当前位置:文档之家› 数字通信系统中的载波同步技术研究

数字通信系统中的载波同步技术研究

数字通信系统中的载波同步技术研究
数字通信系统中的载波同步技术研究

数字通信系统中的载波同步技术研究

一、引言

在数字通信系统中解调方式可以决定数字调制系统的性能。载波恢复是数字通信系统中一个必不可少的部分,补偿了信号在传输过程中造成的频偏损害且跟踪相位。

二、载波同步信号的性能要求

载波同步系统的主要性能指标是精度、效率、相位抖动、同步建立时间等。

(一)精度

精度是指提取载波与需要的载波标准比较,相位误差应该尽量小。

(二)效率

效率指获取载波信号的过程中尽量少消耗发送功率。载波同步追求的是高效率。

(三)同步建立时间ts

同步建立时间是指从开机或失步到同步所需要的时间。为了使同步建立的更快载波同步系统要求ts越小越好。

三、频偏及载波相位误差对数字通信系统的影响

对双边带信号设,是提取的相干载波,解调器滤波后输出低频信号m’(t)为(1)

如果提取的相干载波与输入载波没有相位差,即 =0, =1,则解调输出,这时信号幅度最大。若存在相位误差,因为 <1,解调后输出信号幅度下降,信噪比下降倍,因此会使误码率增加。对2psk信号当信噪比下降倍时,这时误码率将会变为

(2)

对于单边带解调和残留边带解调而言,相位误差不仅会使信噪比下降,而且在解调器输出中会产生原基带信号的正交项,使基带信号发生畸变,这种影响将随增大而严重。

(3)

在数字通信系统中因为发送端和接收端的本振时钟不一致,用在载频和中频上的射频振荡器的频率不确定性也会引起大的频偏,不同频偏时相邻符号间不仅有固定的相位差变化,而且还会随着时间的变化额外加上某个不确定相位。星座图上表现出来的就是星座图不是在固定的几个点而是随着时间变化在旋转。

图1是用matlab工软件仿真的不同频率偏移时 -dqpsk通信系统的误码率曲线。从图1可以看出频率偏移也会导致 -dqpsk通信系统在检测时误比特率(ber)性能变差,频偏对通信系统的误码率的影响很大,为此必须在接收端补偿这个频偏,这就需要进行载波恢复,评价接收机性能的重要标准之一就是载波提取性能的好坏,为了保证信息的可靠传输,对载波相位偏移以及频率偏移的估计方法的研究具有重要意义。

同步技术

同步技术 一、同步技术的定义: 同步技术即调整通信网中的各种信号使之协同工作的技术。诸信号协同工作是通信网正常传输信息的基础。 二、同步技术的分类: 按照同步的功能来分,同步可以分为载波同步、位同步(码元同步)、群同步(帧同步)和网同步(通信网中用)等四种。 (一)载波同步 1、定义 当采用同步解调(相干检测,它的基本功能就是完成频谱的线性搬移,但为了防止失真,同步检波电路中都必须输入与载波同步的解调载波。)时,接收端需要提供一个与接收信号载波同频同相的相干载波,而这个相干载波的获取就称为载波提取,或称为载波同步。 2-1 2、提取方法 载波同步一般有两类方法:一类是直接提取法(自同步法),一类是插入倒频法(外同步法)。 (1)直接提取法(自同步法) 定义: 是从接收到的有用信号中直接(或经变换)提取相干载波,而不需要另外传送载波或其它倒频信号。 基本原理: 有些信号(如DSB信号、2PSK信号等)虽然本身不包含载波分量,但却包含载波信息,对该信号进行某些非线性变换以后,就可以直接从中提取出载波分量来。 提取方法: 平方变换法和平方环法、同相正交环法(科斯塔斯环) ①平方变换法和平方环法

图2-2平方变换法提取载波 图2-2即为平方变换法提取载波,为了改善性能,可以在平方变换法大的基础上,把窄带滤波器用锁相环替代,构成如图2-3所示的方框图,这就是平方环法提取载波。 图2-3平方环法提取载波 由于锁相环具有良好的跟踪、窄带滤波性能,因此平方环法比一般的平方变换法具有更好的性能,因而得到广泛的应用。 ②同相正交环法(科斯塔斯环) 图2-4同相正交环法提取载波 同相正交环法(科斯塔斯环)是利用锁相环提取载波的另一种常用方法,由于加到上下两个相乘器的本地信号分别为压控振荡器的输出信号和它的正交信号,因此常称这种环路为同相正交环,有时也被称为科斯塔斯环(Costas)环。如图2-4所示。 (2)插入倒频法(外同步法) 定义: 是在发端发送信息码元的同时,再发送一个(或多个)包含载波信息的倒频信号,并且要求这个倒频信号不随传播的信息变换,在接收端根据倒频信号提取载波。即发端除了发送有用信号外,还在适当的位置上插入一个供接收端恢复相干载波之用的正弦波信号(这个信号通常称为导频信号)。

同步技术

武汉大学教学实验报告 电子信息学院 **** 专业 2016 年 ** 月 ** 日实验名称同步技术指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩 )看出,虽然前面假设了m(t)中无直流分量,但m2

图19-1 平方变换提取载波 19-1 所示的方框图同样可以提取出载波。由于提取载波的方框图中用了一个二分 图19-2 平方环法提取载波 科斯塔斯环法 科斯塔斯环又称同相正交环,其原理框图如下: 图19-3 科斯塔斯环原理框图 在科斯塔斯环环路中,压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡移相后的信号。两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。 现在从理论上对科斯塔斯环的工作过程加以说明。设输入调制信号为,则m(t)cos 经低通滤波器后的输出分别为:

大小与相位误差θ成正比,它就相当于一个鉴相器的输出。用

图20-1 开环位同步提取电路框图 跳变沿提取电路的作用是,当产生一个边沿脉冲时,它直接反映了输入信号的真实相位。以它为基准,就可以有效地提取出与输入信号同步的时钟。时钟同步的原理就是利用这个边沿脉冲清零计数器,输出反映输入码元相位的一个高精度时钟源周期的短脉冲。图中状态寄存器保证了在接收 图20-2 数字锁相环法位同步提取原理框图

图20-3 新型位同步提取电路框图 图20-4 码元跳变沿脉冲产生电路 通常把这种非周期序列的自相关函数称为局部自相关函数。对同步码组的另一个要求是识别器目前已找到的所有巴克码组如表21-1所列。

(完整版)现代通信系统与网络课后题答案(部分)

第一章 1.你对信息技术如何理解?信息时代的概念是什么? 答:信息技术是研究完成信息采集、加工、处理、传递、再生和控制的技术,是解放、扩展人的信息功能的技术。概念是信息技术为核心推动经济和社会形态发生重大变革。 2.NII GII的含义是什么? 答:NII国家信息基础结构行动计划。GII全球信息基础设施。 3.现代通信的基本特征是什么?它的核心是什么? 答:现代通信的基本特征是数字化,核心是计算机技术。 4.数字通信与模拟通信的主要区别是什么?试举例说明人们日常生活中的信息服务,哪些是模拟通信,哪些是数字通信。 答:模拟信号的电信号在时间上、瞬时值上是连续的,模拟信号技术简单,成本低,缺点是干扰严重,频带不宽、频带利用率不高、信号处理难、不易集成和设备庞大等。数字信号在时间,瞬时值上是离散的,编为1或0的脉冲信号。 5.数字通信的主要特点有哪些? 答:数字通信便于存储、处理;数字信号便于交换和传输;数字信号便于组成多路通信系统;便于组成数字网;数字化技术便于通信设备小型化、微型化;数字通信抗干扰性强,噪声不积累。 6.为什么说数字通信抗干扰性强?噪声不积累? 答:在模拟通信中,由于传输的信号是模拟信号,因此

很难把噪声干扰分开而去掉,随着传输距离的增加,信号的传输质量会越来越恶化。在数字通信中,传输的是脉冲信号,这些信号在传输过程中,也同样会有能量损失,受到噪声干扰,当信噪比还未恶化到一定程度时,可在适当距离或信号终端经过再生的方法,使之恢复原来的脉冲信号,消除干扰和噪声积累,就可以实现长距离高质量的通信。 7.你对网络全球化如何理解?它对人类生活将带来什么样的影响? 答:我认为网络全球化是以内特网为全球范围的公共网,用户数量与日俱增,全球各大网络公司抢占内特网网络资源,各国政府高度重视,投资研发的网络,全球网络化的发展趋势是即能实现各国国情的应用服务,又能实现突破地区、国家界限的世界服务,使世界越来越小。 8.什么是现代通信?它与信息网关系如何? 答:现代通信就是数字通信系统与计算机融合,实现信源到信宿之间完成数字信号处理、传输和交换全过程。 信息网是多种通信系统综合应用的产物,信息网源于通信系统,但高于通信系统,通信系统是各种网不可缺少的物质基础。通信系统可以独立地存在并组成网络,而通信网不可能离开系统而单独存在。 9.信息网的网络拓扑结构有哪几种类型,各自有何特点? 答:有星型网,以一中点向四周辐射,现在的程控交换局与其所在的各电话用户的连线就是这种结构。

载波同步

载波同步 实验目的 1、掌握用科斯塔斯(Costas)环提取相干载波的原理与实现方法。 2、了解相干载波相位模糊现象的产生原因。 实验内容 1、观察科斯塔斯环提取相干载波的过程。 2、观察科斯塔斯环提取的相干载波,并做分析。 实验模块 1、通信原理0 号模块一块 2、通信原理3 号模块一块 3、通信原理7 号模块一块 4、示波器一台 实验原理 1、基本原理 同步是通信系统中一个重要的实际问题。当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。这个相干载波的获取方法就称为载波提取,或称为载波同步。 提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称为导频的正弦波,接收端就由导频提取出载波,这类方法称为导频插入法;另一类就是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。下面就重点介绍直接法的两种方法。 1)平方变换法和平方环法 设调制信号为,中无直流分量,则抑制载波的双边带信号为 接收端将该信号进行平方变换,即经过一个平方律部件后就得到 (17-1) 由式(17-1)看出,虽然前面假设了中无直流分量,但中却有直流分量,而表示式的第二项中包含有2ωc频率的分量。若用一窄带滤波器将2ωc频率分量滤出,再进行二分频,就获得所需的载波。根据这种分析所得出的平方变换法

提取载波的方框图如图17-1所示。若调制信号=±1,该抑制载波的双边带信号就成为二相移相信号,这时 (17-2) 图17-1 平方变换提取载波 因而,用图17-1所示的方框图同样可以提取出载波。 由于提取载波的方框图中用了一个二分频电路,故提取出的载波存在180°的相位模糊问题。对移相信号而言,解决这个问题的常用方法是采用相对移相。 平方交换法提取载波方框图中的窄带滤波器若用锁相环代替,构成如图17-2所示的方框图,就称为平方环法提取载波。由于锁相环具有良好的跟踪、窄带滤波和记忆性能,平方环法比一般的平方变换法具有更好的性能。因此,平方环法提取载波应用较为广泛。 图17-2 平方环法提取载波 2)科斯塔斯环法 科斯塔斯环又称同相正交环,其原理框图如下: 图17-3 科斯塔斯环原理框图 在科斯塔斯环环路中,误差信号V7是由低通滤波器及两路相乘提供的。压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出经90o移相后的信号。两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。 现在从理论上对科斯塔斯环的工作过程加以说明。设输入调制信号为,则(17-3) (17-4) 经低通滤波器后的输出分别为: 将v5和v6在相乘器中相乘,得, (17-5) (17-5)中θ是压控振荡器输出信号与输入信号载波之间的相位误差,当θ较小时, (17-6) (17-6)中的v7大小与相位误差θ成正比,它就相当于一个鉴相器的输出。用v7去调整压控振荡器输出信号的相位,最后使稳定相位误差减小到很小的数值。这样压控振荡器的输出就是所需提取的载波。 载波同步系统的主要性能指标是高效率和高精度。所谓高效率就是为了获得载波信号而尽量少消耗发送功率。用直接法提取载波时,发端不专门发送导频,因而效率高;而用插入导频法时,由于插入导频要消耗一部分功率,因而系统的效率降低。所谓高精度,就是提取出的载波应是相位尽量准确的相干载波,也就是相位误差应该尽量小。相位误差通常由稳态相差和随机相差组成。稳态相差主要是指载波信号通过同步信号提取电路一后,在稳态下所引起的相差;随机相差是由于随机噪声的影响而引起同步信号的相位误差。相位误差对双边带信号解调

时钟同步技术概述

作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面,从以TDM话音业务为主发展到以分组业务为主的多业务模式,从固定话音业务为主发展到以固定和移动话音业务并重,从窄带业务发展到宽带业务等等。在与同步网相关性非常紧密的传输技术方面,从同轴传输发展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技术。随着通信新业务和新技术的不断发展,其同步要求越来越高,包括钟源、锁相环等基本时钟技术经历了多次更新换代,同步技术也在不断地推陈出新,时间同步技术更是当前业界关注的焦点。 2、时钟技术发展历程 时钟同步涉及的最基本技术包括钟源技术和锁相环技术,随着应 用需求的不断提高,技术、工艺的不断改进,钟源技术和锁相环 技术也得到了快速的演进和发展。 (1) 钟源技术

时钟振荡器是所有数字通信设备的基本部件,按照应用时间的先后,钟源技术可分为普通晶体钟、具有恒温槽的高稳晶振、原子钟、芯片级原子钟。 一般晶体振荡器精度在nE-5~nE-7之间,由于具有价格便宜、尺寸小、功耗低等诸多优点,晶体振荡器在各个行业和领域中得到广泛应用。然而,普通晶体钟一般受环境温度影响非常大,因此,后来出现了具有恒温槽的晶体钟,甚至具有双恒温槽的高稳晶体钟,其性能得到很大改善。随着通信技术的不断发展,对时钟精度和稳定性提出了更高的要求,晶体钟源已经难以满足要求,原子钟技术开始得到应用,铷钟和铯钟是其中最有代表性的原子钟。一般来说,铷钟的精度能达到或优于nE-10的量级,而铯钟则能达到或优于1E-12的量级。 然而,由于尺寸大、功耗高、寿命短,限制了原子钟在一些领域的应用,芯片级原子钟有望解决这个难题。目前民用的芯片级原子钟基本上处于试验阶段,其尺寸只有立方厘米量级,耗电只有百毫瓦量级,不消耗原子,延长了使用寿命,时钟精度在nE-10量级以上,具有很好的稳定性。芯片级原子钟将在通信、交通、电力、金融、国防、航空航天以及精密测量等领域有着广泛的应用前景。 (2) 锁相环技术 锁相环技术是一种使输出信号在频率和相位上与输入信号同步的电路技术,即当系统利用锁相环技术进入锁定状态或同步状态后,系统的震荡器输出信号与输入信号之间相差为零,或者保持为常数。锁相环路技术是时钟同步的核心技术,它经历了模拟锁相环

基于matlab载波同步仿真

通信系统综合设计与实践 2013年 6 月 2 日

基于matlab载波同步仿真 摘要 从载波相位调制解调原理出发,理论分析了载波频率漂移对解调结果的影响.通过对解调公式的推导及分析,给出了频率漂移对解调结果影响的公式.结果表明,当混频基频信号的频率与载波频率存在微小频差时,解调结果将出现低频调制,严重影响解调效果;仿真及实验验证结果与理论分析完全吻合. 关键词:载波相位调制解调

目录 摘要 ......................................................................................... 错误!未定义书签。第一章概述. (3) 一课题内容 (3) 二设计目的 (3) 三设计要求 (3) 四开发工具 (3) 第二章系统理论设计 (4) 一振幅调制产生原理 (4) 二调幅电路方案分析 (4) 三信号解调思路 (4) 第三章 matlab仿真 (5) 一载波信号与调制信号分析 (5) 二设计FIR数字低通滤波器 (7) 三 AM解调 (9) 四结果分析 (15) 4心得体会 (15) 5致谢 (16) 6参考文献 (16)

第一章概述 一课题内容 1.设计AM信号实现的Matlab程序,输出调制信号、载波信号以及已调信号波形以及频谱图,并改变参数观察信号变化情况,进行实验分析。 2.设计AM信号解调实现的Matlab程序,输出并观察解调信号波形,分析实验现象。 二设计目的 1.掌握振幅调制和解调原理。 2.学会Matlab仿真软件在振幅调制和解调中的应用。 3.掌握参数设置方法和性能分析方法。 4.通过实验中波形的变换,学会分析实验现象。 三设计要求 利用Matlab软件进行振幅调制和解调程序设计,输出显示调制信号、载波信号以及已调信号波形,并输出显示三种信号频谱图。对产生波形进行分析,并通过参数的改变,观察波形变化,分析实验现象。 四开发工具 计算机、Matlab软件、相关资料

准同步数字体系PDH和同步数字体系SDH

第6章准同步数字体系(PDH)和同步数字体系(SDH) 第一节数字复接的基本概念 一、准同步数字体系(PDH) PCM各次群的话路数及数码率(欧洲、中国) P123表5.1 二、PCM复用和数字复接 形成二以上的高次群的方法 PCM复用——概念 P125(高次群的形成一般不用——原因) 数字复接——概念 P125 三、数字复接的实现 按位复接——优缺点 按字复接——优缺点 P126 PDH大多采用按位复接。 四、数字复接的同步 数字复接要解决两个问题: ·同步——不同步的后果:几个低次群复接后的数码就会产生重叠和错位。 ·复接 五、数字复接的方法及系统构成 数字复接的方法 ·同步复接——概念 P127 ·异步复接——概念 PDH大多采用异步复接 数字复接系统的构成框图 P127图5.5 第二节同步复接与异步复接 一、同步复接(需要码速变换) 码速变换的概念 P128 二、异步复接(需要码速调整) 1、码速调整与恢复 码速调整方法——插入一些码元将各一次群的速率由2048kbit/s左右统一调整成 2112kbit/s。 码速恢复方法——通过去掉插入的码元,将各一次群的速率由2112kbit/s还原成 2048kbit/s左右。 码速调整和码速变换的区别 P132 2、异步复接二次群帧结构 异步复接二次群的帧周期为100.38μs

帧长度为848bit 4×205=820bit (最少)为信息码 28bit 的插入码(最多) 28bit 插入码具体安排 P133表5.2 各一次群在s 38.100内插入码及信息码分配情况 各一次群(支路): 码速调整之前(速率2048kbit /s 左右)100.38μs 内约有205~206个码元 应插入6~7个码元 码速调整之后(速率为2112kbit /s )100.38μs 内应有212个码元(bit ) 第一个基群支路插入码及信息码分配情况如图 5.11(a)所示。 其它基群支路插入码及信息码分配情况类似。 帧结构图 P133图5.11(b) 一次群码速调整后100.38μs 内插入码有6~7个 码速调整用的插入码有0~1个(最多 1 个)插入标志码有3个 二次群1帧内插入码有24~28个(最多28个) 码速调整用的插入码有0~4个(最多4个) 插入标志码有12个 信息码最少为820个 插入标志码的作用 P134 每个支路采用三位插入标志码的目的 P134 例1、计算二次群中一个二进制码元的时间间隔为多少? 解:因为二次群的数码率为s kbit /8448所以一个二进制码元的时间间隔为 s f t B B 118.0 1084481 13例2、画出第3个基群支路插入码及信息码分配情况。 解: 例3、异步复接二次群帧结构中帧同步码和插入标志码的容量(速率)分别为多少?解:帧同步码的容量(速率)为 s kbit s bit /621.99/996211038.10010 6插入标志码的容量(速率)为

自适应载波同步及其Matlab仿真

成都理工大学工程技术学院本科毕业论文 自适应载波同步及其Matlab仿真 作者姓名: 专业名称: 指导老师: 年月日

摘要 自适应滤波算法的研究是现在社会自适应信号处理中最为活跃的研究课题之一。找寻收敛速度快,计算简单,数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。本设计在论述自适应滤波基本原理的基础上,说明了几种当前几种典型的自适应滤波算法和应用。并对这几种典型自适应滤波算法的性能特点进行简单的比较,给出了算法性能的综合评价。 载波同步是无线通信接收机的主要功能之一,其对通信系统质量的提高至关重要。随着新算法涌现和芯片处理速度的提高,不同的解决方案不断的提出。自适应载波同步是一种依据自适应算法的同步方法,内容新颖。本课题在介绍自适应算法和载波同步问题的基础上,详细讨论了平方差分环路法和锁相环路法,具体包括代价函数、代价函数的导数、迭代公式和原理图等,并在论文的第三部分给出了这两种方法的Matlab仿真。仿真结果验证了这两种方法在跟踪载波相位方面是满足要求的,且收敛速度较快。 关键词:自适应滤波载波同步平方差分环路锁相环路法

Abstact The research of adaptive filtering algorithm is one of the most activity tasks, the goal that researchers want to pursue is to find an adaptive filtering algorithm that converge fast and compute simplely. Based on the basis adaptive filtering principle, this paper introduces several typical adaptive algorithms and applications, then compares those algorithm's characters and gives the orithm performance evaluation. Carrier synchronization is one of the main functions of Wireless communications receiver,it is essential for the improvement in the quality of the communication system. With the emergence of new algorithms and the speed improvement of chip processing, different solutions is proposed continuously. Adaptive carrier synchronization is a synchronization method based on adaptive algorithms, and its content is innovative. Based on the introducing of adaptive algorithm and carrier synchronization, this issue has a detailed discussion of the square difference method and the PLL loop method, including its cost function, cost function derivative, iterative formula and schematic, etc. And the third part of the paper gives two methods of Matlab simulation.Simulation results show the two methods with tracking the carrier phase is to meet the requirements, and convergence speedly. Keywords:adaptive filter, carrier synchronization, differential circle square , phase-locked loop method

跳频通信系统中同步技术研究

跳频通信系统中同步技术研究 作者:李娜 来源:《现代电子技术》2011年第01期 摘要:同步技术是跳频通信系统关键技术之一。针对跳频通信系统中同步的要求,采用同步字头与时间信息相结合的方法实现跳频同步。首先研究了跳频同步方法、同步信息格式和初始同步等问题,最后对同步性能进行了分析。结果表明,该跳频通信系统的同步时间短、捕获概率高、虚警概率低。 关键词:跳频通信;同步字头; 时间信息TOD; 同步方案;同步性能 中图分类号:TN914.41-34文献标识码:A 文章编号:1004-373X(2011)01-0095-02 Technology of Synchronization in Frequency-hopping Communication System LI Na (Beijing HAIGE SHENZHOU Communications Technology Co. Ltd., Guangzhou HAIGE Communications Group,Beijng 100070, China) Abstract: Synchronization is one of the key technologies of FH communication. The synchronization of frequency hopping is achieved by adopting synchronization head and time of day to meet the requirement of practical development of FH communication system. The method of frequency-hopping synchronization, the format of synchronization information and the capture of synchronization are studied, and the performance of synchronization is analyzed. The results show that the FH communication system has characteristics of short synchronization time, high capture probability and low false probability. Keywords: frequency-hopping communication; synchronization head; TOD; synchronization scheme; synchronization performance 0 引言 跳频通信是现代通信领域中一种有效的抗干扰通信手段,其独特的抗干扰性能使其在军事和民用领域都得到了越来越广泛的应用。由于定时时钟相对误差、传输信道的多普勒频移等因素,跳频通信系统存在时间和频率的不确定性,为保证正常工作,建立和实现准确的跳频同步是关键[1]。 1 跳频同步方法的研究

同步七进制加法计数器——数字电子技术,

成绩评定表

课程设计任务书

目录 1.课程设计的目的 (2) 2.计数器设计的总体框图 (2) 3.计数器设计过程 (2) 4.序列脉冲设计的总体框图 (5) 5.脉冲序列设计过程 (5) 6.设计的仿真电路图 (10) 7.设计的芯片原理图 (11) 8.实验仪器 (12) 9.总结与体会 (12) 10.参考文献 (13)

1课程设计的目的 1.加深对教材的理解和思考,并通过实验设计、验证正是理论的正确性。 2.学习自行设计一定难度并有用途的计数器、加法器、寄存器等。 3.检测自己的数字电子技术掌握能力。 2.计数器设计的总体框图 下图为同步七进制加法计数器示意框图 图 1 3.计数器设计过程 七进制同步加法计数器,无效态为:111 ①根据题意可画出该计数器状态图: 000 001 010 011 110 101 100 图 2 ②选择触发器,求时钟方程,画出卡诺图。 a.触发器:JK 边沿触发器三个 b.时钟方程:由于是同步计数器,故CP 0=CP 1=CP 2= CP c.卡诺图如下:

七进制同步加法计数器次态卡诺图: Q 图 3 次态Q n 12 +的卡诺图 n n 图 4 次态Q n 1 1+的卡诺图 n n 图 5

次态 Q n 10 +的卡诺图 Q 图 6 ③根据卡诺图写出状态方程: 状态方程: Q n+1 2= Q n 2Q n 1+Q n 2Q n 1Q n 0 Q n+1 1 = Q n 1Q n 0+ Q n 2Q n 1Q n Q n+1 0 = Q n 1Q n 0+ Q n 2Q n 0 ④求驱动方程: JK 触发器特性方程为:1n n n Q JQ KQ +=+ 由此可以得出驱动方程: J 2=Q n 1Q n 0 K 2=Q n 1 J 1=Q n 0 K 1= Q n 2Q n J 0=Q n 1 Q n 2 K 0=1 ⑤检查电路能否自启动: 将无效态(111)代入状态方程、输出方程进行计算,

数字通信系统中信道编码技术的研究

数字通信系统中信道编码技术的研究 xx (xx,湖北武汉,xx) 摘要:目前,中国固定和移动两大网络的规模都已位居世界第2位,上网用户也在不断增加,中国的信息通信制造业也得到很大的发展。中国将加快建设新一代信息通信网络技术、生产体系。在信息通信网络的高速发展下,要有效地提高传输速率,然而在实际信道上传输数字信号时,由于信道特性的不理想以及加性噪声和人为干扰的影响,系统输出的数字信息不可避免地会出现差错。因此,为了保证通信内容的可靠性和准确性,每一个数字通信系统对输出信息码的差错概率即误码率都有一定的要求。 为了降低误码率,常用的方法有两种:一种是降低数字信道本身引起的误码,可采取的方法有:选择高质量的传输线路、改善信道的传输特性、增加信号的发送能量、选择有较强的抗干扰能力的调制解调方案等; 另一种方法就是采用差错控制措施,使用信道编码。在许多情况下,信道的改善是不可能的或是不经济的,这时只能采用信道编码方法。因此实现信道编码方法具有重要的意义。 关键词:信道;误码率;信道编码 1. 信道编码 在数字电视和通信系统中,为提高信息传输可靠性,广泛使用了具有一定纠错能力的信道编码技术,如奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。信道编码的本质是增加通信的可靠性,或者说增加整个系统的抗干扰性。对信道编码有以下要求:1.透明性:要求对所传消息的内容不加任何限制;2.有纠错能力;3.效率高:为了与信道频谱匹配和具有纠错能力,通常要向原信号添加一些码,要求加入最少的比特数而得到最大的利益;4.包含适当的定时信息。在这些要求中,除编码的必须信息外,所作的处理主要有两条:一是要求码列的频谱特性适应通道的频谱特性从而使传输过程中能量损失最小,提高信噪比。减少发生差错的可能性;二是增加纠错能力,使得即便出现差错,也能得到纠正。 2.三种不同系统的无线信道 (1)数字微波中继通信系统中的无线信道 一般意义下的数字微波中继系统主要用于固定站点之间的无线通信,通常使用1GHZ以上的频段,采用视距通信。为了能够传输更远的距离,需要微波站建设在海拔较高的地方,通常在站点设计时使用微波链路满足自由空间传播条件,即视线距离地面有足够的余隙,此时信号的衰减近似看作只有由于距离的增加而带来的信号能量的扩散,信道条件比较稳定。 (2)短波电离层信道 对于短波电离层信道,电离层随机扰动和多径效应是最主要的特点。电离层扰动本质上决定了短波电离层反射通信的特点,即信道不稳定,信号的起伏和衰落较大。多径效应是指无线信号经过

实验5 数字同步技术实验

班级通信1403 学号201409732 姓名裴振启指导教师邵军花日期 实验5 数字同步技术实验 一、实验目的 1.掌握数字基带信号的传输过程; 2.熟悉位定时产生与提取位同步信号的方法。 二、实验仪器 1.复接/解复接、同步技术模块,位号I 2.时钟与基带数据发生模块,位号:G 3.PSK调制模块,位号A 4.PSK解调模块,位号C 5.噪声模块,位号B 6.20M双踪示波器1台 7.频率计1台(选用) 8.信号连接线4根 三、实验原理 数字通信系统能否有效地工作,在相当大的程度上依赖于发端和收端正确地同步。同步的不良将会导致通信质量的下降,甚至完全不能工作。通常有三种同步方式:即载波同步、位同步和群同步。在本实验中主要分析位同步。实现位同步的方法有多种,但可分为两大类型:一类是外同步法;另一类是自同步法。 所谓外同步法,就是在发端除了要发送有用的数字信息外,还要专门传送位同步信号,到了接收端得用窄带滤波器或锁相环进行滤波提取出该信号作为位同步之用。 所谓自同步法,就是在发端不专门向收端发送位同步信号,而收端所需要的码元同步信号是设法从接收信号中或从解调后的数字基带信号中提取出来。这种方法大致可分为滤波法和锁相法。滤波法是利用窄带滤波器对含定时信息的归零二进制序列(通常占空比为50%)进行滤波,从中滤出所要的位同步分量,并整形、移相等处理,即可得到规则的位同步脉冲信号,但对于无定时信息的非归零二进制序列,则先要进行微分和整流等变换,使之含有定时信息后,才能用窄带滤波器实施滤波。锁相法是指利用锁相环来提取位同步信号的方法,本实验平台选用锁相法进行位同步提取的。 锁相法的基本原理是,在接收端采用鉴相器比较接收码元和本地产生的位同步信号的相位,如两者相位不一致,则鉴相器输出误差信号去控制本地位同步信号的相位,直至本地的位同步信号的相位与接收信号的相位一致为止。 数字锁相环是一个相位反馈控制系统,在数字锁相环中,由于误差控制信号是离散的数字信号不是模拟信号,因而受控的输出相位的改变是离散的而不是连续的;常用的数字锁相环的原理方框图如图5-1所示。

同步数字体系SDH

同步数字体系SDH 内容 ?(一)了解SDH的相关知识; ?(二)学习安装SDH网管; ?(三)熟悉SDH网管的基本操作; ?(四)学习SDH基本配置方法。 SDH简介 在数字传输系统中,有两种数字传输系列: ?一种叫“准同步数字系列”(Plesiochronous Digital Hierarchy),简称PDH。 ?另一种叫“同步数字系列”(Synchronous Digital Hierarchy),简称SDH。 PDH ?在数字通信系统中,传送的信号都是数字化的脉冲序列。这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。 采用准同步数字系列(PDH)的系统,是在数字通信网的每个节点上都分别设置高精度的时钟,这些时钟的信号都具有统一的标准速率。尽管每个时钟的精度都很高,但总还是有一些微小的差别。为了保证通信的质量,要求这些时钟的差别不能超过规定的范围。因此,这种同步方式严格来说不是真正的同步,所以叫做“准同步”。 ?在以往的电信网中,多使用PDH设备。这种系列对传统的点到点通信有较好的适应性。而随着数字通信的迅速发展,点到点的直接传输越来越少,而大部分数字传输都要经过转接,因而PDH系列便不能适合现代电信业务开发的需要,以及现代化电信网管理的需要。SDH就是适应这种新的需要而出现的传输体系。 ?最早提出SDH概念的是美国贝尔通信研究所,称为光同步网络(SONET)。它是高速、大容量光纤传输技术和高度灵活、又便于管理控制的智能网技术的有机结合。最初的目的是在光路上实现标准化,便于不同厂家的产品能在光路上互通,从而提高网络的灵活性。 ITU-T建议的数字比特速率系列与数字复接等级 PDH复接帧结构 PDH复接帧结构 ?三次群复接帧结构 ?四次群复接帧结构 ?五次群复接帧结构 PDH数字传输系统的局限性 ?复接方式 异步复接体制,在码速调整后,逐比特同步交错复接 ?群路上/下方式 现行异步复接光纤通信系统中,没有专用的上/下话路设备,如果在中继站实现上/下话路,必须采用两套低次群到高次群复接设备 ?极少的信号传输辅助比特 SDH定义 ?SDH全称同步数字体系(Synchronous Digital Hierarchy) ?SDH规范了数字信号的帧结构、复用方式、传输速率等级、接口码型等特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网

数字通信系统的应用与发展趋势

数字通信系统的应用与发展趋势 发表时间:2018-12-25T10:45:27.833Z 来源:《基层建设》2018年第31期作者:姜鹏张钊诚柴炯炯[导读] 摘要:数字通信是通信行业发展的必然趋势,也是万千用户的愿望所归。 河南理工大学河南焦作 454000 摘要:数字通信是通信行业发展的必然趋势,也是万千用户的愿望所归。数字通信可以大大改善通信质量、提高通信传播速率、丰富通信内容。数字通信也促进了经济的发展进步,本文介绍了数字通信系统的优点和数字通信系统的应用。并简述数字通信技术的发展趋势。希望能以此提高现代通信的稳定性与高效性,进而促进社会向着更好的方向发展。 关键词:数字通信;应用;发展趋势 1 引言 数字通信是用数字信号作为载体来传输消息,或用数字信号对载波进行数字调制后再传输的通信方式[1]。它可传输电报、数字数据等数字信号,也可传输经过数字化处理的语声和图像等模拟信号[2]。无论在时间上还是幅度上,它都属于离散的负载数据信息的信号。数字通信的主要技术设备包括发射器、接收器以及传输介质[3]。数字通信系统的通信模式主要包括数字频带传输通信系统、数字基带传输通信系统以及模拟信号数字化传输通信系统三种[4]。 2 数字通信系统的优点 (1)数字信号具有极强的抗干涉能力。由于在信号传输的过程中不可避免的会受到系统外部以及系统内部的噪声干扰,而且噪声会跟随信号的传输而进行放大,这无疑会干扰到通信质量。但是数字通信系统传输的是离散性的数字信号,虽然在整个过程中也会受到的噪声干扰,但只要噪声绝对值在一定的范围内就可以消除噪声干扰[5]。 (2)数字信号更适合进行高质量的远距离通信。在数字通信系统当中利用再生中继方式,能够消除长距离传输噪音对数字信号的影响,而且再生的数字信号和原来的数字信号一样,可以继续进行传输,这样一来数字通信的质量就不是因为距离的增加而产生强烈的影响,所以它也比传统的模拟信号更适合进行高质量的远距离通信,通信质量也依然能够得到有效保证。 (3)数字信号具有更强的保密性。与现代技术相结合的形式非常简便,目前的终端接口都采用数字信号。 (4)数字信号应用范围广。数字通信系统还能够适应各种类型的业务要求,例如电话、电报、图像以及数据传输等等,它的普及应用也方便实现统一的综合业务数字网,便于采用大规模集成电路,便于实现信息传输的保密处理,便于实现计算机通信网的管理等优点。 3 数字通信系统的应用 编码、调制、解调、解码以及过滤等都是数字通信系统的关键性技术,其中数字信号的调制以及解调更是被广泛各个行业广泛应用。当前,调幅、调相以及调频是最为常见的三种调制方式,数字调制可将信号源转换成符合信道传输数据的格式,通俗说来即是在保证信号传播安全、信息完整的前提下,通过数字调制,将基带信号转变为带通信号[6]。 通信系统向数字化时代的转变就是要从有线通信想无线通信,从公用移动网络到专用网络,从而实现全球化的数字通信理念[7]。并且,通过现有的综合业务数字网络为基础,通过一个多用途的用户网络接口就可以轻松实现信号发出端到接收端全程数字传输与交换的新型通信网。利用这种新型技术可以扩充通信业务的范围,而且还具有更加经济以及灵活的特点,能够与现有的计算机互联网、多媒体信息网、公共电话网以及分组交换数字网等进行任意转换。随着数字通信设备的发展和不断完善,利用微处理技术对数字通信系统的信号进行转变,还能够使设备更加灵活的应用到各种长途以及市话当中。由于长途通信线路的投资远大于终端设备,为了提高长距离传输的经济性,未来高度、大容量的数字通信系统也将成为主流趋势,而且随着数字集成电路技术的发展,数字通信系统的设备制造也越来越容易,成本更低、可靠性也更高。 此外,数字通信息系统还可为全球数字化的实现贡献一份力量。用户可通过网络接口,在一地方、任一时间与现有的综合业务数字网络连接,从中获取互联网、多媒体、通话等服务。我们日常生活中的电脑、手机上网、视频电话、网络会议以及数字电视等都是通过数字通信系统来进行信号传输。 4 数字通信技术的发展趋势 数字通信逐渐占主宰地位,接替原来的模拟通信。程控更换已占优势,取代原来的机电交换,计算机软件技术的重要性十分突出。信息时代的主要标志是电子计算机,而程控交换机又是通信与计算机的结合,这就促使通信的现代化不断前进。 终端技术将朝着数字化、智能化,高效率和多媒体方向发展。通信技术现代化首先要求信息业务的信号要数字化,随着光纤通信技术和交换技术的发展,新型的通信系统倾向于数字化。微电子技术和微处理技术应用于通信设备,必将使终端设备智能化和小型化。传输技术特朝着高速率、大容量远距离和用户线数字化方向发展。 5 总结 综上所述,数字通信网技术在现代社会发展中占有举足轻重的地位,直接影响着国民经济发展与人们的生活质量。目前,我国数字压缩技术已经日臻成熟,通信网中的数据业务也越来越完善,为数字通信网技术的快速发展奠定了坚实基础,有利于提高智能化水平,为人们带来更加优质的通信体验。在光纤传输媒介还没有完全普及以前,数字通信系统主要是利用电缆、微波等有限的媒介进行传输,但目前光纤技术的发展无疑将会推动数字通信的发展。随着数字通信系统的发展,它将真正便利我们的生活,促进经济的发展和社会的进步。 参考文献: [1]王小文,阎兵早.无线移动激光数字通信系统的设计[J].激光杂志,2017,38(08):168-171. [2]蔡巧恋.常用数字通信信号的参数估计研究[D].电子科技大学,2013. [3]魏海红.基于数字通信系统特点及应用方法的探究[J].电子世界,2013(07):10-11. [4]马俊杰.浅谈数字通信的优点以及应用[J].价值工程,2012,31(09):145. [5]王方淳.数字通信信号模拟器的设计与实现技术[D].西安电子科技大学,2011. [6]张永芹.数字通信系统基带接收机的设计与实现[D].南京理工大学,2010.

载波同步的设计与实现

目录 摘要 (1) 一、设计要求 (2) 二.设计目的 (2) 三.设计原理 (2) 3.1二进制移相键控(2PSK)原理 (2) 3.2载波同步原理 (3) 3.2.1直接法(自同步法) (4) 3.2.2插入导频法 (6) 四.各模块及总体电路设计 (7) 4.1调制模块的设计 (7) 4.2调制模块的设计 (10) 4.3载波同步系统总电路图 (12) 五.仿真结果 (13) 六.心得体会 (15) 参考文献 (16)

摘要 载波同步又称载波恢复(carrier restoration),即在接收设备中产生一个和接 收信号的载波同频同相的本地振荡(local oscillation),供给解调器作相干解调用。当接收信号中包含离散的载频分量时,在接收端需要从信号中分离出信号载波作为本地相干载波;这样分离出的本地相干载波频率必然与接收信号载波频率相同,但为了使相位也相同,可能需要对分离出的载波相位作适当的调整。若接收信号中没有离散载波分量,例如在2PSK信号中(“1”和“0”以等概率出现时),则接收端 需要用较复杂的方法从信号中提取载波。因此,在这些接收设备中需要有载波同步电路,以提供相干解调所需要的相干载波;相干载波必须与接收信号的载波严格地同频同相。 电路设计特点:载波提取电路采用直接法,即直接从发送信号中提取载波,电路 连线简单,易实现,成本低。 关键字:载波同步,EWB仿真,2PSK信号

?? 发送概率为 1-P

-cosω 180°, 号 2PSK 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信

数字通信系统中的载波同步技术研究

数字通信系统中的载波同步技术研究 一、引言 在数字通信系统中解调方式可以决定数字调制系统的性能。载波恢复是数字通信系统中一个必不可少的部分,补偿了信号在传输过程中造成的频偏损害且跟踪相位。 二、载波同步信号的性能要求 载波同步系统的主要性能指标是精度、效率、相位抖动、同步建立时间等。 (一)精度 精度是指提取载波与需要的载波标准比较,相位误差应该尽量小。 (二)效率 效率指获取载波信号的过程中尽量少消耗发送功率。载波同步追求的是高效率。 (三)同步建立时间ts 同步建立时间是指从开机或失步到同步所需要的时间。为了使同步建立的更快载波同步系统要求ts越小越好。 三、频偏及载波相位误差对数字通信系统的影响 对双边带信号设,是提取的相干载波,解调器滤波后输出低频信号m’(t)为(1) 如果提取的相干载波与输入载波没有相位差,即 =0, =1,则解调输出,这时信号幅度最大。若存在相位误差,因为 <1,解调后输出信号幅度下降,信噪比下降倍,因此会使误码率增加。对2psk信号当信噪比下降倍时,这时误码率将会变为 (2) 对于单边带解调和残留边带解调而言,相位误差不仅会使信噪比下降,而且在解调器输出中会产生原基带信号的正交项,使基带信号发生畸变,这种影响将随增大而严重。 (3) 在数字通信系统中因为发送端和接收端的本振时钟不一致,用在载频和中频上的射频振荡器的频率不确定性也会引起大的频偏,不同频偏时相邻符号间不仅有固定的相位差变化,而且还会随着时间的变化额外加上某个不确定相位。星座图上表现出来的就是星座图不是在固定的几个点而是随着时间变化在旋转。 图1是用matlab工软件仿真的不同频率偏移时 -dqpsk通信系统的误码率曲线。从图1可以看出频率偏移也会导致 -dqpsk通信系统在检测时误比特率(ber)性能变差,频偏对通信系统的误码率的影响很大,为此必须在接收端补偿这个频偏,这就需要进行载波恢复,评价接收机性能的重要标准之一就是载波提取性能的好坏,为了保证信息的可靠传输,对载波相位偏移以及频率偏移的估计方法的研究具有重要意义。

相关主题
文本预览
相关文档 最新文档