的要求。如精密模锻锥齿轮的齿部可不经切削加工直接使用、塑性加工产品的尺寸精度和表面质量高。 ●塑性成型方法具有很高的生产率 除自由锻造外,其它塑性成形方法都有较高的劳动生产率,可大批量生产、塑性加工过程便于实现生产过程的连续化,自动化,适于大批量生产,如轧制,拉拔加工等,因而劳动生产率高。

●投资大、经费多,制约新产品迅速投产的瓶颈 塑性成形多数方法的模具费高,成本高、设备较庞大,能耗较高,且成形件的形状和大小也受到一定限制,形状不能太复杂,坯料塑性要好。 塑性成形可制造小至几克,大至几百吨的重型锻件,所以需要大量投资,所需要的资本和经费大,而且由于所需都是固定零件所以新产品少,新产品不可能过快投入市场造成新产品迅速投产的瓶颈。 塑性成形时,工件的固态流动比较困难,成形比较困难,工件形状的复杂程度不如铸件,体积特别大的工件成形也较困难。 ●一定程度的环境污染 需要消耗大量的资源,铸造过程中的粉尘,噪声污染等,同时也会产生工业三废——废水、废气、废渣。 材料成型及控制工程11—3 徐威娜1176808231

相关主题
文本预览
相关文档 最新文档