当前位置:文档之家› 半导体集成电路工艺流程

半导体集成电路工艺流程

半导体集成电路工艺流程
半导体集成电路工艺流程

集成电路制造工艺流程

晶体的生长

晶体切片成wafer

晶圆制作

功能设计à模块设计à电路设计à版图设计à制作光罩

工艺流程

1) 表面清洗

晶圆表面附着一层大约 2um 的 Al2O3 和甘油混合液保护之 , 在制作前必须进行化学刻蚀和表面清洗。

2) 初次氧化

有热氧化法生成 SiO2 缓冲层,用来减小后续中 Si3N4 对晶圆的应力

氧化技术

干法氧化Si( 固 ) + O2 = SiO2( 固 )

湿法氧化Si( 固 ) +2H2O =SiO2( 固 ) + 2H2

干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当 SiO2 膜较薄时,膜厚与时间成正比。 SiO2 膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的 SiO2 膜,需要较长的氧化时间。 SiO2 膜形成的速度取决于经扩散穿过 SiO2 膜到达硅表面的 O2 及 OH 基等氧化剂的数量的多少。湿法氧化时,因在于 OH 基在 SiO2 膜中的扩散系数比 O2 的大。氧化反应, Si 表面向深层移动,距离为 SiO2 膜厚的 0.44 倍。因此,不同厚度的 SiO2 膜,去除后的 Si 表面的深度也不同。 SiO2 膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为 200nm ,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出

(d SiO2) / (d ox) = (n ox) / (n SiO2) 。 SiO2 膜很薄时,看不到干涉色,但可利用 Si 的疏水性和 SiO2 的亲水性来判断 SiO2 膜是否存在。也可用干涉膜计或椭圆仪等测出。

SiO2 和 Si 界面能级密度和固定电荷密度可由 MOS 二极管的电容特性求得。 (100) 面的 Si 的界面能级密度最低,约为 10E+10 -- 10E+11/cm – 2 .e V -1 数量级。 (100) 面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。

3) CVD(Chemical Vapor deposition) 法沉积一层 Si3N4(Hot CVD 或 LPCVD) 。

1 常压 CVD (Normal Pressure CVD)

NPCVD 为最简单的 CVD 法,使用于各种领域中。其一般装置是由 (1) 输送反应气体至反应炉的载气体精密装置; (2) 使反应气体原料气化的反应气体气化室; (3) 反应炉; (4) 反应后的气体回收装置等所构成。其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出,且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的装置。

2 低压 CVD (Low Pressure CVD)

此方法是以常压 CVD 为基本,欲改善膜厚与相对阻抗值及生产所创出的方法。主要特征: (1) 由于反应室内压力减少至 10-1000Pa 而反应气体,载气体的平均自由行程及扩散常数变大,因此,基板上的膜厚及相对阻抗分布可大为改善。反应气体的消耗亦可减少; (2) 反应室成扩散炉型,温度控制最为简便,且装置亦被简化,结果可大幅度改善其可靠性与处理能力 ( 因低气压下,基板容易均匀加热 ) ,因基可大量装荷而改善其生产性。

3 热 CVD (Hot CVD)/(thermal CVD)

此方法生产性高,梯状敷层性佳 ( 不管多凹凸不平,深孔中的表面亦产生反应,及气体可到达表面而附着薄膜 ) 等,故用途极广。膜生成原理,例如由挥发性金属卤化物 (MX) 及金属有机化合物 (MR) 等在高温中气相化学反应 ( 热分解,氢还原、氧化、替换反应等 ) 在基板上形成氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜方法。因只在高温下反应故用途被限制,但由于其可用领域中,则可得致密高纯度物质膜,且附着强度极强,若用心控制,则可得安定薄膜即可轻易制得触须( 短纤维 ) 等,故其应用范围极广。热 CVD 法也可分成常压和低压。低压 CVD 适用于同时进行多片基片的处理,压力一般控制在 0.25-2.0Torr 之间。作为栅电极的多晶硅通常利用 HCVD 法将 SiH4 或 Si2H 。气体热分解(约 650 oC )淀积而成。采用选择氧化进行器件隔离时所使用的氮化硅薄膜也是用低压 CVD 法,利用氨和 SiH4 或 Si2H6 反应面生成的,作为层间绝缘的 SiO2 薄膜是用 SiH4 和 O2 在 400 --4500 oC 的温度下形成

SiH4 + O2 –-SiO2 + 2H2

或是用 Si(OC2H5)4 (TEOS: tetra – ethoxy – silanc ) 和 O2 在 750 oC 左右的高温下反应生成的,后者即采用 TEOS 形成的 SiO2 膜具有台阶侧面部被覆性能好的优点。前者,在淀积的同时导入 PH3 气体,就形成磷硅玻璃( PSG :phosphor – silicate – glass )再导入 B2H6 气体就形成 BPSG(borro – phosphor – silicate – glass) 膜。这两种薄膜材料,高温下的流动性好,广泛用来作为表面平坦性好的层间绝缘膜。

4 电浆增强CVD (Plasma Enhanced CVD)

NPCVD 法及 LPCVD 法等皆是被加热或高温的表面上产生化学反应而形成薄膜。 PECVD 是在常压 CVD 或 LPCVD 的反应空间中导入电浆 ( 等离子体 ) ,而使存在于空间中的气体被活化而可以在更低的温度下制成薄膜。激发活性物及由电浆中低速电子与气体撞击而产生。

光CVD (Photo CVD)

PECVD 使薄膜低温化,且又产生如 A-Si 般的半导体元件。但由于薄膜制作中需考虑: (1) 在除去高温 (HCVD) 及 PECVD 时掺入元件中的各种缺陷 ( 如 PECVD 中带电粒子撞击而造成的损伤 ) ; (2) 不易制作的元件 ( 不纯物剖面 ) ,不希望在后面受到工程高温处理被破坏,因此希望可于低温中被覆薄膜。PCVD 是解决这此问题的方法之一。遇热分解时,因加热使一般分子的并进运动与内部自由度被激发( 激发了分解时不需要的自由度 ) ,相对的,在 PCVD 中,只直接激发分解必须的内部自由度,并提供活化物促使分解反应。故可望在低温下制成几无损伤的薄膜且因光的聚焦及扫描可直接描绘细线或蚀刻。

5 MOCVD (Metal Organic CVD) 分子磊晶成长 (Molecular Beam Epitaxy)

CVD 技术另一重要的应用为 MOCVD ,此技术与 MBE(Molecular Beam Epitaxy) 同为: (1) 成长极薄的结晶; (2) 做多层构造; (3) 多元混晶的组成控制; (4) 目标为化合物半导体的量产。此有装置有下列特征: (1) 只需有一处加热,装置构造简单,量产装置容易设计; (2) 膜成长速度因气体流量而定,容易控制; (3) 成长结晶特性可由阀的开头与流量控制而定; (4) 氧化铝等绝缘物上可有磊晶成长; (5) 磊晶成长可有选择,不会被刻蚀。相反地亦有: (1) 残留不纯物虽已改善,但其残留程度极高;

(2) 更希望再进一步改良对结晶厚度的控制; (3) 所用反应气体中具有引火性、发水性,且毒性强的气体极多; (4) 原料价格昂贵等缺点。

多层布线间的层间绝缘膜的沉积,以及最后一道工序的芯片保护膜的沉积必须在低温下 (450 C 以下 ) 下进行,以免损伤铝布线。等离子 CVD 法就是为此而发明的一种方法。

6 外延生长法 (LPE)

外延生长法 (epitaxial growth) 能生长出和单晶衬底的原子排列同样的单晶薄膜。在双极型集成电路中,为了将衬底和器件区域隔离 ( 电绝缘 ) ,在 P 型衬底上外延生长 N 型单晶硅层。在 MOS 集成电路中也广泛使用外延生长法,以便容易地控制器件的尺寸,达到器件的精细化。此时,用外延生长法外延一层杂质浓度低 ( 约 10 15 cm-3) 的供形成的单晶层、衬底则为高浓度的基片,以降低电阻,达到基极电位稳定的目的。 LPE 可以在平面或非平面衬底生长、能获得十分完善的结构。 LPE 可以进行掺杂,形成n- 和p- 型层,设备为通用外延生长设备,生长温度为300 oC-900 oC ,生长速率为0.2um-2um/min ,厚度 0.5um-100um ,外延层的外貌决定于结晶条件,并直接获得具有绒面结构表面外延层。

4) 涂敷光刻胶

光刻制造过程中,往往需采用 20-30 道光刻工序,现在技术主要采有紫外线 ( 包括远紫外线 ) 为光源的光刻技术。光刻工序包括翻版图形掩膜制造,硅基片表面光刻胶的涂敷、预烘、曝光、显影、后烘、腐蚀、以及光刻胶去除等工序。

(1) 光刻胶的涂敷

在涂敷光刻胶之前,将洗净的基片表面涂上附着性增强剂或将基片放在惰性气体中进行热处理。这样处理是为了增加光刻胶与基片间的粘附能力,防止显影时光刻胶图形的脱落以及防止湿法腐蚀时产生侧面腐蚀 (side etching) 。光刻胶的涂敷是用转速和旋转时间可自由设定的甩胶机来进行的。首先、用真空吸引法将基片吸在甩胶机的吸盘上,将具有一定粘度的光刻胶滴在基片的表面,然后以设定的转速和时间甩胶。由于离心力的作用,光刻胶在基片表面均匀地展开,多余的光刻胶被甩掉,获得一定厚度的光刻胶膜,光刻胶的膜厚是由光刻胶的粘度和甩胶的转速来控制。所谓光刻胶,是对光、电子束或 X 线等敏感,具有在显影液中溶解性的性质,同时具有耐腐蚀性的材料。一般说来,正型胶的分辩率高,而负型胶具有高感光度以及和下层的粘接性能好等特点。光刻工艺精细图形 ( 分辩率,清晰度 ) ,以及与其他层的图形有多高的位置吻合精度 ( 套刻精度 ) 来决定,因此有良好的光刻胶,还要有好的曝光系统。

(2) 预烘(pre bake)

因为涂敷好的光刻胶中含有溶剂,所以要在 80C 左右的烘箱中在惰性气体环境下预烘 15-30 分钟,去除光刻胶中的溶剂。

(3) 曝光

将高压水银灯的 g 线 (l=436 nm), i 线 (l=365nm) 通过掩模照射在光刻胶上,使光刻胶获得与掩模图形同样的感光图形。根据曝光时掩模的光刻胶的位置关系,可分为接触式曝光、接近式曝光和投影曝光三种。而投影曝光又可分为等倍曝光和缩小曝光。缩小曝光的分辩率最高,适宜用作加工,而且对掩模无损伤,是较常用的技术。缩小曝光将掩模图形缩小为原图形的 1/5-1/10 ,这种场合的掩模被称为掩模原版 (reticle) 。使用透镜的曝光装置,其投影光学系统的清晰度 R 和焦深 D 分别用下式表示:

R=k1 λ/NA

D=k2 λ/(NA) 2

λ曝光波长

NA 透镜的数值孔径

k1 、 k2 为与工艺相关的参数, k1(0.6-0.8), k2(0.5)

由此可知:要提高清晰度 (R 变小 ) ,必须缩短波长,加大透镜数值孔径。随着曝光波长的缩短,清晰度得到改善,但是焦深却变短,对光刻胶表面平坦度提出了更严格的要求,这是一个很大的缺点。通常采用的高压水银灯,还有比高压水银灯 I-line 波长短的远紫外线准分子激光器 (excimer laser, KrF:248nm,ArF:193nm) 为曝光光源。为了解决上述所提到的缺点,用比光的波长更短的 X 线(l=1-10nm) 作为曝光光源,技术上有很大的进展,利用 X 线和电子束进行光刻时,其焦深较深,对表面平坦度没有苛刻的要求。

接近式曝光技术为光罩掩模与基板相互靠近保持较近的间隙 (gap) ,以 UV 光由 MASK 侧面照射,将图案投射在基板上对光阻进行曝光。一般而言,光罩尺寸较基板大,所以图案将以 1:1 的大小转印到光阻上,此方法精度较所常用的步进机 (stepper, 能输出一定频率和波长的光线 ) 或镜像投影(Mirror Projection) 来得差,但其优点为产量 (throughput) 大,设备便宜。在光学系统中,大型的准直镜 (collimate mirror)( 球面或非球面 ) 对转刻精度影响最大,以日前制作水准而言,倾斜角(declination angle) 约可以做到+ -0.3 以内。若倾斜角过大,则基片边缘的图案将与光罩设计的位置有所差别,将影响到 total pitch( 图案实际长度与设计长度的误差容忍值 ) 的误差。而一般接近式曝光技术解析度与光罩及基板的间隙和光的波长有关。随着基片的增大,光罩也随之增大,由于光罩本身的重量会使得光罩中间部分向下弯曲。如果弯曲程度得到控制,利用光线反射原理的检测 ( 类似光的薄膜干涉 ) 来推算光罩与基板的距离。光罩精密对位技术,此对位技术可分为两部分,一部分利用 CCD (charge coupled device) 将光罩上及基板上的记号重叠后做图像分析处理,即可知目前的对位情形,再配合另一部分可精确移动的对准台 (alignment stage) ,控制其 X,Y 方向及角度的位移。温度的管理,因光罩与基板两者膨胀系数不同,同一特定温度下,光照的影响将会造成误差。光罩的温度控制方法是利用经过温控后的洁净空气吹向光罩表面使光罩全面的温度分布均匀,而对基板是利用温控后的水流承载基板的基台来控制。

就曝光系统而言,所使用的 UV 光源为 10kw 的超高水银灯,经过椭圆镜,多层镀膜反射镜等光学系统后投射在光罩及光刻胶上,为了使投射光有良好的均一性及平行度以增加曝光精度,在光学系统中通常会使用 Fly eye lens 及大型的球面镜。以超高水银灯所发出的 UV 而言主,强度有三个峰值分别为 g-line(436nm),h-line(406nm),i-line(365nm) ,其中正型光阻对 g-line 及 h-line 较敏感, i-line 通常对负胶有较好的曝光效率。由于为了不使 UV 光的强度下降,光学系统中所使用的镜光学为合成的石英所制,多层镀膜的镜片也被设计成增加 UV 区的反射率。

(4) 显影

将显影液全面地喷在光刻胶上,或将曝光后的样片浸在显影液中几十秒钟,则正型光刻胶的曝光部分 ( 或负胶的未曝光部分 ) 被溶解。显影后的图形精度受显影液的浓度,温度以及显影的时间等影响。显影后用纯水清洗。

(5) 后烘(post bake)

为使残留在光刻胶中的有机物溶液完全挥发,提高光刻胶和基片的粘接性及光刻胶的耐腐蚀能力,通常将基片在 120-- 200 oC 温度下烘干 20 – 30 分钟。

(6) 腐蚀(etching)

经过上述工序后,以复制到光刻胶上的集成电路的图形作为掩模,对下层的材料进行腐蚀。腐蚀技术是利用化学腐蚀法把材料的某一部分去除的技术。腐蚀技术分为两大类:湿法腐蚀—进行腐蚀的化学物质是溶液;干法腐蚀 ( 一般称刻蚀 ) —进行的化学物质是气体。

1 湿法腐蚀,采用溶液进行的腐蚀是一种各向同性腐蚀。因而,光刻胶掩模下面的薄膜材料,在模方向上也随着时间的增长而受到腐蚀,因此,出现与掩模图形不一致的现象,不适用于精细化工艺。但湿法腐蚀具有设备便宜,被腐蚀速度与光刻胶的腐蚀速度之比 ( 选择比 ) 大,对腐蚀表面无污染,无损伤等优点,适用于非精细化图形的加工。典型的 SiO

2 膜的腐蚀为稀释的 HF 溶液或 HF 、氟化氨混合液 ( 也称缓冲氢氟酸液 ) ,氮化硅膜的腐蚀液为 180 oC 左右的热磷酸;铝的腐蚀液为磷酸溶液 ( 磷酸:醋酸:硝酸 =250 : 20 : 3,55 + - 5 oC 。

2 干法腐蚀

干法刻蚀分为各向同性刻蚀和各向异性刻蚀两种,采用等离子进行刻蚀是各向同性的典型。在光刻胶去胶装置中,氧的等离子体和光刻胶反应形成 H2O 和 CO2 气体。此时,作为反应基的氧原子团与光刻胶进行各向同性反应。精细图形进行各向异性很强的干法刻蚀来实现。反应性离子刻蚀 (RIE:reactive ion etching) 是一种典型的例子。 RIE 是利用离子诱导化学反应,同时离子还起着去除表面生成物露出清洁的刻蚀表面的作用。但是,这种刻蚀法不能获得高的选择比,刻蚀表面的损伤大,有污染,难以形成更精细的图形。作为替代技术是能量低,高真空状态下也具有高密度的电子回旋共振等离子设备的开发。对于栅电极材料的多晶硅 (polysilicon) 来说,它的刻蚀条件必须具备相对于下层 10nm 左右的栅极 SiO2 膜层有高的选择比。而 SiO2 的刻蚀条件又必须相对于单晶硅和多晶硅都有高的选择比。作为布线材料的铝合金,表面有牢固的三氧化二铝薄膜,必须先以强濺射条件将其去除后再开始刻蚀,在铝刻蚀以后,要去除表面残留在铝薄膜上的氯化物,以免刻蚀铝布线。

3 同步辐射 (SOR : synchrotron orbital radiation)X 线光刻技术

SOR 是在电子沿着加速器的圆形储存环以光的速度前进时,其前进的轨道因磁场而弯曲,在轨道切线方向上放射出的光,同步加速辐射光源是一个指向性好,强度大的理想的 X 线源。

(7) 光刻胶的去除

经腐蚀完成图形复制以后,再用剥离液去除光刻胶,完成整个光刻工序。可以用无机溶液如硫酸或干式臭氧烧除法将光阻去除。

5) 此处用干法氧化法将氮化硅去除

6) 离子布植将硼离子(B+3) 透过 SiO2 膜注入衬底,形成 P 型阱

1 离子注入法是利用电场加速杂质离子,将其注入硅衬底中的方法。离子注入法的特点是可以精密地控制扩散法难以得到的低浓度杂质分布。 MOS 电路制造中,器件隔离工序中防止寄生沟道用的沟道截断,调整阀值电压用的沟道掺杂, CMOS 的阱形成及源漏区的形成,要采用离子注入法来掺杂。离子注入法通常是将欲掺入半导体中的杂质在离子源中离子化,然后将通过质量分析磁极后选定了离子进行加速,注入基片中。此时,杂质的注入量可通过测量流过基片的电流大小来正确控制。离子由基片的表面到停止,形成了近似的高斯分布。设 Rp 为投影射程,Δ Rp为其的标准偏差, Q 为注入量,注入的离子分布 C(x)

其中 Rp ,Δ Rp 的大小与杂质的种类,加速电压的大小有关以及基片的材料。此外,有纵向的标准偏差Δ Rp ,同样也有横向偏差Δ Re 。离子注入时,通常采用光刻胶和 SiO2 作掩模,掩模厚度以不使杂质穿透为原则。离子束的注入角度通常偏离基片法线 7 oC 左右,以防止发生沟道效应( 即离子不与原子碰撞而直接进入基片深层 ) 。离子注入后,要在 800-1000 oC 的高温下进行热处理 ( 即退火处理 ) ,以使离子注入时产生的结晶损伤得到恢复,同时为了防止硅表面的污染。通常要在注入区表面形成薄薄的 SiO2 层,杂质离子透过这层 SiO2 进行注入。

硅和锗半导体材料经高度提纯后,其原子排列已变成非常整齐的晶体状态,称为单晶体也称本征半导体。在本征半导体硅或锗中掺入少量五价杂质元素如磷 (P) 、锑(Sb) 、砷(As) 等,因为杂质的浓度很小(10 8 个硅或锗原子中掺入一个磷原子 ) ,所以杂质被晶格中的主原子所包围。掺入的五价杂质,它的四个价电子与其相邻的四个主原子的价电子形成共价键,第五个价电子不能形成共价键而变成自由电子。因为它有盈余的自由电子,所以五价杂质称为施主杂质,掺杂为 N 型半导体。而掺杂三价杂质,则会因缺少一个价电子而形成一个空位,掺杂为 P 型半导体。

7) 去除光刻胶,放高温炉中进行退火处理

以消除晶圆中晶格缺陷和内应力,以恢复晶格的完整性。使植入的掺杂原子扩散到替代位置,产生电特性。并使原先的 SiO2 膜厚度增加,达到阻止下一步中 n 型杂质注入 P 型阱中。

1 扩散技术

向半导体中掺杂的方法有扩散和离子注入法。扩散法是将掺杂气体导入放有硅片的高温炉,将杂质扩散到硅片内一种方法。优点是批量生产,获得高浓度掺杂。杂质扩散有两道工序:预扩散 ( 又称预

淀积Predeposition ) 和主扩散( drive in ) 。

预扩散工序是在硅表面较浅的区域中形成杂质的扩散分布,这种扩散分布中,硅表面杂质浓度的大小是由杂质固溶度来决定的。

主扩散工序是将预扩散时形成的扩散分布进一步向深层推进的热处理工序。杂质的扩散浓度取决于与温度有关的扩散系数 D 的大小和扩散时间的长短。硅集成电路工艺中,往往采用硼作为 P 型杂质,磷作为 N 型杂质。它们固溶度高,均 10 20 cm – 3 。除此之外,还使用砷和锑等系数小的杂质,这对于不希望产生杂质再分布的场合是有效的。杂质扩散层的基本特性参数是方块电阻 RF 和结果 Xj 。 RF 可用四探针测量法。 Xj 可用倾斜研磨(Angle lapping) 和染色(staining) 法, ( 如用 HF :H3PO4 = 1 : 6 使 P 层黑化 ) ,或扩展电阻 ( spreading resistance) 法来进行评估。倾斜研磨后,经侵蚀的酸溶液蚀刻,将 guttering 后集积在晶片下半部的析出物凸显出来,显现出密度的轨迹,而在靠晶片的表面附近出现一段空泛区,经过角度换算,约 20um 。

8) 用热磷酸去除氮化硅层,掺杂磷(P+5) 离子,形成 N 型阱

9) 退火处理,然后用 HF 去除 SiO2 层

10) 干法氧化法生成一层 SiO2 层,然后 LPCVD 沉积一层氮化硅

此时 P 阱的表面因 SiO2 层的生长与刻蚀已低于 N 阱的表面水平面。这里的 SiO2 层和氮化硅的作用与前面一样。接下来的步骤是为了隔离区和栅极与晶面之间的隔离层。

11) 利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层

12) 湿法氧化,生长未有氮化硅保护的 SiO2 层,形成 PN 之间的隔离区

13) 热磷酸去除氮化硅,然后用 HF 溶液去除栅隔离层位置的 SiO2 ,并重新生成品质更好的 SiO2 薄膜 , 作为栅极氧化层。

14) LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成 SiO2 保护层。

15) 表面涂敷光阻,去除 P 阱区的光阻,注入砷(As) 离子,形成 NMOS 的源漏极。用同样的方法,在 N 阱区,注入 B 离子形成 PMOS 的源漏极。

16) 利用 PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。

17) 沉积掺杂硼磷的氧化层

含有硼磷杂质的 SiO2 层,有较低的熔点,硼磷氧化层 (BPSG) 加热到 800 oC 时会软化并有流动特性,可使晶圆表面初级平坦化。

18) 濺镀第一层金属

利用光刻技术留出金属接触洞,溅镀钛 + 氮化钛 + 铝 + 氮化钛等多层金属膜。离子刻蚀出布线结构,并用 PECVD 在上面沉积一层 SiO2 介电质。并用 SOG (spin on glass) 使表面平坦,加热去除 SOG 中的溶剂。然后再沉积一层介电质,为沉积第二层金属作准备。

1 薄膜的沉积方法根据其用途的不同而不同,厚度通常小于 1um 。有绝缘膜、半导体薄膜、金属薄膜等各种各样的薄膜。薄膜的沉积法主要有利用化学反应的 CVD(chemical vapor deposition) 法以及物理现象的 PVD(physical vapor deposition) 法两大类。 CVD 法有外延生长法、 HCVD , PECVD 等。 PVD 有溅射法和真空蒸发法。一般而言, PVD 温度低,没有毒气问题; CVD 温度高,需达到 1000 oC 以上将气体解离,来产生化学作用。 PVD 沉积到材料表面的附着力较 CVD 差一些, PVD 适用于在光电产业,而半导体制程中的金属导电膜大多使用 PVD 来沉积,而其他绝缘膜则大多数采用要求较严谨的 CVD 技术。以PVD 被覆硬质薄膜具有高强度,耐腐蚀等特点。

2 真空蒸发法( Evaporation Deposition )是采用电阻加热或感应加热或者电子束等加热法将原料蒸发淀积到基片上的一种常用的成膜方法。蒸发原料的分子(或原子)的平均自由程长( 10 -4 Pa 以下,达几十米),所以在真空中几乎不与其他分子碰撞可直接到达基片。到达基片的原料分子不具有表面移动的能量,立即凝结在基片的表面,所以,在具有台阶的表面上以真空蒸发法淀积薄膜时,一般,表面被覆性(覆盖程度)是不理想的。但若可将 Crambo 真空抽至超高真空( <10 – 8 torr ),并且控制电流,使得欲镀物以一颗一颗原子蒸镀上去即成所谓分子束磊晶生长( MBE : Molecular Beam Epitaxy )。

3 溅镀( Sputtering Deposition )所谓溅射是用高速粒子(如氩离子等)撞击固体表面,将固体表面的原子撞击出来,利用这一现象来形成薄膜的技术即让等离子体中的离子加速,撞击原料靶材,将撞击出的靶材原子淀积到对面的基片表面形成薄膜。溅射法与真空蒸发法相比有以下的特点:台阶部分的被覆性好,可形成大面积的均质薄膜,形成的薄膜,可获得和化合物靶材同一成分的薄膜,可获得绝缘薄膜和高熔点材料的薄膜,形成的薄膜和下层材料具有良好的密接性能。因而,电极和布线用的铝合金(Al-Si, Al-Si-Cu )等都是利用溅射法形成的。最常用的溅射法在平行平板电极间接上高频( 13.56MHz )电源,使氩气(压力为 1Pa )离子化,在靶材溅射出来的原子淀积到放到另一侧电极上的基片上。为提高成膜速度,通常利用磁场来增加离子的密度,这种装置称为磁控溅射装置( magnetron sputter apparatus ),以高电压将通入惰性氩体游离,再藉由阴极电场加速吸引带正电的离子,撞击在阴极处的靶材,将欲镀物打出后沉积在基板上。一般均加磁场方式增加电子的游离路径,可增加气体的解离率,若靶材为金属,则使用 DC 电场即可,若为非金属则因靶材表面累积正电荷,导致往后的正离子与之相斥而无法继续吸引正离子,所以改为 RF 电场(因场的振荡频率变化太快,使正离子跟不上变化,而让 RF-in 的地方呈现阴极效应)即可解决问题。

19) 光刻技术定出 VIA 孔洞,沉积第二层金属,并刻蚀出连线结构。然后,用 PECVD 法氧化层和氮化硅保护层。

20) 光刻和离子刻蚀,定出 PAD 位置

21) 最后进行退火处理,以保证整个 Chip 的完整和连线的连接性

印刷制版流程

印刷制版流程 印刷制版流程主要步骤:收集资料——扫描图片——文字录入——图象设计——版面编程——输出菲林——打样——较对——成品扫描仪技术指标 扫描仪的主要技术指标有:原稿种类、输入分辨率、扫描密度范围、有效输入灰度级、输入速度、输入数据格式、接口标准、输入幅面以入缩入倍率。 原稿种类是指透射或反射,阳图或阴图原稿等。 输入入分辨率是以每英寸分辨的像素点数来表示的,以DPI为单位。输入分辨率的高低直接的清晰度也就越高。反身原稿最高输入分辨率通常为600DPI-2400 DPI,透射原稿最高输入分辨率通常为300 DPI-8000 DPI。 电脑创意软件的选择 目前,国内较多的电脑美术设计在微机平台上用IBMPC及它的兼容机来作三维和三维的徒刑和动画制作即视频制作。面Macintosh 机从一开始出现就是图形界面。多用于作平面设计与印前处理。但 也能做平面,MAC机也能作视频,最近IBM、APPLE、MOTOROLA 三家联手推出了POWER PC,PC与MAC软件不能通用已成为历史。 从软件上看,Windows3.1操作系统也实现了完全的图形用记界面,绝大部分以前仅在MAC机上运行的桌面出版软件也都有了Windows的版本,例如Photoshop软件,便同时有MAC版和PC版的,在两种机型上都能运用。 目前较为成熟的并投放应用的电脑创意软件(主要指桌面系统常用到的电脑创意软件)主要有以下几类: 1、图形绘画软件 较流行的图形处理软件有: (1)Adobe ILLUSTRATOR 具有文字输入和图标、标题字、字图以及各种图表的设计制作和编辑等优越的功能,是电脑设计师们常用的。 (2)Aldus Freehand

半导体集成电路课程教学大纲(精)

《半导体集成电路》课程教学大纲 (包括《集成电路制造基础》和《集成电路原理及设计》两门课程) 集成电路制造基础课程教学大纲 课程名称:集成电路制造基础 英文名称:The Foundation of Intergrate Circuit Fabrication 课程类别:专业必修课 总学时:32 学分:2 适应对象:电子科学与技术本科学生 一、课程性质、目的与任务: 本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。 二、教学基本要求: 1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。 2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。 3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。 4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。 5、掌握溅射、蒸发原理,了解系统组成,形貌及台阶覆盖问题的解决。 6、掌握硅化学汽相淀积(CVD)基本化学过程及动力学原理,了解各种不同材料、不同模式CVD方法系统原理及构造。 7、掌握外延生长的基本原理;理解外延缺陷的生成与控制方法;了解硅外延发展现状及外延参数控制技术。 8、掌握光刻工艺的原理、方法和流程,掩膜版的制造以及刻蚀技术(干法、湿法)的原理、特点,光刻技术分类;了解光刻缺陷控制和检测以及光刻工艺技术的最新动态。 9、掌握金属化原理及工艺技术方法;理解ULSI的多层布线技术对金属性能的基本要求,用Cu布线代替A1的优点、必要性;了解铝、铜、低k材料的应用。 10、掌握双极、CMOS工艺步骤;了解集成电路的隔离工艺,集成电路制造过程中质量管理基础知识、统计技术应用和生产的过程控制技术。 三、课程内容: 1、介绍超大规模集成电路制造技术的历史、发展现状、发展趋势;硅的晶体结构特点;微电子加工环境要求、单晶硅的生长技术(直拉法、区熔法)和衬底制备(硅圆片制备及规格,

半导体集成电路制造工艺

半导体集成电路制造工艺 一、集成电路的定义:集成电路是指半导体集成电路,即以半导体晶片材料为主,经热氧化工艺:干氧氧化、水汽氧化、湿氧氧化加工制造,将无源元件、有源元件和互连线集成在基片内部、表面或基片之上,执行十八、根据器件要求确定氧化方法:1、高质量氧化:干氧氧化或分压氧化;2、厚某种电子功能的微型化电路。微型化电路有集成电路、厚膜电路、薄膜电路和混合层的局部氧化或场氧化:干氧(10min)+湿氧+干氧(10min)或高压氧化;3、低表面态电路等多种形式。氧化:掺氯氧化;湿氧氧化加掺氯气氛退火或分压氧化(H2O或O2+N2 或Ar 或He 等)。二、集成电路的分类:十九、热氧化过程中硅中杂质的再分布1、硅中掺磷(1)温度一定时,水汽氧化(湿氧按电路功能分类:分为以门电路为基础的数字逻辑电路和以放大器为基础的线性电氧化)导致杂质再分布程度较大,其NS/NB 大于干氧氧化;(2)同一氧化气氛下,氧化路,还有微波集成电路和光集成电路等。温度越高,磷向硅内扩散的速度越快,表面堆积现象减小,NS/NB 趋于1。2、硅中按构成集成电路基础的晶体管分类:分为双极型集成电路和MOS型集成电路两大类。掺硼(1)温度一定时,水汽氧化(湿氧氧化)导致杂质再分布程度增大,NS/NB 小前者以双极型平面晶体管为主要器件;后者以MOS场效应晶体管为基础。于干氧氧化;(2)同一氧化气氛下,氧化温度越高,硼向硅表面扩散速度加快,补三、衡量集成电路的发展

DRAM( 3*107(集成度), 135mm2(外型尺寸), 0.5 μm偿了表明杂质的损耗,NS/NB 趋于1。看看运动方向(特征尺寸), 200mm (英寸)) ,二十二、热氧化过程四、摩尔定律:IC集成度每1.5 年翻一番五、集成电路的发展展望目标:集成度↑、可靠性↑、 速度↑、功耗↓、成本↓。努力方向:线宽↓、晶片直径↑、设计技术↑六、硅微电子技术发展的几个趋势:1、单片 系统集成(SoC)System on a chip Application Specific Integrated Circuit 特定用途集成电路2、整硅片集成(WSI)3、半定制电路的 设计方法4、微电子机械系统(MEMS)5、真空微电子技术七、集成电路制造中的基本工艺技术横向加工:图形的产生与转移(又称为光刻,包括曝光、显影、刻蚀等)。纵向加工:薄膜制备(蒸发、溅射、氧化、CVD 等),掺杂(热扩散、离子注入、中子嬗变等)八、补充简要说明工艺1-1 1、氧化剂扩散穿过滞留层达到SiO2 表面,其流密度为F1 。2、氧化剂扩散穿过SiO2层达到SiO2-Si界面,流密度为F2 。3、氧化剂在Si 表面与Si 反应生成SiO2 ,流密度为F3。4、反应的副产物离开界面。二十三、CVD的薄膜及技术分类化学 气相淀积(Chemical Vapor Deposition)是指单独地或综合的利用热能、辉光放电等离子体、紫外光照射、激光照射或其它形式的能源,使气态物质在固体的热表面上发生化学反应并在该表面上淀积,形成稳定的固态物质的工艺过程二十四、CVD薄膜分类:半导体集成 电路制造中所用的薄膜材料,包括介质膜、半导体膜、导体膜以及

半导体集成电路习题及答案

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r 2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能 的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

⑥由A D 先画出外延岛的三边; ⑦由C B D -画出集电极接触孔; ⑧由A D 画出外延岛的另一边; ⑨由I d 画出隔离槽的四周; ⑩验证所画晶体管的CS r 是否满足V V OL 4.0≤的条件,若不满足,则要对所作 的图进行修正,直至满足V V OL 4.0≤的条件。(CS C OL r I V V 00 ES += 及己知 V V C 05.00ES =) 第3章 集成电路中的无源元件 复 习 思 考 题 3.3 设计一个4k Ω的基区扩散电阻及其版图。 试求: (1) 可取的电阻最小线宽min R W =?你取多少? 答:12μm (2) 粗估一下电阻长度,根据隔离框面积该电阻至少要几个弯头? 答:一个弯头 第4章 晶体管 (TTL)电路 复 习 思 考 题 4.4 某个TTL 与非门的输出低电平测试结果为 OL V =1V 。试问这个器件合格吗?上 机使用时有什么问题? 答:不合格。 4.5 试分析图题4.5所示STTL 电路在导通态和截止态时各节点的电压和电流,假定各管的 β=20, BEF V 和一般NPN 管相同, BCF V =0.55V , CES V =0.4~0.5V , 1 CES V =0.1~0.2V 。 答:(1)导通态(输出为低电平) V V B 1.21= , V V B 55.12= ,V V B 2.13= ,V V B 5.04= ,V V B 8.05= ,

《半导体集成电路》考试题目及参考答案

第一部分考试试题 第0章绪论 1.什么叫半导体集成电路? 2.按照半导体集成电路的集成度来分,分为哪些类型,请同时写出它们对应的英文缩写? 3.按照器件类型分,半导体集成电路分为哪几类? 4.按电路功能或信号类型分,半导体集成电路分为哪几类? 5.什么是特征尺寸?它对集成电路工艺有何影响? 6.名词解释:集成度、wafer size、die size、摩尔定律? 第1章集成电路的基本制造工艺 1.四层三结的结构的双极型晶体管中隐埋层的作用? 2.在制作晶体管的时候,衬底材料电阻率的选取对器件有何影响?。 3.简单叙述一下pn结隔离的NPN晶体管的光刻步骤? 4.简述硅栅p阱CMOS的光刻步骤? 5.以p阱CMOS工艺为基础的BiCMOS的有哪些不足? 6.以N阱CMOS工艺为基础的BiCMOS的有哪些优缺点?并请提出改进方法。 7. 请画出NPN晶体管的版图,并且标注各层掺杂区域类型。 8.请画出CMOS反相器的版图,并标注各层掺杂类型和输入输出端子。 第2章集成电路中的晶体管及其寄生效应 1.简述集成双极晶体管的有源寄生效应在其各工作区能否忽略?。 2.什么是集成双极晶体管的无源寄生效应? 3. 什么是MOS晶体管的有源寄生效应? 4. 什么是MOS晶体管的闩锁效应,其对晶体管有什么影响? 5. 消除“Latch-up”效应的方法? 6.如何解决MOS器件的场区寄生MOSFET效应? 7. 如何解决MOS器件中的寄生双极晶体管效应? 第3章集成电路中的无源元件 1.双极性集成电路中最常用的电阻器和MOS集成电路中常用的电阻都有哪些? 2.集成电路中常用的电容有哪些。 3. 为什么基区薄层电阻需要修正。 4. 为什么新的工艺中要用铜布线取代铝布线。 5. 运用基区扩散电阻,设计一个方块电阻200欧,阻值为1K的电阻,已知耗散功率为20W/c㎡,该电阻上的压降为5V,设计此电阻。 第4章TTL电路 1.名词解释

半导体集成电路制造PIE常识

Question Answer & PIE

PIE 1. 何谓PIE? PIE的主要工作是什幺? 答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。 2. 200mm,300mm Wafer 代表何意义? 答:8吋硅片(wafer)直径为200mm , 直径为300mm硅片即12吋. 3. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm的wafer工艺? 答:当前1~3厂为200mm(8英寸)的wafer, 工艺水平已达0.13um工艺。未来北京厂工艺wafer将使用300mm(12英寸)。 4. 我们为何需要300mm? 答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5倍 5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义? 答:是指工厂的工艺能力可以达到0.13 um的栅极线宽。当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。 6. 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义? 答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。 7. 一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓N, P-type wafer? 答:N-type wafer 是指掺杂negative元素(5价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂positive 元素(3价电荷元素, 例如:B、In)的硅片。 200mm300mm 8〞12〞

印刷制版工艺原理

印刷制版工艺原理 第一章图像数字化与图文处理方法1 第一节数字图像1 一、图像和数字图像1 二、数字图像函数4 三、数字图像的主要优点5 四、数字图像的颜色模式和色域空间5 五、数字图像的文件格式8 六、图像扫描仪的基本性能和工作原理12 七、色位深度及其对图像的影响15 第二节扫描前的准备工作15 一、扫描仪的选择16 二、扫描原稿的审稿16 第三节图像扫描的定标原则17 一、全阶调定标法17 二、黑白场定标18 第四节扫描参数的计算与调整21 一、扫描参数的设定21 二、扫描分辨率的设定22 第五节彩色桌面出版系统24 一、彩色桌面出版系统的组成24

二、页面描述语言的基本概念24 三、彩色桌面出版系统使用的设备26 四、彩色桌面出版系统图文复制工艺流程26 第二章数字图像的调节与校正28 第一节数字图像基础28 一、数字图像的基本参数28 二、控制图像分辨率、图像大小和文件大小的方法30 第二节图像调整的基础知识33 一、颜色的基础知识33 二、图像调节的内容37 第三节在Photoshop中进行图像层次的调节37 一、层次调节的必要性37 二、Photoshop中重要层次调节工具的性能及用途38 三、层次校正41 第四节颜色校正44 一、颜色校正的必要性44 二、在Photoshop中的颜色校正45 三、颜色校正方法51 四、层次调节和颜色调节是否会有相互影响53 第五节图像清晰度强调53 一、清晰度强调的必要性54 二、清晰度强调原理54

三、在Photoshop中图像清晰度的强调56 四、去网处理58 第六节在Photoshop中使用专色通道创建印刷用专色色版58 一、创建专色通道59 二、输出专色色版61 三、将专色与印刷四色相混合61 第三章数字印刷工艺62 第一节数字印刷的工艺流程和成像原理62 一、数字印刷的工艺流程62 二、数字印刷成像原理62 第二节数字印刷的特点和功能部件65 一、数字印刷的特点65 二、数字印刷的功能部件66 三、数字印刷系统的颜色合成方式67 中篇 第四章图像的色彩复制68 第一节图像色彩复制原理68 一、有关图像复制的基本概念68 二、色彩的分解与合成68 三、色差的产生71 四、颜色复制误差的校正74 第二节灰平衡77

集成电路封装概述

集成电路封装概述 半导体器件有许多封装型式,从DIP、SOP、QPF、PGA、BGA到CSP再到SIP,技术指标一代比一代先进,这些都是前人根据当时的组装技术和市场需求而研制的。总体说来,它大概有三次重大的革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,极大地提高了印刷电路板上的组装密度;第二次是在上世纪90 年代球型矩正封装的出现,它不但满足了市场高引脚的需求,而且大大地改善了半导体器件的性能;晶片级封装、系统封装、芯片级封装是现在第三次革新的产物,其目的就是将封装减到最小。每一种封装都有其独特的地方,即其优点和不足之处,而所用的封装材料,封装设备,封装技术 根据其需要而有所不同。驱动半导体封装形式不断发展的动力是其价格和性能。电子产品是由半导体器件(集成电路和分立器件)、印刷线路板、导线、整机框架、外壳及显示等部分组成,其中集成电路是用来处理和控制信号,分立器件通常是信号放大,印刷线路板和导线是用来连接信号,整机框架外壳是起支撑和保护作用,显示部分是作为与人沟通的接口。所以说半导体器件是电子产品的主要和重要组成部分,在电子工业有“ 工业之米”的美称。 半导体组装技术(Assembly technology)的提高主要体现在它的封装型式(Package)不断发展。通常所指的组装(Assembly)可定义为:利用膜技术及微细连接技术将半导体芯片(chip)和框架(Lead-Frame)或基板(Substrate)或塑料薄片(Film)或印刷线路板中的导体部分连接以便引出接线引脚,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。它具有电路连接,物理支撑和保护,外场屏蔽,应力缓冲,散热,尺寸过度和标准化的作用。从三极管时代的插入式封装以及20世纪80年代的表面贴装式封装,发展到现在的模块封装,系统封装等等,前人已经研究出很多封装形式,每一种新封装形式都有可能要用到新材料,新工艺或新设备。封装的作用包括:1.物理保护。2.电器连接。3.标准规格化。 封装的分类: 1.根据材料分类,根据所用的材料来划分半导体器件封装形式有金属封装、陶瓷封装、金属-陶瓷封装和塑料封装。 2. 根据密封性分类,按封装密封性方式可分为气密性封装和树脂封装两类。 3. 根据外形、尺寸、结构分类,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装。 SiP(system in a package,封装内系统,或称系统封装)是指将不同种类的元件,通过不同技术,混载于同一封装之内,由此构成系统集成封装形式。该定义是经过不断演变,逐渐形成的,开始是在单芯片封装中加入无源元件,再到单个封装中加入多个芯片、叠层芯片以及无源器件,最后封装构成一个体系,即SiP。该定义还包括,SiP应以功能块亚系统形式做成制品,即应具备亚系统的所有组成部分和功能。 微电子封装对集成电路(IC)产品的体积、性能、可靠性质量、成本等都有重要影响,IC 成本的40%是用于封装的,而IC失效率中超过25%的失效因素源自封装。实际上,封装已成为研发高性能电子系统的关键环节及制约因素,全球领先的整合器件制造商IDM在高密度、高可靠封装技术方面秣马厉兵,封装被列入重点研发计划正处于如火如茶之中。另外,支持发展速度的硅IC应用所需的无源元件的用量也越来越大,其典

半导体集成电路课程教案

半导体集成电路课程教案 西安理工大学教案(首页) 学院(部):自动化学院系(所):电子工程系 1 课程代码 04110680 总学时:64 学时课程名称半导体集成电路学分 4 讲课:64 学时 上机: 0 学时必修课( ? ) 校级任选课( ) 课程类别实验:0 学时院级任选课( ) 学位课( ? ) 授课专业电子科学与技术授课班级电子、微电 任课教师高勇余宁梅杨媛乔世杰职称教授/副教授通过本课程的教学~要求学生全面掌握各种集成电路包括双极集成电路、MOS集成电路和Bi-CMOS电路的制造工艺~集成电路中元器件的结构、特性及各种寄生效应,学会分析双极IC、数字CMOS集成电路中的倒相器的电路特性~掌握一定的手算分析能力~熟悉版图,掌握静态逻辑、传输门教学目的逻辑及动态逻辑电路的工作原理及特点,了解触发器电路及存储器电路,和要求掌握模拟电路的基本子电路(如电流源~基准源等)的工作原理和特性~掌握基本运算放大器的性能分析和设计方法,掌握AD/DA电路的类型及工作原理~基本了解AD/DA变换器的设计方法。为后继专业课的学习、将来在集成电路领域从事科研和技术工作奠定良好的理论基础。教学的重点是帮助学生在电子技术的基础上建立半导体集成电路的概念。重点讲述集成电路的寄生效应、典型的TTL单元电路以及MOS集成电路的基本逻辑单元和逻辑功能部件,尤其是CMOS集成电路(由于现在的教学重集成电路主流工艺为CMOS集成电路)。难点在于掌握集成电路中的各种点、难点寄生效应,另外,集成电路的发展很快,很多最新发展状态在书本上找不到现成的东西,比如随着集成电路特征尺寸的减小带来

的一些其他二级效应,以及各种不同的新型电路结构各自的特点和原理分析计算。 (1)朱正涌,半导体集成电路,清华大学出版社社 (2)张延庆,半导体集成电路,上海科学技术出版社 (3)Jan M.Rabaey, Anantha Chandrakasan, etc. Digital Integrated Circuits数字集成电路设计透视(影印版.第二版),清华大学出版社(译本:周润德译电子工业出版社) (4)蒋安平等译,数字集成电路分析与设计,深亚微米工艺,电子工业出版社 教材和参(5)王志功等译,CMOS数字集成电路-分析与设计(第三版),电子工业出考书版社(原书名:CMOS Digital Integrated Circuits:Analysis and Design, Third Edition,作者:Sung-Mo Kang, Yusuf Leblebici[美],McGraw-Hill出版社) (6)陈贵灿等译, 模拟CMOS集成电路设计, 西安交通大学出版社(原书 2 名:Design of Analog CMOS Integrated Circuits,作者:毕查德.拉扎维[美],McGraw-Hill出版社) 西安理工大学教案(章节备课) 学时:2学时章节第0章绪论 通过本章内容学习~帮助学生建立半导体集成电路的概念~使学生了解并教学目的掌握集成电路的发展历史、现状和未来。明确本课程教学内容及教学目标~和要求提出课程要求。要求学生通过本章学习~能够明确学习目标。 重点:集成电路的概念~集成电路的发展规律~集成电路涵盖的知识点重点及集成电路的分类。难点难点: 集成电路的宏观发展与微观发展的关联。 教学内容: 1 集成电路 1.1 集成电路定义

芯片制造-半导体工艺教程

芯片制造-半导体工艺教程 Microchip Fabrication ----A Practical Guide to Semicondutor Processing 目录: 第一章:半导体工业[1][2][3] 第二章:半导体材料和工艺化学品[1][2][3][4][5]第三章:晶圆制备[1][2][3] 第四章:芯片制造概述[1][2][3] 第五章:污染控制[1][2][3][4][5][6] 第六章:工艺良品率[1][2] 第七章:氧化 第八章:基本光刻工艺流程-从表面准备到曝光 第九章:基本光刻工艺流程-从曝光到最终检验 第十章:高级光刻工艺 第十一章:掺杂 第十二章:淀积 第十三章:金属淀积 第十四章:工艺和器件评估 第十五章:晶圆加工中的商务因素 第十六章:半导体器件和集成电路的形成 第十七章:集成电路的类型 第十八章:封装 附录:术语表

#1 第一章半导体工业--1 芯片制造-半导体工艺教程点击查看章节目录 by r53858 概述 本章通过历史简介,在世界经济中的重要性以及纵览重大技术的发展和其成为世界领导工业的发展趋势来介绍半导体工业。并将按照产品类型介绍主要生产阶段和解释晶体管结构与集成度水平。 目的 完成本章后您将能够: 1. 描述分立器件和集成电路的区别。 2. 说明术语“固态,” “平面工艺”,““N””型和“P”型半导体材料。 3. 列举出四个主要半导体工艺步骤。 4. 解释集成度和不同集成水平电路的工艺的含义。 5. 列举出半导体制造的主要工艺和器件发展趋势。 一个工业的诞生 电信号处理工业始于由Lee Deforest 在1906年发现的真空三极管。1真空三极管使得收音机, 电视和其它消费电子产品成为可能。它也是世界上第一台电子计算机的大脑,这台被称为电子数字集成器和计算器(ENIAC)的计算机于1947年在宾西法尼亚的摩尔工程学院进行首次演示。 这台电子计算机和现代的计算机大相径庭。它占据约1500平方英尺,重30吨,工作时产生大量的热,并需要一个小型发电站来供电,花费了1940年时的400, 000美元。ENIAC的制造用了19000个真空管和数千个电阻及电容器。 真空管有三个元件,由一个栅极和两个被其栅极分开的电极在玻璃密封的空间中构成(图1.2)。密封空间内部为真空,以防止元件烧毁并易于电子的====移动。 真空管有两个重要的电子功能,开关和放大。开关是指电子器件可接通和切断电流;放大则较为复杂,它是指电子器件可把接收到的信号放大,并保持信号原有特征的功能。 真空管有一系列的缺点。体积大,连接处易于变松导致真空泄漏、易碎、要求相对较多的电能来运行,并且元件老化很快。ENIAC 和其它基于真空管的计算机的主要缺点是由于真空管的烧毁而导致运行时间有限。 这些问题成为许多实验室寻找真空管替代品的动力,这个努力在1947年12月23曰得以实现。贝尔实验室的三位科学家演示了由半导体材料锗制成的电子放大器。

印刷工艺流程及设备简介

印刷工艺流程及设备简介 传统印刷领域一般分为四类:平版印刷、凸版印刷、凹版印刷、丝网印刷。印刷工艺流程可简单分为:制版→印刷→装订三个步骤。目前在纸制品印刷领域平版胶印占主导地位,以下详细介绍平版胶印工艺流程及设备。 一、制版流程及设备 设计→排版→分色→发片→(拼)晒版 设计排版现在进入数码时代,通过电脑、扫描仪、数码相机等设备利用Photoshop、Pagemake、方正飞腾等设计组版软件完成原稿的输入及排版。排版完成后进行电脑加网分色,将彩色图像分成印刷用原色图像,通过输出设备(激光照排机)发出软片。根据工艺设计不同有些软片会需要手工拼接处理。最后利用软片通过晒版机晒制印刷用PS版。 另外,现在CTP(计算机直接制版机)的出现,简化晒版流程,电脑组版后直接连接CTP制作出印版。 二、印刷流程及设备 印前准备→装版试印→正式印刷→印后处理 印前准备工作包括纸张裁切处理、油墨准备、印刷机

规矩调整、印版检查等,然后上纸、安装印版、开机调试(调整输纸机构、水墨量大小、印刷压力、规矩尺寸等等),达到要求后开始计数正式印刷。印刷过程中要随时检查印刷品质量,及时调整印刷机。印刷结束后进行印刷机清洗保养以及印版纸张的处理。 印刷设备现在彩色印刷一般使用四色胶印机,五色胶印机,八色胶印机(双面印刷机),还有单色胶印机、双色胶印机。印刷机品牌进口的有:德国海德堡、高宝,日本小森、秋山,美国高斯等等,国产品牌北京北人、富士,上海亚华,营口冠华等等。 三、装订流程及设备 装订形式多样,工序繁多。一般书刊装订形式分三种:骑马订装、胶订装、精装。 一般流程:折页→配帖→上封面→装订→裁切→检查→包装 精装产品根据不同设计还会有锁线、糊壳、拿圆、套合等多种工序。 折页:将印刷好的页子折成书刊尺寸大小。常用设备全栅栏折页机、混合式折页机。 配帖:将折好的书帖按顺序配成完整书芯。一般用配帖机,个别产品需手工配帖。 上封面装订:骑订产品直接套封面订铁丝订,胶订产

半导体集成电路制造PIE常识讲解

Question & PIE Answer

PIE 1. 何谓PIE? PIE 的主要工作是什幺? 答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。 2. 200mm,300mm Wafer 代表何意义? 答:8吋硅片(wafer)直径为200mm , 直径为300mm硅片即12吋. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京3.的Fab4(四厂)采用多少mm的wafer 工艺? 答:当前1~3 厂为200mm(8 英寸)的wafer, 工艺水平已达0.13um 工艺。 未来北京厂工艺wafer 将使用300mm(12 英寸)。 4. 我们为何需要300mm? 答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5 倍 5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um 的栅极线宽。当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义? 答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。 一般的硅片(wafer)基材(substrate)可区分为N,P 两种类型(type),何谓N, P-type wafer? 答:N-type wafer 是指掺杂negative 元素(5 价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂positive 元素(3 价电荷元素, 例如:B、 In)的硅片。 8. 工厂中硅片(wafer)的制造过程可分哪几个工艺过程(module)?答:主要有四个部分:DIFF (扩散)、TF(薄膜)、PHOTO (光刻)、ETCH (刻蚀)。其中

浅谈凹凸印刷制版工艺

浅谈凹凸印刷制版工艺 随着印刷事业的发展,人们对包装装璜有更高的要求,在色彩上要求鲜艳,在层次上,不仅需要能反映平面的明暗层次,而且需要有立体感的层次,凹凸印刷能使产品增加立体感的层次。 凹凸印刷是图版印刷范围内一种不用油墨的特殊印刷工艺。在印有图文的印刷品上,根据其图文制成凹凸两块版,再用平压平印刷机进行压印,使印刷品图文表面形如浮雕状,产生独特的艺术效果。所以又称"轧凹凸",此法类似"拱花"。 凹凸印刷的工艺流程如下:凹凸印版的制作→凹凸版压印。 一、凹凸印版的制作 首先分清图面的主次层次,要以主体表现为主题,运用深浅层次,达到一定深度,然后考虑次要层次,突出的主体部分要使凸起高度高些。印版先制成凹版,利用雕刻工艺进行,可以是木刻版、铜刻版、钢刻版、腐蚀版;其次确定图形与线条的表现方法,主体与一般的层次要协调,版面深处与浅处要协调,一个图画的轮廓要由浅入深,并有一定坡度,雕刻图面是运用透视原理以及近深远浅等表现手法;最后在完成轮廓雕刻后,进行精工细琢,使整个版面光洁匀润。 将雕刻好的凹版,粘在平压平印刷机的金属底板的中央,并校平印版,防止受压不平衡,发生压力不实或走版现象,在压印平板上粘上黄板纸,要校正压力,对凹凸轮廓层次较多的部位,按深浅不同,用黄板纸按压印面大小剪成纸片粘贴,形成与凹版相同的梯形凸模,此时梯形凸模的细部并不与凹版一致,在梯形凸模上铺有一层石膏浆液,石膏浆液用细净石膏粉拌入胶水调成,稠度要适宜,用一张薄型纸盖在石膏浆液上面,在石膏将干未干时进行凹凸试压,为防止石膏粘坏,可在凹版上刷一层煤油。试压时用于轻摇机器,开始时速度要慢,以避免石膏层迅速铺开,形成凹版与凸版不吻合现象。待石膏干硬定型后,可用正常速度压印。初次压出的图形如有不符合质量要求之处,需对石膏层进行修补,并在石膏尚未干硬时,将非压印面上的多余石膏用刀刮去。

半导体集成电路工艺复习

第一次作业: 1,集成时代以什么来划分?列出每个时代的时间段及大致的集成规模。答: 类别时间 数字集成电路 模拟集成电路MOS IC 双极IC SSI 1960s前期 MSI 1960s~1970s 100~500 30~100 LSI 1970s 500~2000 100~300 VLSI 1970s后期~1980s后期>2000 >300 ULSI 1980s后期~1990s后期 GSI 1990s后期~20世纪初 SoC 20世纪以后 2,什么是芯片的集成度?它最主要受什么因素的影响? 答:集成度:单个芯片上集成的元件(管子)数。受芯片的关键尺寸的影响。 3,说明硅片与芯片的主要区别。 答:硅片是指由单晶生长,滚圆,切片及抛光等工序制成的硅圆薄片,是制造芯片的原料,用来提供加工芯片的基础材料;芯片是指在衬底上经多个工艺步骤加工出来的,最终具有永久可是图形并具有一定功能的单个集成电路硅片。 4,列出集成电路制造的五个主要步骤,并简要描述每一个步骤的主要功能。 答:晶圆(硅片)制备(Wafer Preparation); 硅(芯)片制造(Wafer Fabrication):在硅片上生产出永久刻蚀在硅片上的一整套集成电路。硅片测试/拣选(Die T est/Sort):单个芯片的探测和电学测试,选择出可用的芯片。 装配与封装(Assembly and Packaging):提供信号及电源线进出硅芯片的界面;为芯片提供机械支持,并可散去由电路产生的热能;保护芯片免受如潮湿等外界环境条件的影响。 成品测试与分析(或终测)(Final T est):对封装后的芯片进行测试,以确定是否满足电学和特性参数要求。 5,说明封装的主要作用。对封装的主要要求是什么。 答:封装的作用:提供信号及电源线进出硅芯片的界面;为芯片提供机械支持,并可散去由电路产生的热能;保护芯片免受如潮湿等外界环境条件的影响。 主要要求:电气要求:引线应当具有低的电阻、电容和电感。机械特性和热特性:散热率应当越高越好;机械特性是指机械可靠性和长期可靠性。低成本:成本是必须要考虑的比较重要的因素之一。 6,什么是芯片的关键尺寸?这种尺寸为何重要?自半导体制造业开始以来,芯片的关键尺寸是如何变化的?他对芯片上其他特征尺寸的影响是什么? 答:芯片上器件的物理尺寸被称为特征尺寸;芯片上的最小的特征尺寸被称为关键尺寸,且被作为定义制造工艺水平的标准。 为何重要:他代表了工艺上能加工的最小尺寸,决定了芯片上的其他特征尺寸,从而决定了芯片的面积和芯片的集成度,并对芯片的性能有决定性的影响,故被定义为制造工艺水平的标准。

半导体集成电路复习题及答案

第8章动态逻辑电路 填空题 对于一般的动态逻辑电路,逻辑部分由输出低电平的网组成,输出信号与电源之间插入了栅控制1、 极为时钟信号的 ,逻辑网与地之间插入了栅控制极为时钟信号的。 【答案:NMOS, PMOS, NOMS】 对于一个级联的多米诺逻辑电路,在评估阶段:对PDN网只允许有跳变,对 PUN网只允许有跳变,2、 PDN与PDN相连或PUN与PUN相连时中间应接入。 【答案:】 解答题 从逻辑功能,电路规模,速度3方面分析下面2电路的相同点和不同点。从而说明CMOS动态组合逻辑1、 电路的特点。 【答案:】 图A是CMOS静态逻辑电路。图B是CMOS动态逻辑电路。2电路完成的均是NAND的逻辑功能。图B的逻辑部分电路使用了2个MOS管,图A使用了4个MOS管,由此可以看出动态组合逻辑电路的规模为静态电路的一半。图B的逻辑功能部分全部使用NMOS管,图A即使用NMOS也使用PMOS,由于NMOS的速度高于PMOS,说明动态组合逻辑电路的速度高于静态电路。 2、分析下面的电路,指出它完成的逻辑功能,说明它和一般动态组合逻辑电路的不同,说明其特点。 【答案:】

该电路可以完成OUT=AB的与逻辑。与一般动态组合逻辑电路相比,它增加了一个MOS管M kp,这个MOS 管起到了电荷保持电路的作用,解决了一般动态组合逻辑电路存在的电荷泄漏的问题。 3、分析下列电路的工作原理,画出输出端OUT的波形。 【答案:】 答案:

4、结合下面电路,说明动态组合逻辑电路的工作原理。 【答案:】 动态组合逻辑电路由输出信号与电源之间插入的时钟信号PMOS,NMOS逻辑网和逻辑网与地之间插入的时钟信号NMOS组成。当时钟信号为低电平时,PMOS导通,OUT被拉置高电平。此时电路处于预充电阶段。 当时钟信号为低电平时,PMOS截至,电路与V DD的直接通路被切断。这时NOMS导通,当逻辑网处于特定逻辑时,电路输出OUT被接到地,输出低电平。否则,输出OUT仍保持原状态高电平不变。例如此电路, NMOS网构成逻辑网中A与C,或B与C同时导通时,可以构成输出OUT到地的通路,将输出置为低电平。 第7章传输门逻辑 填空题 写出传输门电路主要的三种类型和他们的缺点:(1),缺点:;(2),缺点:;(3),缺1、 点:。 【答案:NMOS传输门,不能正确传输高电平,PMOS传输门,不能正确传输低电平,CMOS传输门, 电路规模较大。】 2、传输门逻辑电路的振幅会由于减小,信号的也较复杂,在多段接续时,一般要插入。 【答案:阈值损失,传输延迟,反相器。】 3、一般的说,传输门逻辑电路适合逻辑的电路。比如常用的和。 【答案:异或,加法器,多路选择器】 解答题 1、分析下面传输门电路的逻辑功能,并说明方块标明的MOS管的作用。 【答案:】

印刷制版的工艺过程

印刷制版的工艺过程

印刷制版的工艺过程(1) 印刷制版的工艺过程(1) 收集资料——扫描图片——文字录入——图象设计——版面编程——输出菲林——打样——较对——成品 扫描仪技术指标 扫描仪的主要技术指标有:原稿种类、输入分辨率、扫描密度范围、有效输入灰度级、输入速度、输入数据格式、接口标准、输入幅面以入缩入倍率。 原稿种类是指透射或反射,阳图或阴图原稿等。 输入入分辨率是以每英寸分辨的像素点数来表示的,以DPI为单位。输入分辨率的高低直接的清晰度也就越高。反身原稿最高输入分辨率通常为600DPI-2400 DPI,透射原稿最高输入分辨率通常为300 DPI-80 00 DPI。 电脑创意软件的选择 目前,国内较多的电脑美术设计在微机平台上用IBMPC及它的兼容机来作三维和三维的徒刑和动画制作即视频制作。面Macintosh 机从一开始出现就是图形界面。多用于作平面设计与印前处理。但 也能做平面,MAC机也能作视频,最近IBM、APPLE、MOTOROLA三家联手推出了POWER PC,PC与MAC软件不能通用已成为历史。从软件上看,Windows3.1操作系统也实现了完全的图形用记界面,绝大部分以前仅在MAC机上运行的桌面出版软件也都有了Windows的版本,例如Photoshop软件,便同时有MAC版和PC版的,在两种机型上都能运用。 目前较为成熟的并投放应用的电脑创意软件(主要指桌面系统常用到的电脑创意软件)主要有以下几类: 1、图形绘画软件 较流行的图形处理软件有: (1)Adobe ILLUSTRATOR 具有文字输入和图标、标题字、字图以及各种图表的设计制作和编辑等优越的功能,是电脑设计师们常用的。 (2)Aldus Freehand 是美国Aldus公司推出的一个应用广泛的计算机图形设计软件,特别是在报纸和杂志的广告制作以及统计图形的制作方面深受欢迎。 (3)CorelDRAW: 由Corel公司推出的一个绘画功能很强大的软件,并且兼有图形绘画、图象处理、表格制能及制作支画等等许多功能。 2、图象编辑软件 较流行的图象编辑软件有: (1)Adobe photoshop: 是由美国dobe公司发展推出的在国际上最有影响的一种面向美术创意与专业印刷领域的图象处理软件,是功能最强与应用于最广的一种礼堂沟通电脑软件,用于黑白、彩色图象校正、修版、图象特技制作与分色等处理。倍受画家、摄影师、设计师、影视美术师和修版工的欢迎。 (2)Adobe Dimensiona: 三维立体图案设计的专业软件。

印刷制版的工艺过程

集资料——扫描图片——文字录入——图象设计——版面编程——输出菲林——打样——较对——成品 扫描仪技术指标 扫描仪的主要技术指标有:原稿种类、输入分辨率、扫描密度范围、有效输入灰度级、输入速度、输入数据格式、接口标准、输入幅面以入缩入倍率。 原稿种类是指透射或反射,阳图或阴图原稿等。 输入入分辨率是以每英寸分辨的像素点数来表示的,以DPI为单位。输入分辨率的高低直接的清晰度也就越高。反身原稿最高输入分辨率通常为600DPI-2400 DPI,透射原稿最高输入分辨率通常为300 DPI-8000 DPI。电脑创意软件的选择 目前,国内较多的电脑美术设计在微机平台上用IBMPC及它的兼容机来作三维和三维的徒刑和动画制作即视频制作。面Macintosh 机从一开始出现就是图形界面。多用于作平面设计与印前处理。但 也能做平面,MAC机也能作视频,最近IBM、APPLE、MOTOROLA三家联手推出了POWER PC,PC与MAC软件不能通用已成为历史。从软件上看,Windows3.1操作系统也实现了完全的图形用记界面,绝大部分以前仅在MAC机上运行的桌面出版软件也都有了Windows的版本,例如Photoshop软件,便同时有MAC版和PC版的,在两种机型上都能运用。 目前较为成熟的并投放应用的电脑创意软件(主要指桌面系统常用到的电脑创意软件)主要有以下几类: 1、图形绘画软件 较流行的图形处理软件有: (1)Adobe ILLUSTRATOR 具有文字输入和图标、标题字、字图以及各种图表的设计制作和编辑等优越的功能,是电脑设计师们常用的。 (2)Aldus Freehand 是美国Aldus公司推出的一个应用广泛的计算机图形设计软件,特别是在报纸和杂志的广告制作以及统计图形的制作方面深受欢迎。 (3)CorelDRAW: 由Corel公司推出的一个绘画功能很强大的软件,并且兼有图形绘画、图象处理、表格制能及制作支画等等许多功能。 2、图象编辑软件 较流行的图象编辑软件有:

相关主题
文本预览
相关文档 最新文档