当前位置:文档之家› 变量为二次型的除数函数和自守L函数傅里叶系数均值问题

变量为二次型的除数函数和自守L函数傅里叶系数均值问题

常用函数傅里叶变换

附录A拉普拉斯变换及反变换 419

2 420

3.用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设F(S)是S的有理真分式 Ff ) _ B(S) b m S m?b m」S m-…?bιS ?b o A(S) a n s n+a n∕S n'+ …+a1s + a0 式中系数a o,a i,...,a n」,a n,b°,b1,…b m」,b m都是实常数;m,n是正整数。按代数定理可 将F(S)展开为部分分式。分以下两种情况讨论。 ①A(S)=G无重根 这时,F(S)可展开为n个简单的部分分式之和的形式。 C l C2 S-S S-S n n C C i 4 S -' S i (F-1) 式中,S1,S2,…,S n是特征方程A(S) = G的根。C i为待定常数,称为按下式计算:F(S)在S i处的留数,可 式中, 式中, C i= Iim (s _ S i)F(S) S T i C _ B(S) C i A(S) A(S)为A(S)对S的一阶导数。根据拉氏变换的性质,从式( -n C l L*(S)1=L?J∣Σ旦 S — $ 一 f(t)二 C i n -S i t = C i e i i吕 (F-2) (F-3) F-1)可求得原函数 (F-4) A(S)= G有重根 设A(S)=G有r重根S1 , F(S)可写为 B(S) F S-(S-S 1) r(S-S r J (S-S n) C i C r + C r4 + …+C1 + C r 出十… (S-S1)r(S-S1)r4 (S-Sj S-S r?1 -- C i ?.? . C n S — S S-S n S i为F(S)的r重根,S r十,…,S n为F(S)的n-r个单根; 421

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

方波信号展开为傅里叶级数

【例4.2-1】将下图所示方波信号展开为傅里叶级数。 解:按题意方波信号在一个周期内的解析式为 ()?????? ?≤≤<≤--=2 02 2 2 T t E t T E t f 分别求得傅里叶系数: cos 22cos 22200020??? ? ??+???? ??-=-T T n tdt n E T tdt n E T a ωω ()()[]0 sin sin n E 2 000 =+-= -T T t n t n T ωωω ???? ??+???? ??-=-200020sin 22sin 22T T n tdt n E T tdt n E T b ωω ()()[] 2 0020 cos cos n E T T t n t n T ωωω-+= - ()[]ππn n E cos 222-= 即: ??? ??=为偶数 为奇数n n n E b n 0 2π 故得信号的傅里叶级数展开式为 ()?? ? ??+++++=ΛΛt n n t t t E t f 0000sin 15sin 513sin 31sin 2ωωωωπ 它只含有一、三、五、……等奇次谐波分量。

【例 解: 首先将图示信号分解为奇、偶函数,如下图(a)、(b)所示。 (a) 从图(a)可见为一个半波反对称偶函数。在这种情况下,其傅里级数展开式 中将只含有余弦项,且只含奇次谐波分量而不含偶次谐波分量,即有: 06420321========ΛΛb b b b a a a ()?? ? ??+++++= ΛΛt n n t t t t f ev 02 0002cos 15cos 2513cos 91cos 8ωωωωπ

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

傅里叶级数展开matlab实现

傅里叶级数展开matlab 实现给个例子说明下:将函数 y=x*(x-pi)*(x-2*pi),在(0,2*pi)的范围内傅里叶级数展开syms x fx=x*(x-pi)*(x-2*pi); [an,bn,f]=fseries(fx,x,12,0,2*pi)%前12 项展开latex(f)%将f 转换成latex 代码an = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] bn = [ -12, 3/2, -4/9, 3/16, -12/125, 1/18, -12/343, 3/128, -4/ 243, 3/250, -12/1331, 1/144] f = 12*sin(x)+3/2*sin(2*x)+4/9*sin(3*x)+3/16*sin(4*x)+12/ 125*sin(5*x)+1/18*sin(6 *x)+12/343*sin(7*x)+3/128*sin(8*x)+4/243*sin(9*x)+3/ 250*sin(10*x)+12/1331* sin(11*x)+1/144*sin(12*x) ans = 12\,\sin \left( x \right) +3/2\,\sin \left( 2\,x \right) +4/9\,\sin \left( 3\,x \right) +3/16\,\sin \left( 4\,x \right) +{\frac {12}{125}}\,\sin \left( 5\,x \right) +1/18\,\sin \left( 6\,x \right) +{\frac {12}{343}}\,\sin \left( 7\,x \right) +{\frac {3}{128}}\,\sin \left( 8\,x \right) +{\frac {4}{243}}\,\sin \left( 9\,x \right) +{\frac {3}{250}}\,\sin \left( 10\,x \right) +{\frac {12}{1331}}\,\sin \left( 11\,x \right) +{\frac {1}{144}}\,\sin \left( 12\,x \right) function [an,bn,f]=fseries(fx,x,n,a,b) %傅里叶级数展开% %an 为fourier 余弦项系数%bn 为fourier 正弦项系数%f 为展开表达式%f 为给定函数%x 为自变量%n 为展开系

第五章傅里叶函数

第五章 傅里叶函数 §5.1 傅里叶级数 以上函数是将其展为幂级数,除此外,还有一个常见的情况是将函数展为三角级数(每一项是三角函数),三角函数是周期性。 一般是周期性函数展为三角级数 一.周期函数的傅里叶展开 1、周期是2π的函数即f(x)=f(x+2π)的三角展开为: f(x)=0a +1(cos sin )k k k a kx b kx ∞ =+∑ 其中:k a =1 ()cos f k d π πξξξπ - ? k b =1 ()sin f k d π πξξξπ - ? (1) 0a = 1 ()2f d π πξξπ - ? 2、周期为2的函数,即f(x)=f(x+2)的三角展开和傅里叶展开: f(x)=0a +1(cos sin )k k k k x k x a b ππ∞ =+∑ 其中:系数:0a =1 ()cos 2k f d πξ ξξ- ? k a =1()cos k f d πξ ξξ- ? ………(2) k b = 1 ()sin k f d πξ ξξ- ? 可将0a 、 k a 合并后来表示:k a =1 ()cos k k f d πξ ξξσ- ? k=0、1、2…… 其中:k σ= 2..................0. 1.....................k 0k =??≠? 时 3、三角级数的性质

(1)、周期性 (2)、正交性: 指的是: 1 cos cos k n d πξ πξ ξ- ? = 1.................. 0.....................k k n n =?? ≠?当 (3) 1 sin sin k n d πξ πξ ξ- ? = 1.................. 0.....................k k n n =?? ≠?当 (3)、完备性 1 sin sin k n d πξ πξ ξ- ? =0 略…… 完备方程: 当n →∞时,对一致连续f(x): []2()f x dx - ?=22 220 0cos sin .......(4)k k k k k x k x a b ππ∞ ∞ ==????+????????∑∑ (4)、狄里希里定理(傅氏级数的收敛性) 周期函数()f x 若满足:(1)处处连续或在每个周期只有有 限个第一关键断点。 (2)、处处连续或在每个周期只有 有限个极值。 则()f x 展开的傅氏级数收敛,且: 级数和 = []()................(5)1 (0)(0) (2) f x f x f x ? ?++-?连续点间断点 二、奇函数和偶函数的傅里叶展开 1、若周期函数f(x)是奇函数,则因为傅氏展开成0a =0 k a =0 因为三角级数中,没有余弦级数项。

希尔伯特变换与傅立叶变换

在数学与信号处理的领域中,一个实数值函数的希尔伯特转换(Hilbert transform)——在此标示为——是将信号与做卷积,以得到。因此,希尔伯特转换结果可以被解读为输入是的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应为。这是一项有用的数学, 用在描述一个以实数值载波做调制的信号之复数包络(complex envelope),出现在通讯理论(应用方面的详述请见下文。) 希尔伯特转换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。 希尔伯特转换定义如下: 其中 并考虑此积分为柯西主值(Cauchy principal value),其避免掉在以及 等处的奇点。 另外要指出的是: 若,则可被定义,且属于;其中。频率响应 希尔伯特转换之频率响应由傅立叶变换给出: , 其中 ?是傅立叶变换, ?i (有时写作j )是虚数单位, ?是角频率,以及

? 即为符号函数。 既然: , 希尔伯特转换会将负频率成分偏移+90°,而正频率成分偏移?90°。 反(逆)希尔伯特转换 我们也注意到:。因此将上面方程式乘上,可得到: 从中,可以看出反(逆)希尔伯特转换 傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。 ?傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 ?傅里叶变换属于谐波分析。 ?傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 ?正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

傅里叶公式理解

有关指导 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量 信号分析:从信号中提取有用信息的方法和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。 质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ??? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

)cos(000φω+t x 简谐信号及其三个要素 幅值 频率 相角 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐 信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 ) 21() ()2()()(ΛΛ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2/T 。 ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

常用傅里叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 | 线性 2时域平移 3频域平移, 变换2的频域对应 \ 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当| a | 趋向无 穷时,成为Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 / 傅里叶变换的微分性质 7变换6的频域对应

8 表示和的卷积—这 就是卷积定理 - 9 矩形脉冲和归一化的sinc函数 10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 11- tri是三角形函数 12变换12的频域对应 13高斯函数exp( ? αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。 ¥14 15 16》 a>0

18δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 【 19 变换23的频域对应20由变换3和24得到. 21` 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22由变换1和25得到 23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 / 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 25变换29的推广. 17变换本身就是一个公式

26【 变换29的频域对应. 27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到. 28u(t)是单位阶跃函数,且a > 0. 34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

常用函数傅里叶变换

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?? ?? ?-==∑=--n i i i s s c L s F L t f 11 1 )()(= t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---=+ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→-

常见函数的傅里叶级数

∞ ? 2 2 0 0 0 ∑ 24.4. c = f (x )e in π x /L dx = ?1 (a + ib n < 0 ? Definition of a Fourier Series The Fourier series corresponding to a function f (x ) defined in the interval c ÷ x ÷ c + 2L L > 0 are constants, is defined as where c and 24.1. a 0 + ∑ a cos n π x + b sin n π x 2 where n n =1 L n L ?a = 1 c + 2 L n π x f (x ) cos dx 24.2. ? n L ?c 1 c + 2 L L n π x ?b n = L ?c f (x ) s in L dx If f (x ) and f '(x ) are piecewise continuous and f (x ) is defined by periodic extension of period 2L , i.e., f (x + 2L ) = f (x ), then the series converges to f (x ) if x is a point of continuity and to 1{ f (x + 0) + f (x - 0)} if x is a point of discontinuity. Complex Form of Fourier Series Assuming that the series 24.1 converges to f (x ), we have 24.3. f (x ) = ∑ c n e in π x /L n =-∞ where ? 1 (a - ib ) n > 0 1 n 2L c +2 L - c ?2 n n 2 - n - n ? ?1 a n = 0 Parseval’s Identity 1 c +2 L a 2 ∞ 24.5. { f (x )}2 dx = 0 + ∑ (a 2 + b 2 ) L ?c n n n =1 Generalized Parseval Identity 24.6. 1 c +2 L a c ∞ f (x ) g (x ) dx = + (a c + b d ) ∞ ? ) 2

傅里叶描述子计算函数

//m_vedgepoint:存放边界点坐标的容器定义: //typedef std::vector ptLineTable;// Point是二维坐标结构体 //index:边界点数 //Fourierout:存放傅里叶描述子的地址指针 int Fourierdescriber(ptLineTable m_vedgepoint,int index, double* Fourierout) { Point *newP = new Point[index]; int j = 0; for (ptLineTable::iterator i = m_vedgepoint.begin(); i != m_vedgepoint.end(); i++) { newP[j].x = i->x; newP[j].y = i->y; j++; } complex *Z=new complex[j];//定义傅立叶描述子(复数类型) memset(Z,(0.0,0.0),j); complex temp=(0.0,0.0); double *d=new double[j]; if(j>12) { for(int k=0;k<12;k++)//前k个描述子 { complex temp=(0.0, 0.0); for(int l=0;l(newP[l].x, newP[l].y)*complex(cos((2*PI*l*k)/j),-sin((2*PI*l*k)/j)); } Z[k]=temp/complex((double)j,0.0); //传统的归一化傅立叶描述子 if (k>0) { d[k]=sqrt(pow(Z[k].real(),2)+pow(Z[k].imag(),2))/sqrt(pow(Z[0].real(),2)+pow(Z[0].imag(), 2)); // fprintf(fileHandle, "%f ", d[k]); //可存入队列传出 *(Fourierout+k-1) = d[k]; } } } else

傅里叶变换常用公式

(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 简介 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。 傅里叶变换定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。 ①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。傅里叶变换相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

傅里叶描述子研究应用.docx

傅里叶描述子研究应用 姓名:李罗川 学号:ZY1403222 完成时间:2015年05 月06 日

目录 1傅里叶描述子概述 (1) 1.1概念与特点 (1) 1.2现状与发展 (1) 2一维傅里叶描述子 (3) 3二维傅里叶描述子 (6) 参考文献 (9)

1傅里叶描述子概述 1.1概念与特点 傅里叶分析的理论始于1822年,当时是由法国数学家傅里叶(Fourier J)提出的傅里叶级数的概念。目前,傅里叶理论已经发展了近二百年,作为一种有力的信号分析处理工具,广泛应用在各个领域,但在20世纪六十年代初,才被Cosgriff 引用到形状分析领域中来。 傅里叶描述子(Fourier Descriptor)是一种基于频域变换的形状表示算法。傅里叶描述子是首先将物体轮廓线表示成一个一维的轮廓线函数,然后对该函数作傅里叶变换,由傅里叶系数构成形状描述子。同一形状不同的轮廓线函数,会产生不同的傅里叶描述子,如切角函数、曲率函数、中心距离函数、三角形面积函数等。FD是目前形状表示方法中应用最多的描述子之一。通过把形状在频域进行表示,可以很好的解决描述子对存在噪声和边界变化的敏感度。傅里叶描述子按照基于轮廓和基于区域的分类方式可以分为两类:基于轮廓的一维傅里叶描述子(1-D FD)和基于区域的二维傅进叶描述子(2-D FD)。 傅里叶描述子不仅是目前应用最广泛的描述子,而且是最具有发展潜力的形状表示算法之一。傅里叶描述子作为全局形状特征的一种描述方式,具有计算简单,抗噪性强,较高的形状区分能力,但不包含局部形状信息,对形状的细节辨识能力较弱。 1.2现状与发展 傅里叶描述子(Fourier Descriptor)是目前形状表示方法中应用最多的描述子之一。傅里叶描述子按照基于轮廓和基于区域的分类方式可以分为两类:基于轮廓的一维傅里叶描述子(1-D FD)和基于区域的二维傅进叶描述子(2-D FD)。 传统的一维傅里叶描述子只能处理根据形状图像提取出的闭合曲线,它依赖于边缘检测算法对形状轮廓线的准确提取。Lin和Mitchell等经过研究和变形将1-D FD应用于部分闭合曲线。Arbter等首次提出了具有仿射变换不变性的1-DFDo Granlund提出了可以描述轴对称形状的傅里叶不变量。Eichmann等利用短时傅里叶变换(SFD)来提取傅里叶描述子。同时,Zhang和Lu证明了 SFD描述子在形状检索上的性能要优于传统的傅里叶描述子[31]。这是因为SFD虽然不能

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

常用傅里叶变换表

弧频率表示的时域信号注释傅里叶变换 线性1 时域平移2 频域平移3 , 变换2的频域对应 会收缩值较大,则如果 4 会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。 Delta 通过傅里叶变换的二元性性质。

5 交换时域变量和频域变量 . 得到 6 傅里叶变换的微分性质 变换7 6的频域对应 表示和的卷积—这 8就卷积定 9 矩形脉冲和归一化的sinc函数 变换10的频域对应。矩形函数是理

想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。 tri是三角形函数 11 12 变换12的频域对应 2t) ?α的傅里叶变 exp( 高斯函数 换是他本身. 只有当 Re(α) 13 > 0时,这是可积的。 14 15

a>0 16 17 变换本身就是一个公式 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克18 δ函数的重要性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 由变换1和25得到,应用了欧拉公 21 iat?iat eeat) / 2. 式: cos() = ( +

22 由变换1和25得到 n)(n(ω) . δ这里, 自然数是一个n阶微分。函数分布的是狄拉克δ 这个变换是根据变换23 7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 此处sgn(ω)为符号函数;注意此变 24 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. ut)是单位阶跃函数此处(; 此变换 27

根据变换1和31得到. uta > 0. ,且()是单位阶跃函数28 狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.

Matlab 实现描绘子的计算

8-2 表示与描述二——描述 一、实验目的: 1. 理解和掌握基本的边界描绘子,并能利用 Matlab 实现描绘子的计算; 2. 掌握基本的区域描绘子; 3. 熟练使用 IPT 函数 regionprops 计算区域描绘子。 二、实验内容: 1. 对一幅含噪灰度图像,经平滑、阈值分割后,提取目标边界,并计算傅里叶描绘子。 2. 使用 IPT 函数 regionprops 计算区域描绘子。 三、实验步骤: 1.对一幅含噪灰度图像,经平滑、阈值分割后,提取目标边界,并计算傅里叶描绘子。 参考代码: %% 傅里叶描述子 clc clear f=imread('Fig1113(a)(chromo_original).tif'); subplot(331),imshow(f); whos f;%其实是个二值图像 title('人体染色体原始图'); f=im2double(f);%不再是二值图像了 h=fspecial('gaussian',15,9); g=imfilter(f,h,'replicate'); g=im2bw(g,0.7);%其中的 graythresh()函数为自动阈值,处理后 g 为二值图像了 subplot(332),imshow(g); title('经阈值处理后'); b=boundaries(g); b=b{1}; bim=bound2im(b,344,270);%344,270 为图片的尺寸 subplot(333),imshow(bim); title('提取的边界图'); z=frdescp(b);%对边界坐标 b 进行傅里叶变换系数(有多少个点就有多少个系数),将 b 的坐标点看成是复平面中的某个复数 z14=ifrdescp(z,546);%用 50%的描述子进行逆变换 z546im=bound2im(z14,344,270); subplot(334),imshow(z546im); title('546 个描述子恢复后'); z110=ifrdescp(z,110);%用 50%的描述子进行逆变换

常用傅里叶变换模板.doc

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2的频域对应 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平.当| a |趋向无穷 时,成为狄拉克δ函数。 5 傅里叶变换的二元性性质。通过交 换时域变量和频域变量得到. 6 傅里叶变换的微分性质

7 变换6的频域对应 8 表示和的卷积—这就是 卷积定理 9 变换8的频域对应。 [编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,sinc函数是 这类滤波器对反 因果冲击的响 应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变 换是他本身.只 有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第 一类贝塞尔函 数。 21 上一个变换的推 广形 式; T n(t)是 第一类切比雪夫 多项式。 22 U n(t)是第二类 切比雪夫多项 式。 [编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数分 布.这个变换展示了狄拉 克δ函数的重要性:该函 数是常函数的傅立叶变换24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

相关主题
文本预览
相关文档 最新文档