当前位置:文档之家› 纳米铜添加剂对重载车辆润滑油摩擦学性能影响的研究

纳米铜添加剂对重载车辆润滑油摩擦学性能影响的研究

纳米铜添加剂对重载车辆润滑油摩擦学性能影响的研究
纳米铜添加剂对重载车辆润滑油摩擦学性能影响的研究

不同形貌铜纳米颗粒的制备与催化性能研究_赵一

宝鸡文理学院学报(自然科学版),第28卷,第4期,第293-297页,2008年12月 Jo ur na l of Baoji U niver sity o f A rts and Sciences(Natur al Science),V ol.28,N o.4,pp.293-297,Dec.2008 不同形貌铜纳米颗粒的制备与催化性能研究* 赵一 (陕西师范大学化学与材料科学学院,陕西西安710062) 摘要:目的制备一系列不同形貌的铜纳米颗粒,探讨影响金属纳米晶体形貌和尺寸的因素,并研究其催化性能。方法采用化学还原法和水热法进行合成。结果合成出立方体,小球体,片状和枝状形貌的铜纳米颗粒,并选用立方体和小球体这两种具有代表性的铜纳米颗粒应用于苯羟基化反应中,发现立方体形状的铜纳米颗粒具有更高的催化活性。结论就大多数反应而言,较低的反应前驱物浓度、较低的反应体系温度、较长的反应时间以及适当的助剂,有利于生成形貌规整,尺寸均匀,分散性较好的纳米晶体;且铜纳米颗粒催化活性与其暴露晶面有关,高能晶面的催化活性较高。 关键词:铜;纳米结构;催化 中图分类号:O614.121文献标志码:A文章编号:1007-1261(2008)04-0293-05 Preparation and studying on catalytic performance of copper nanoparticles with different shapes ZH AO Yi (Schoo l o f Chemistr y&M ateria ls Science,Shaanxi No rmal U niver sity,Xi.an710062,Shaanx i,China) Abstract:Aim T o pro duce copper nanoparticles w ith different shapes and discuss the influences of sizes and shapes in synthesis o f nanoparticles and their catalysis performance.Methods T he copper naoparticles w ere prepared by chemical r eductio n and hydr o-ther mal metho d.Results A series of cop-per nanoparticles have been prepared,including cubes,near-sphericity,plates and branches.And com pared the reactive activ ity o f cubic and near-spherical copper nanoparticles in hydr oxy lation of ben-zene.T he cubic copper nano particles show the higher reactive activity.Conclusion Generally,an u-nifo rm sizes and shapes and goo d dispersity nano particles could be prepared by low co ncentratio n of re-actant,low sy stem temperature,long r eactive tim e and suitable surface active ag ents.T he cry stal faces of copper nanoparticles play an essential ro le in determ ining the catalytic hydr oxy lation of ben-zene.T he planes w ith higher surface energ y ar e mor e reactiv e. Key words:copper;nanostr uctures;catalysis 近年来,关于纳米级催化剂的研究发展迅速。其中大多数的研究方向集中在球形纳米的应用和特定形貌纳米颗粒的合成方面,而关于某一种特定形貌的纳米颗粒的催化效果的研究却甚少。Naray-anan[1,2]研究小组将四面体、立方体、球体3种形貌的铂纳米颗粒在同一个催化反应中做了对比,他们发现催化剂的活性主要与其形貌有关。Choudary[3]小组发现六边形M gO晶体的主要暴露晶面是[100]面,其活性高于纳米晶体样品。李亚栋[4]小组对比了3种不同形貌的Ag纳米颗粒在催化苯乙烯氧化反应中的差异,发现主要由[100]晶面组成的立方体颗粒的催化活性远远高于由[111]晶面组成的截角三角片颗粒,这说明了高能晶面的催化活性较高。 金属铜的价格低廉,性质稳定。而由于纳米级铜颗粒比表面大、表面活性中心数目多,因此,它作为催化剂有着极高的活性和选择性,是一种重要的工业催化剂原材料,而且有着广阔的应用前景。此外,纳米铜粉颗粒还应用于制造导电浆料(导电胶,导磁胶)[5]、 *收稿日期:2008-05-30,修回日期:2008-07-10.E-m ail:zy_sky8620@https://www.doczj.com/doc/8c16877823.html, 作者简介:赵一(1982-),男,重庆人,在读硕士研究生,研究方向:纳米材料合成及其应用.

润滑油基础知识考试题

普通工业润滑油基础知识考试题 一、填空题 1、按40℃运动粘度划分牌号的油品包括液压油、汽轮机油、 __________ 、____________ 等。 2、多级油具有__________、-__________、__________、可以全年通用,并且节约能源等优点,所以应推广使用多级油。 3、液压油可以分为两大类,一类是易燃的_____液压油,另一类是 _________液压液。 4、液压油在运行过程中,由于操作不善,会使水混入油品中,促使添加剂分解,严重腐蚀设备。因此要防止_____的混入。 5、液压油中混入固体颗粒,会使液压元件损耗增大,并堵塞过滤器,加速油品的老化。因此要防止_________混入。 6、齿轮传动能保证恒定的瞬时______,传递动力准确可靠。 7、汽轮机油主要用于电力、船舶、化肥、化纤工业汽轮机组和大、中型水轮机组的轴承、齿轮箱、调速器以及液压控制系统,起_____、 ____和________的作用。 8、HVI150代表:_____________ ,MVIS150BS代表: _____________________。 9、中和______油品中的酸性物质所需要的氢氧化钾毫克数称为酸值,用mgKOH/g油表示。 10、粘度指数是表示油品粘温性能的一个________。粘度指数高,表示油品的粘度随温度变化_____,油的粘温性能好。反之亦然。 11、润滑油的基本性能检测包括________、___________和 ___________。 12、乳化是油分子和水分子互相包容的一种现象,是___________变化,可分成油包水型和水包油型。常见的乳化是__________,往往呈乳白色。 13、基础油的主要成分决定了_____、粘温、_____、______等性能等

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

纳米晶带材简介

铁基纳米晶合金 一、简介: 铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为的,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。微晶直径10-20 nm, 适用频率范围50Hz-100kHz. 二、背景介绍: 1988年日本的Yoshizawa等人首先发现,在Fe-S-iB非晶合金的基体中加入少量Cu和 M(M=Nb,Ta,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有bcc结构的超细晶粒(D约10nm)软磁合金。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为 Fe7315Cu1Nb3Si1315B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe-M- B(M=Zr,Hf,Ta)系,即Nanoperm系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[2]。由于Co基和Ni基不易于形成K、Ks同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。 三、铁基纳米晶软磁合金的制备方法 纳米晶软磁合金的制备一般采用非晶晶化法。它是在用快淬法、雾化法、溅射法等制得非晶合金的基础上,对非晶合金在一定的条件下(等温、真空、横向或纵向磁场等)进行退火,得到含有一定颗粒大小和体积分数的纳米晶相。近年来,也有一些研究者采用高能球磨法制备纳米晶软磁合金。 四、纳米晶软磁合金的结构与性能 纳米晶软磁合金的典型成份为Fe7315Cu1Nb3Si1315B9。随着研究的不断进行,合金化元素几乎遍及整个元素周期表。从合金的化学成份在合金中的作用看,可以分为4类: (1). 铁磁性元素:Fe、Co、Ni。由于Fe基合金具有高Bs的优势,且纳米晶合金可以实现K和Ks同时为零,因而使L值很高、损耗很低,价格便宜,成为当今研究开发的中心课题。 (2). 非晶形成元素:主要有Si、B、P、C等。对于纳米晶软磁合金带材,一般都是先形成非晶带,然后通过退火使材料出现纳米晶,因而非晶化元素是基本元素。特别是B对形成非晶有利,成为几乎所有纳米晶软磁合金的构成元素,含量在5at%~15at%之间。Si也是

润滑油基本知识

润滑油基本知识 润滑油知识 润滑油的作用润滑油是如何制成的? 合成基础油的优点何谓粘度? SAE粘度级粘度指标 单级粘度油和复级油API机油质量等级 如何从包装识别汽油机油或柴油机油?什么叫“闪点”? 什么叫“倾点”?什么叫泵送温度? 什么叫运动粘度(cSt)?什么叫密度? 什么叫针入度(稠度)?什么叫滴点? 什么时候应换润滑油?工业润滑油主要有哪些? 不同品牌的同类润滑油能否混用?如何推荐润滑油? 车辆用油主要有哪些?摩托车二冲程油和四冲程油的区别? 是否车辆使用越高级别的油越好? 一、润滑油作用: 减少磨擦、减少磨损。 冷却系统。 润滑油的油膜有密封作用。 防止生锈。 清洁系统。 可传递压力和温度。 二、润滑油是如何制成的? 从石蜡基的原油中提取矿物基油,按用途加上添加剂混和。(合成油是用合成基础油加上添加剂混和)合成型油品和矿物油品不可混用,合成型油成本高所以售价也高。 三、合成基础油的优点: 高粘度指数——需较少的粘度指数改进剂,沉淀少。 ——减少粘结和研磨现象,品质稳定。

不易挥发——耗油量低,排放少。 低倾点——低温流动性好,启动性好,磨损低。 四、何谓粘度? 按不同需要,油品制成各种稀薄粘稠不同的产品,油品这种不同程度的粘稠称为粘度。把粘稠分为等级则为粘度级。温度升高粘度下降,压力升高粘度增加,剪切率增大粘度下降。 五、SAE粘度级 美国汽车工程师协会(SAE)制定并颁布的润滑油粘度等级。(ISO/ASTM粘度级是国际标准协会工业用润滑油使用的粘度级)加上后标“W”是表示用于冬季,15W。 六、粘度指数 所有油品,加热时会变稀、遇冷时会变稠。但各种油对粘度/温度的效应敏感度不同,故用粘度指数(VI)来表示,在温度变化下粘度变化相对小的称为较高的粘度指数。 七、单级粘度油和复级粘度油 只适用于变化不大的某种温度条件使用的油叫单级粘度油,在温度变化范围较大都能使用的油我们叫它为复级粘度油。 八、API机油质量等级 由美国石油协会制定的,对机油质量的等级划分。汽油发动机用S开头,从SA到SJ,柴油发动机用C开头,CA到CH4,字母越后等级越高。 九、如何从包装上识别汽油机油或柴油机油? 如果包装上只标有API S*的是汽油车用的汽油机油。 如果包装上只标有API C*的是柴油车用的柴油机油。 若然罐上只标API S*/C*或C*/S*,是适用于混合车队的柴汽油两用机油,一般来说:S在前的更适 合与汽油车,C在前面的更适合柴油车,但最终应根据API的等级来决定使用。 十、什么叫闪点? 润滑油在加热的情况下粘度会下降变稀、分子运动会加剧,在这种情况下润滑油在火花产生

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

关于卢柯课题组纳米材料的综述

关于卢柯课题组纳米材料的综述 摘要:本文对卢柯教授所在的纳米材料研究团队的主要成员、研究方向、所获奖项及研究成果等方面进行了总结。卢柯教授所在的纳米材料研究团队的研究方向之一为金属纳米材料的制备与加工,微观结构的表征,力学性能,物理性能,热稳定性,以及相变。 关键词:卢克课题组、微观结构表征、力学性能、物理性能、热稳定性、相变1、引言 卢柯教授所在的纳米研究团队的研究方向是金属纳米材料的制备与加工,微观结构的表征,力学性能,物理性能,热稳定性,以及相变。卢柯,生于1965年5月,九三学社社员。原籍河南汲县,生于甘肃华池。研究生学历,工学博士学位,著名材料科学专家,中国科学院院士,中国科学院金属研究所原所长、研究员,上海交通大学材料科学与工程学院院长。主要从事金属纳米材料及亚稳材料等研究。获国家专利6项,国际专利1项;多次在国际会议上作特邀报告;国际《材料科学与工程评论杂志》特邀为其撰写长篇综述论文并发表了专刊。在国际重要学术刊物上发表论文150余篇;2010年在Nature上发表了一篇关于金属的未来的一篇文章;并且在science上也发表了多篇文章,2003年,《科学》上发表了卢柯等人的一项最新科研成果:将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,从而为氮化处理更多种材料和器件提供了可能。这是卢柯科研小组取得的又一个突破性进展,被评为 2003 年中国十大科技进展之一。2004年,在《科学》杂志上发表了采用纳米尺寸的生长孪晶强化金属的新途径获得了同时具有超高强度和高导电性的铜。而按照以往的经验,对铜进行强化以后,会使其导电率有所下降。这一成果的创新性在于,把难以统一在一起的性能统一在了一起。2013年又在《科学》杂志上发表了在金属中发现超硬超高稳定性新型纳米层片结构。他杰出的研究工作已经使他获得了无数的奖项。其中包括:2013年入选“万人计划”杰出人才。 2011年荣获德国洪堡研究奖(Humboldt Research Award);获国际亚稳及纳米材料年会金质奖章和青年科学家奖;第三世界科学院技术奖;国家自然科学奖三等奖;中国科学院自然科学奖一等奖、二等奖;中国科学院青年科技奖;全国劳动模范和先进工作者;何梁何利基金技术科学奖;香港求是基金会杰出青年学者奖等荣誉。身为中科院金属所所长的卢柯把他的工作描述成:我是个班长,领着团队在做事。卢柯认为,现在是中国各个领域发展

润滑油添加剂基本知识

润滑油解码 一、汽车润滑油添加剂 添加剂主要分类 1、清净分散剂如T154、T15 2、T106、T104、T105、T122等; 清净分散剂主要作用起到清净分散作用。磺酸盐目前是使用比较广泛的清净剂,磺酸盐能够对油中的烟炲起到很好的分散作用。特别是高碱值磺酸盐高温清净性好,酸中和性能好。磺酸盐的主要缺陷是抗氧化性能较差,在严苛条件下酸中和速度比烷基酚盐较差。硫化烷基酚盐高温清净性好,能够有效抑制柴油机油积碳。与磺酸盐分配后可以互补缺点。分散剂提供的油溶性基团比清净剂大,能有效抑制积碳和胶状物互相聚集。分散剂在润滑油中又起到表面活性剂的作用,将一些油溶或不油溶的固体和液体溶解到润滑油当中,起到增溶作用。 2、抗氧抗腐剂如T202、T203等; 抗氧抗腐剂的主要主要品种是二烷基二硫代磷酸锌,能够抑制发动机油漆膜、油泥的产生,抑制油品粘度增长。但是发动机油中磷含量主要来自于抗氧抗腐剂,磷元素能使汽车尾气转化器中三元催化剂中毒。因此在高档发动机油限制了磷含量。实现低磷化对策就意味着减少ZDDP的用量,会对油品抗氧和抗磨性能产生大的影响。目前科技人员正着手开发研制低磷或无灰添加剂,以取代或部分取代ZDDP。 3、挤压抗磨剂如T321等; 挤压抗磨剂一般为含有硫、磷、氯等活性元素的有机化合物。当滑动的两个表面压力增大,便面膜变薄,两个表面凸起处相互接触,

产生局部高温高压,此时极压剂的活性元素与金属发生反应,生成剪切强度较低的的固体保护膜。 4、摩擦改进剂,如T406等; 摩擦改进剂吸附膜大多数为物理吸附膜,物理吸附膜是可逆的,温度升高后吸附膜将会消失,因此摩擦改进剂只有在温度较低,负荷较小的情况下有效。摩擦改进剂用于汽车自动传动液中,可改善油品摩擦系数,改善换挡舒适性。发动机油和齿轮油中使用摩擦改进剂具有降低边界润滑的摩擦系数的作用,提高燃料经济性。 5、抗氧剂,如T512、T534等; 抗氧剂能有效防止油品氧化,能延长其使用和储存寿命。酚类和胺类抗氧剂能捕捉自由基,是氧化反应自由基终止剂,而ZDDP主要是氧化反应产生的过氧化物的分解剂。 6、粘度指数改进剂,如T602、T603等; 粘指剂是一种油溶性高分子聚合物,加入粘度较低的基础油中能显著提高油品粘度和改善黏温性能,适应宽温度范围对油品粘度的要求。 7、防锈剂如T701等; 防锈剂主要作用机理与其分子中极性一段吸附于金属表面,烃基一段伸向油层,形成分子定向排列的致密分子膜,以阻止水分与氧渗入金属表面产生锈蚀。 8、降凝剂如T803等。 降凝剂虽然不能改变油品析出石蜡的数量,但能够吸附在蜡表面或共

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照: 101 清净剂低碱值石油磺酸钙 T101 T102 102 清净剂中碱值石油磺酸钙 T103 103 清净剂高碱值石油磺酸钙 T104 104 清净剂低碱值合成磺酸钙 T105 105 清净剂中碱值合成磺酸钙 T106 106 清净剂高碱值合成磺酸钙 T106A 106A 清净剂高碱值合成磺钙 T107 107 清净剂超碱值合成磺酸镁 T108 108 清净剂硫磷化聚异丁烯钡盐 T108A 108A 清净剂硫磷化聚异丁烯钡盐 T109 109 清净剂烷基水杨酸钙 T111 111 清净剂环烷酸镁 T114 114 清净剂高三值环烷酸钙 T121 121 清净剂中碱值硫化烷基酚钙 T122 122 清净剂高三值硫化烷基酚钙 T151 151 分散剂单烯基丁二酰亚胺 T152 152 分散剂双烯基丁二酰亚胺 T153 153 分散剂多烯基丁二酰亚胺 T154 154 分散剂聚异丁烯丁二酰亚胺(高氮)T155 155 分散剂聚异丁烯丁二酰亚胺(低氮)T201 201 抗氧抗腐剂硫磷烷基酚锌盐 T202 202 抗氧抗腐剂硫磷丁辛基锌盐 T203 203 抗氧抗腐剂硫磷双辛基碱性锌盐 T203A 203A 抗氧抗腐剂硫磷双辛基碱性锌盐 T204 204 抗氧抗腐剂硫磷二烷基锌盐 T205 205 抗氧抗腐剂硫磷二烷基锌盐 T301 301 极压抗磨剂氯化石蜡 T304 304 极压抗磨剂酸性亚磷酸二丁酯 T305 305 极压抗磨剂硫磷酸含氮衍生物 T306 306 极压抗磨剂磷酸三甲酚酯 T307 307 极压抗磨剂硫代磷酸胺盐 T308 308 极压抗磨剂异辛基酸性磷酸酯十八胺盐T309 309 极压抗磨剂硫代磷酸三茜酸 T321 321 极压抗磨剂硫化异丁烯 T322 322 极压抗磨剂二苄基二硫化物

表面纳米化对金属材料耐磨性的影响

东华大学研究生课程论文封面 教师填写: 得分任课教师签名 学生填写: 姓名学号 专业导师 课程名称 任课教师课程学分 上课时间20 至20 学年第学期星期 递交时间年月日 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名:

表面纳米化对金属材料耐磨性的影响 摘要:材料的磨损起源于表面,金属材料的摩擦磨损性能与表面结构密切相关。利 用表面纳米化技术可以在金属材料的表面制备出一定厚度的纳米结构表层,从而大 大提高金属的耐磨性。结合国内外学者的研究报道,综述了表面纳米化在金属耐磨 性方面的影响,讨论了表面纳米化方法与机理以及表面纳米化影响耐磨性的因素, 简述了应用表面纳米化技术改善各种金属材料耐磨性的研究和实用成果,最后进行 了总结和展望。 关键词:表面纳米化;金属材料;耐磨性 Influence of Surface Nanocrystallization on Wear Resistance of Metallic Materials Abstract:Wearing stems from surface of material, the friction and wear properties of metallic materials are closely related to their surface structure. Nanostructured layer with a certain thickness can be produced by means of surface nanocrystallization technology on surface of metallic materials to enhance their wear resistance distinctly. With the research work of scholars, an overview of the influence of surface nanocrystallization on wear resistance of metallic materials is given. The methods, principle and factors influencing wear property of surface nanocrystallization are dis2 cussed, the research achievements and applying results are illustrated, and the summary and prospect are presented at last. Key words: surface nanocrystallization; metallic materials; wear resistance 1、引言 结构材料中许多失效(如磨损、疲劳等)均与材料表面结构和性能密切相关。在大多数服役环境下,材料的失稳多始于表面,如果能在材料上制备出一定厚度的纳米结构表层,就可以通过表面组织和性能的优化来提高材料的整体性能和服役行为[1]。基于此,20世纪末中科院金属所卢柯研究组提出了“表面纳米化”(Surface nanocrystallization)的概念,该项技术既

浅谈润滑油添加剂———复合剂

浅谈润滑油添加剂———复合剂 学号:2010232253 姓名:张海刚 一、润滑油复合剂基础知识 1.复合剂的定义 润滑油是由基础油和添加剂两部分组成,基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础油性能方面的不足。添加剂在润滑油中的所占比例较小,最大一般不超过30%,部分工业用油中小于1%。而润滑油复合剂是具有能赋予基础油本身没有的性质/性能,如抗泡、破乳化等性能;能改进基础油原有的性质/性能,如抗磨、防锈等性能。 2.添加剂的分类 添加剂大致分为三类1、保护润滑表面:清净剂、分散剂、极压抗磨剂、摩擦改进剂、防锈防腐剂。 2、改善润滑剂物理性质:粘度指数改进剂、降凝剂。 3、保护润滑剂本身:抗氧剂、抗泡剂。 国内润滑油复合剂分组——单剂国内润滑油复合剂分组——复合剂根据SH/T 0389-92《石油复合剂的分类》 清净分散剂——T1XX清净剂:具有高碱性,可以持续中和润滑油氧化生成的酸性物质,同时 对漆膜和积炭具有洗涤作用。常用清净剂类型:磺酸钙:如T106 硫化烷基酚钙:如T115B水杨 酸钙:如T109。分散剂:其油溶性基团比清净剂大,能有效地屏蔽积炭和胶状物相互聚集,使其 以小粒子形式分散在油中,防止堵塞滤网。最常用分散剂为聚异丁烯丁二酰亚胺:单挂丁二酰亚胺, T151双挂丁二酰亚胺,T154高分子量丁二酰亚胺,T161

抗氧抗腐剂——T2XX最常用为二烷基二硫代磷酸锌(ZDDP),如T202、T203,是一种多效添加剂,具有抗氧、抗磨、抗腐作用。由于ZDDP含磷元素,对汽车尾气转化器中三元催化剂具有中毒作用,发动机油中ZDDP的用量现受到较大限制。 极压抗磨剂——T3XX极压抗磨剂在金属表面承受负荷的条件下,防止金属表面的磨损、擦伤甚至烧结。极压抗磨剂一般具有高活性基团,在局部的高温高压下,能与金属表面反应形成保护膜。常用极压抗磨剂类型:含氯极压抗磨剂,如氯化石蜡T301;含硫极压抗磨剂:如硫化烯烃T321;含磷极压抗磨剂:如磷酸酯T306 。 油性剂和摩擦改进剂——T4XX通常含有极性基团,通过极性基团吸附在金属表面上形成吸附膜,阻止金属相互间的接触,从而减少摩擦和磨损。早期多采用动植物油脂,故称油性剂,其它某些化合物也有同样性质,目前把能降低摩擦面的摩擦系数的物质称为摩擦改进剂。常用摩擦改进剂类型:油脂型,如硫化棉籽油T404有机磷型:如膦酸酯T451;有机钼型:如二烷基;二硫代磷酸氧钼T462 。 抗氧剂和金属减活剂——T5XX抗氧剂可以阻止或减缓润滑油的氧化变质,提高其使用寿命。常用抗氧剂类型:酚型:如T501、T512;胺型:如T534。金属表面对润滑油的氧化会起到催化作用,通过金属减活剂与金属表面作用,屏蔽其催化作用,同样能起到抗氧化功效。常用金属减活剂类型: 苯三唑衍生物:如T551;噻二唑衍生物:如T561。 黏度指数改进剂——T6XX 主要为了改善润滑油的黏温性能,提高其黏度指数。评价粘指剂的主要指标:剪切稳定性和稠化能力。常用粘指剂类型:聚甲基丙烯酸酯(PMA):如T602;乙丙共聚物(OCP):如T614;聚异丁烯(PIB):如锦州精联JINEX6130;氢化苯乙烯异戊二烯共聚物(HSD):如锦州精联JINEX9900。 防锈剂——T7XX 防锈剂分子结构的特点:一端是极性很强的基团,具有亲水性质,另一端是非极性的烷基,具有亲油性质,其极性基团吸附在金属表面,形成保护层,阻止腐蚀介质与金属表面接触起到防锈作用。常用防锈剂类型:磺酸盐型:如T701、T705;羧酸型:如T746;有机胺和咪唑啉型:如T703。 降凝剂——T8XX 润滑油的容易凝固是含有石蜡,降低凝固点的方法:深度脱蜡或添加降凝剂。 降凝剂的作用机理是与石蜡形成共结晶,改变石蜡晶体的大小和外形,不易形成网状结构,起到降低凝固点的作用。常用降凝剂类型:烷基萘型:如T801;聚甲基丙烯酸酯型:如T814;聚α-烯烃:如T803。 抗泡剂——T9XX 抗泡剂一般以微小粒子形式分散在润滑油中,与气泡表面作用降低气泡的稳定性,达到抗泡或消泡作用。抗泡剂的加剂量一般很低,少则几个pap,最大不超过0.1%。常用抗泡剂类型:硅油型:如T901;非硅型:如T912;复合抗泡剂:如T921。 破乳剂——T10XX 油品乳化会降低其润滑性、促进油品氧化,并加速金属部件的锈蚀。破乳化性能是与水接触的一些工业用油如工业齿轮油、液压油和汽轮机油等很重要的性能之一。破乳剂也是一种表面活性剂,常用的破乳剂有T1001(胺与环氧乙烷缩合物)。 3.复合添加剂 国内调油所需复合剂大部分依赖进口,特别是高档产品。 国内主要能生产一些中低档的内燃机油、齿轮油及抗磨液压油复合剂。 汽油机油复合剂:如T3002(SJ级)、T3001(SE/SF) 柴油机油复合剂:如T3151(CF-4级)、T3141(CD级) 齿轮油复合剂:如T4204

润滑油基础知识试题

润滑油基本知识培训测试题 一、填空题(每空2分,共36分) 1、润滑油是用在各种类型机械上以减少摩擦护机械及加工件的液体润滑剂。 2、润滑油一般由基础油和添加剂两部分组成。基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础迪性能方面的不足,赋予某些新的性能,是润滑油的重要组成部分。 3、润滑油基础油主要分矿物基础油及合成基础油两大 类。矿物基础油应用广泛,用量很大(约95%以上),但有 些应用场合则必须使用合成基础油调配的产品,因而使合成基础油得到迅速发展。 4、矿物基础油的化学成分包括高沸点^高分子量烃类和非烃类混合物。 5、一般常用的添加剂有:粘度指数改进剂,倾点下降剂,抗氧化剂,清净分散剂,摩擦缓和剂,油性剂,极压剂,抗泡沫剂,金属钝化剂,乳化剂,防腐蚀剂,防锈剂,破乳化剂。 6、润滑油是一种技术密集型产品,是复杂的碳氢化合物的混合物,而其真正使用性能又是复杂的物理或化学变化过程的综合效应。润滑油的基本性能包括一般理化性能、特殊理化性能和模拟台架试验。 7、在未加任何功能添加剂的前提下,润滑油粘度越大,油

膜强度越高,流动性越差。 8、粘度指数越高,表示油品粘度受温度的影响越小, 其粘温性能越好,反之越差。 9、油品的危险等级是根据闪点划分的,闪点在45 C以下为易燃品,45 C以上为可燃品。 10、 凝点是指在规定的冷却条件下油品停止流动的最高____ 温度。 二、液压常用词汇互译(每题2分,共14分) 1、Solenoid valve 电磁阀 2、Check valve 单向阀 3、Pilot valve 先导阀 4、Flow valve 流量阀 5、Servo valve 伺服阀 6、Proportional valve 比例阀 7、Synthetic lubricating oil 合成油 三、简答题(每题10分,共50分) 1、什么是润滑油? 答:润滑油是用在各种类型机械上以减少摩擦,保护机械及加工件的液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。 2、润滑剂的主要功能是什么? 答:(1)减摩抗磨,降低摩擦阻力以节约能源,减少磨损以延长机械寿命,提高经济效益;(2)冷却,要求随时将摩

润滑油添加剂介绍

润滑油添加剂介绍 润滑油添加剂为加入润滑剂中的一种或几种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。 添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂等类型。市场中所销售的添加剂一般都是以上各单一添加剂的复合品,所不同的就是单一添加剂的成分不同以及复合添加剂内部几种单一添加剂的比例不同而已。 润滑油的添加剂具体分类 (1)清净分散剂:金属表面的沉积物对于润滑和散热都不利,清净分散剂的目的就是为了减少老化产物在金属表面的沉积,将沉积物从金属表面清洗下来使之悬浮在油中,并在通过过滤器时将其滤掉。此外它还具有中和作用,以降低氧化产生的酸对金属的腐蚀作用。 (2)抗氧抗腐剂:润滑油在使用中由于催化剂、高温和热的作用会发生氧化,抗氧剂的目的就是要抑制和减缓这种氧化的倾向,提高油品氧化安全性。主要的抗氧化剂有胺型、酚型和金属型等。根据油品使用温度的不同和应用场合的不同,应选择不同类型的抗氧化剂。 (3)抗磨剂:在摩擦面的高温部分能与金属反应生成融点低的物质,节省油耗和振动噪音。

(4)油性剂:都是带有极性分子的活性物质,能在金属表面形成牢固的吸附膜,在边界润滑的条件下,可以防止金属摩擦面的直接接触。 (5)增粘剂(粘度指数改进剂):又称增稠剂,主要是聚合型有极高分子化合物,增粘剂不仅可以增加油品的粘度,并可改善油品的粘温性能。有较好的抗剪切性能和热氧化安定性能 (6)防锈剂:是一些极性化合物,对金属有很强的吸附力,能在金属和油的界面上形成紧密的吸附膜以隔绝水分、潮气和酸性物质的侵蚀;防锈剂还能阻止氧化、防止酸性氧化物的生成,从而起到防锈的作用。 (7)抗泡剂:使气泡能迅速地溢出油面,失去稳定性并易于破裂,从而缩短了气泡存在的时间。 (8)极压剂:大部分都是硫化物、氯化物、磷化物,在高温下能与金属反应生成润滑性的物质,在苛刻条件下提供润滑。 (9)降凝剂:用以改变润滑剂中蜡晶体的形状,从而提高油品在低温下的流动性。 润滑油的清净分散性添加剂对润滑油重要意义 其一是指润滑油能将其氧化后生成的胶状物、积炭等不溶物或悬浮在油中,形成稳定的胶体状态而不易沉积在部件上; 其二是指将已沉积在发动机部件上的胶状物、积炭等,通过润滑油洗涤作用于洗涤下来。清净分散剂是一种具有表面活性的物质,

相关主题
文本预览
相关文档 最新文档