当前位置:文档之家› 锂电池培训资料

锂电池培训资料

锂电池培训资料
锂电池培训资料

锂电池培训资料

一、电池基础

二、锂离子电池基础

三、锂电池的安全

四、保护板BMS具体功能介绍

五、锂离子电池的储藏和运输

一、电池基础

1、电池的发展简史:

公元前100~公元100年电池原形

1780~1791发明伽尼尔电池

1800年伏特发明电池

1833年发现法拉第法则

1836年发明丹尼尔电池

1859年发明铅酸电池

1868年发明干电池

1899年发明Ni-Cd蓄电池

1901年发明Ni/Fe电池

1951年发明密封Ni-Cd电池

1990年发明锂离子电池

1995年发明聚合物电解质锂离子电池

2、电池的要素和组成:

◆电极

负极:通常将电池电极中电压较低的一极称为负极

正极:通常将电池电极中电压较高的一极称为正极

◆隔膜:在电池中,防止正负极间电子导通,而又能让离子通过(离子传导)的隔离材料,一般为多孔薄膜材

◆电解质溶液(电液):在电池内正负极间提供离子传输作用

◆其他构件:如外壳,极柱,密封件等

3、电池的分类

一次电池(干电池)

二次电池(充电电池或蓄电池)

·铅酸电池

·镍-镉电池

·镍-氢电池

·锂离子电池

·液态锂离子电池

·聚合物态锂离子电池

另外还有燃料电池、太阳能电池等等

4、常见可充电电池性能比较:

组成电池能量密度

电池体系负极电解液正极环保性能电压(V) Wh/kg Wh/L 充电循环自放电率

锂离子电池碳LiPF6 LiMn2O4或绿色环保 3.6 130-150 350-400 ≥10008%

LiCoO2

铅酸电池 Pb H2SO4 PbO2 铅污染严重 2.0 30-50 50-80 300-500 20%

镍镉电池 Cd KOH NiOOH 镉污染严重 1.2 50-60 130-150 400-600 25%

镍氢电池储氢 KOH NiOOH 环保 1.2 60-70 190-200 ≥500 10%

材料

二、锂离子电池基础

1、锂离子电池的“前世今生” :

锂离子电池是20世纪90年代开发成功的新型高能电池。

锂离子电池的“前世”:早期负极为金属锂的“锂电池”,但金属锂的化学活性太大,充电时产生的枝晶会使电池短路,目前尚未真正解决其安全问题。锂离子电池的“今生”:锂离子电池名称开始于日本企业,针对含金属锂负极的锂二次电池而言,1991年由索尼公司率先实现商业化。采用可嵌锂碳材料为负极,正极采用含锂的过渡金属氧化物,利用溶有锂盐非水溶剂作为电介质。锂离子电池的优点和缺点:锂离子电池重量轻、体积小,寿命长,没有记忆效应,具备良好的温度特性,同时由于没有重金属污染、没有毒性物质,是新一代环保型绿色电池。被业界称之为“终极电池”

锂离子铅酸镍镉镍氢

重量 5 1 1 3

寿命 5 2 3 4

环保 5 2 1 5

记忆 5 3 1 3

温度特性 5 2 3 3

缺点:锂离子电池价格相对昂贵,发展时间短,制造工艺的成熟性不如铅酸,镍镉及镍氢电池,但随时间的推

移,锂离子电池的制造工艺会越来越成熟,价格也会逐渐降低。

5、液态锂离子电池与聚合物锂离子电池的异同:

◆相同点:正负极活性物质相同

电池工作原理相同

单体电池工作电压相同

◆不同点:液态锂离子电池的电解液是液态的有机电解液,聚合物锂离子电池的电解质是将液态的有机电解液

吸附在一种聚合物基质上,所以被称为凝胶聚合物电解质。

◆优缺点比较:液态锂离子电池的功率较聚合物锂离子电池大的多,反映在电动自行车上,液态比聚合物有更

强的爬坡能力;液态锂离子电池的价格较聚合物锂离子电池便宜。聚合物锂离子电池由于不存在游离的电解液

,不存在漏液的情况。

6、液态软包装、凝胶聚合物和液态锂离子电池的安全性:

◆目前市场上大量出现的是液态软包装电池,液态软包装电池内部电化学体系和金属壳包装电池一样。

◆优缺点比较:采用液体电解液,因此在大电流放电等性能上也不错。由于采用软包装,包装较易损坏,在一

些振动频繁的应用领域,如电动自行车等,需要谨慎。

金属壳液态液态软包装凝胶型

电解液液态液态凝胶态

包装金属铝塑膜铝塑膜

放电能力很好很好差

安全性:锂离子电池的安全性需要从正极材料入手,光靠更换软包装无法从根本上解决。软包装的电池如果爆

炸,不存在金属物射出物,然仍无法解决燃烧等危险。从电极材料和电解液入手,才是解决锂离子电池安全性

的根本途径。

7、电池的一致性问题:

单体电池不存在一致性问题,一致性问题主要集中在电池组中,影响电池组一致性的主要因素是电池的自放电

、内阻、电池中电池的数量、有无均衡线路等。同样容量和电压的电池组,锂离子电池数量越少,对一致性要

求越低。

8、镍氢(Ni/MH)电池的简介:

镍氢电池的工作电压为 1.2V,无铅酸,镉镍电池的重金属污染问题,也属于绿色环保型电池,但与锂离子电池

相比,镍氢电池的工作电压只有锂离子电池的1/3,同样一个电池镍氢电池需要的单体电池的数量是锂离子电

池的3倍,重量是锂离子电池的2倍左右,循环寿命也比锂离子电池短。另外镍氢电池充电过程中发热严重,无

法长期在高温调节下使用。低温性能不如锂离子电池,高倍率放电性能不如镉镍电池和锂离子电池,而价格与

锂离子电池相差无几。所以镍氢电池虽然发展时间较长,但其发展的速度和潜力已远远落后于锂离子电池。

9、几种锂离子电池正极材料的综合比较

钴酸锂锰酸锂磷酸铁锂镍钴锰酸锂/3元

耐过充 ×√√×

氧化性很强一般弱强

过充极限 0.5C/6V 3C/10V 3C/10V 0.5C/6V

安全性很不安全安全性能好安全性能好不安全

安全容量1Ah 10~30Ah 可达100Ah /

大功率能力好很好很好 /

价格昂贵低廉低廉一般

三、锂电池的安全

单体电池的安全测试项目及测试方法

测试项目测试条件测试要求电池数目测试标准

撞击平面 9.1KG重物,0.61m高度, 3个

侧面直径15.8mm 的钢棒。不起火,不爆炸 3个UL

挤压平面挤压力13KN 不起火,不爆炸 3个UL

侧面3个

高温150℃,10min

(温升5 ℃/min) 不起火,不爆炸 5个UL

过充 30A,10V 不起火,不爆炸 5个 UL

短路电阻小于100mΩ不起火,不爆炸 5个 UL

针刺φ5mm的钢钉从垂直于极板的

方向贯穿(钢针停留在电池中)不起火,不爆炸 5个企标

四、保护板BMS具体功能介绍

保护板BMS(Battery Management System)有5大功能:

1、过充(过压)保护

因为锂电池是很“脆弱”的电池,所以不能造成过充。锰酸锂是在4.2v保护,磷酸铁锂是在3.6v 左右(具

体可参考供应商规格书);

造成过充时,一般保护板会有恢复功能。比如一块锰酸锂电池保护板设置的过充保护是4.25v,当过充时,

保护板保护,停止充电,当电压降至4.15v时,才能恢复充电动作。

2、过放(欠压)保护

因为锂电池是很“脆弱”的电池,所以不能造成过放。锰酸锂是在2.7v或3.0v保护,磷酸铁锂是在2.3v左

右(具体可参考供应商规格书);

造成过放时,一般保护板会有恢复功能。比如一块锰酸锂电池保护板设置的过放保护是3.0v,当过放时,

保护板保护,停止放电,当电压升至3.1v时,才能恢复放电动作。

3、过流保护

当放电电流或者瞬间放电电流超过电池本身所能承受的电流时,BMS会停止放电动作。

一般恢复过流保护有2个办法。一是断开负载,重新连接电池与负载;一是更换烧坏掉的保险丝。具体看每

个厂家的产品是如何设置。

一般BMS会设置一个例如30A/8ms(30安培8毫秒)的峰值电流保护参数。就是说:当电流大于30A并且时

间大于8ms时,过流保护会动作。假如是50A3ms,那么过流保护不会动作,

这对带电机类的负载是非常适合的,因为一些负载在起动时会有一个非常大的脉冲/峰值电流,只要这个电

流能过去,正常工作就不是问题了。所以有时候电池带电机类负载会不工作,很大一个原因是因为BMS上的脉

冲/峰值电流给挡掉了,而不是电池出了问题。

(测量这个电流需要示波器,很多业务不好展开就是这个电流没有测量到。我们测过一个Trimmer 的峰值电流有90A,很高,相对这样大的电流,做BMS就是一个很高的要求)

4、过温保护

锂电池在所规定的温度范围里是可以正常工作的,当超过所规定的温度范围,BMS会停止放电动作以保护电池,一般此功能为可选功能。

5、均衡功能

因为电芯一致性的问题,串并联的电芯越多,一致性问题越突出,电池组的性能会越不好。使用时间长了,每个电芯的电压容量内阻会有所差别,会降低整体电池的性能和寿命。有了均衡功能,可尽可能充满每个电芯的容量,降低每个电芯的差别,提高整体电池的性能和寿命。

目前都在用的是“电阻放电法”,即给电池组中先充满电的电芯放电,让没充满电的电芯继续充电,当每个电芯都充满电了,整组电池才停止充电。(放电时当整组电池中有一个电芯放完电,整组电池停止放电)

另一方法是“双向无损均衡充电”,即让充满电的电芯给没充满电的电芯充电,也就是让电芯互相充电。这样效率很高,目前也可实现,但成本太高,不适合商业化操作。

五、锂离子电池的储藏和运输

锂离子电池的储藏会导致容量下降

高电压会导致正负极集流金属板的被腐蚀和电介质的分解

长时间处于放电状态将导致电机保护层分解,容量下降。

锂离子电池的储藏

1.电池组需长期储存时,请将电池组充电至半饱和(放完电后,用充电器充电2~3小时即可)状态,放置于干燥,通风处,每二个月用充电器充电2~3小时;

2.电池组和充电器应贮存在清洁、干燥、通风处,应避免与腐蚀性物质接触,远离火源及热源;

3.电池组贮存条件:环境温度-20~35℃;环境湿度5~65%RH ;

运输:

电池组应包装成箱进行运输,在运输过程中应防止剧烈振动、冲击或挤压,防止日晒雨淋。

运输工具可使用汽车、火车、船舶、飞机等交通工具进行运输。

蓄电池基本知识培训试题

蓄电池基本知识培训试题 一、填空: 1、蓄电池按极板结构可分为:涂膏式、管式、形成式。 2、极板是铅酸蓄电池的主体部件,是由板栅与活性物质构成。 3、微孔橡胶隔板是一种用生胶硅酸以及其他添加剂制成的,具有10ūm以下微孔的平板式隔板。 4、蓄电池的主要部件,正负极板、极板、电池槽、电池液和一些零部件。 5、蓄电池封口的作用是防止电液溢流。 二、判断题 1、移动型蓄电池是为了便于携带,在移动情况下使用的电源 设备,因此,它具有体积大,重量轻,瞬时放电电流大和耐震、耐冻性较好等基本要求。(×) 2、蓄电池极板一般为单数,至少在三片以上,负极板总比正 极板多一块。(√) 3、蓄电池槽是用来储盛电解液与支撑极板,所以它必须具 有防止酸液漏泄,耐腐蚀、坚固和耐高温等条件。(√) 4、极板所能付出的能量与他的表面积成反比。(×) 5、蓄电池供给外电路电流时所做放电。(√) 三、问答题 1、什么叫蓄电池的容量、流程,理论容量、额定容量、实际 容量三者的区别?

答:蓄电池的容量是指在一定的放电条件下可以从电池中获得的电量,用A·H容量,W·H容量表示,A·H容量是电池输出的电量,W·H容量表示其作功能力的能量。 理论容量:根据活性物质的重量,按照法拉第定律求得的。 实际容量:是指在一定放电条件下(放电率、终止电压、温度)电池实际放出的电量,它总是低于理论容量。 额定容量:是指在设计电池和生产电池时规定或保证电池在放电条件下应该放出的最低限度容量。 2、说说特殊工作栓的工作原理。 答:特殊工作栓主要是由金刚沙压制而成,金刚沙有称刚玉,即氧化铝为多孔性物质一般孔率在30-40%,成型后用四氧乙烯处理,形成一层膜四氧乙烯有较强的憎水性,电池中出的酸雾遇到这层膜变为液珠,又流回电池起到防酸作用。 3、根据有关标准,产品型号的含义可分为三段,解释下列几 种电池型号的含义是什么? (1)6-DZM-10 6个单体串联、电动、助动用、密封、10AH (2)D330KT “D”电机“K”矿用“T”特殊,容量330AH (3)N-462 “N”内燃机用,容量462AH (4)GFM-300 单格电池,“G”“F”阀控“M”密封,容量300AH 4、什么叫穿壁焊? 穿壁焊:又称对焊,它是用对焊机将相邻单体极群的偏极柱。在

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知 识培训手册 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

关键特性,所以,隔膜性能的优劣直接影响了电池的综合性能。 在我国,锂离子电池原材料已基本实现了国产化,但是隔膜材料却主要依靠进口,一些制作隔膜的关键技术被日本和欧美垄断。最近几年,隔膜在我国已有生产,各项指标也接近或达到了国外产品的水平。 本手册主要介绍锂离子电池用聚烯烃隔膜,从隔膜的生产原理、性能特性、应用等方面来介绍有关隔膜知识。 (二)电池隔膜的分类 制造隔膜的材料有天然或合成的高分子材料、无机材料等。根据原材料特点和加工方法不同,可将隔膜分成有机材料隔膜、编制隔膜、毡状膜、隔膜纸和陶瓷隔膜等。电池用隔膜的分类如下图: 图1 电池用隔膜分类 从上图可知,隔膜可分为半透膜与微孔膜两大类。半透膜的孔径一般小于1nm ,而微孔膜孔径在10nm以上,甚至到几微米。 (三)锂离子电池隔膜的功能及机理 1、隔膜在锂离子电池中的主要功能 ●在电池内部将正、负极分隔开来,防止接触造成短路; ●有良好的离子通过能力; ●有保持电解液的能力; ●有一定的保护电池安全的能力。 2、隔膜机理隔膜中具有大量曲折贯通的微孔,电解液中的离子载体可以在微孔中自由通过,在正负极之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。 (四)锂离子电池隔膜的主要用途 各种液态锂离子电池,如手机电池、便携式DVD电池、笔记本电脑电池、电动工具电池、GPS电池、电动车和储能装置电池等。 聚烯烃隔膜原料和生产原理 (一)聚烯烃隔膜分类 分类方法按材料分类按工艺分类按结构分类

锂电池安全培训3x12

安全意识1基础知识工伤认定培训教材 锂电池安全培训安全意识2基础知识工伤认定 锂电池的基本概念 危险与有害因素辨识 第一章第二章第三章Contents Page 目录页锂电池事故案例安全对策及措施第四章安全意识3基础知识工伤认定 锂电池事故案例 第一章 第一章

安全意识 4基础知识 工伤认定锂电池事故案例安全意识5基础知识工伤认定案例1:2010年10月11日,深圳A公司客户退回的锂电池在存放处发生自燃起火,工人用灭火器 扑救后再次发生起火,过火面积50平方米左右; 案例2:2012年2月19日深圳B公司三楼清洗房发生发生火灾,火灾中一批手机锂电池被烧毁,两 名工人因吸入浓烟感到不适送医院治疗; 案例3:2012年8月22日,C新能源公司,电器线路着火引发火灾事故,将三楼车间多台设备烧;案例4:2012年10月10日D新能源科技有限公司的二楼仓库发生火灾事故,15时30分左右扑灭 ,无人员伤亡,将存放在库房中的锂电池烧,损失400万元; 案例5:2012年11月28日A公司老化房起火,烧毁多个货柜式老化房,待电池一批。锂电池事故案例安全意识6基础知识工伤认定锂电池的基本概念第二章第二章

安全意识 7基础知识工伤认定?锂离子电池是指Li+嵌入化合物为正、负极的二次电池; ?正极采用锂化合物Li X CoO2、Li X NiO2、Li X MnO2、LiFePO4和三元复合材料;?负极采用锂-碳层间化合物Li X C6; 在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌,被形象的称为“摇椅电池”; 充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态; 放电时则相反。 锂电池的基本概念 安全意识8 基础知识 工伤认定 圆柱型锂离子电池方型锂离子电池软包装和聚合物锂离子电池锂电池的结构和组成 安全意识 9基础知识工伤认定 ?正极 活性物质 导电剂、溶剂、粘合剂、基体 ?负极 活性物质(石墨、MCMB、CMS) 粘合剂、溶剂、基体 ?隔膜 ?电解液 ?外壳五金件 钢壳、铝壳、盖板、极耳、绝缘片、绝缘胶带锂电池的结构和组成

锂离子电池电芯知识培训

关于Li-ion电池的安全认证 ?国际国内关于锂离子电池的安全认证机构及其标准: ?GB(国家标准); ?UL(Underwriter Laboratory)美国安全认证机构; ?CE(COMMUNATE EUROPIEA欧共体的缩写)。表示该商品符合安全、卫生、环保和消费者保护等一系列欧洲指令的要求。证实该产品已通过了相应的合格评定程序或制造商的合格声明,是该产品被允许进入欧盟市场销售的“通行证”; ?企业内部的认证标准,一旦通过各个企业的内部标准,表明具有向该企业供货的能力,并基本达成供货意向。如:MOTOROLA、SAMSUNG。 UL安全认证的测试项目 ?UL(Underwriter Laboratory)在认证过程中所要进行的项目及其测试目标值有: ?电性能方面包括: ?短路测试。不爆炸,不起火,外部温度不超过150℃ ?过充测试。不爆炸,不起火。 ?过放测试。不爆炸,不起火。 ?机械性能方面包括: ?挤压测试。不爆炸,不起火。 ?重物冲击测试。不爆炸,不起火。 ?高频振荡测试。不爆炸,不起火;不漏气或漏液。 ?振动测试。不爆炸,不起火;不漏气或漏液。 ?环境适应性能包括: ?热冲击测试。不爆炸,不起火。 ?温度循环测试。不爆炸,不起火。不漏气或漏液 ?低压测试。不爆炸,不起火。不漏气或漏液 GB要求的安全性能测试项目 ?GB(国标标准)所规定进行的安全性能测试项目: ?电性能方面包括: ?短路测试。不爆炸,不起火,外部温度不超过150℃

?过充测试。不爆炸,不起火。 ?机械性能方面包括: ?重物冲击测试。不爆炸,不起火。允许变形。 ?振动测试。无明显损伤、漏液、冒烟、或爆炸,电池电压不低于N*3.6V ?碰撞测试。无明显损伤、漏液、冒烟、或爆炸,电池电压不低于N*3.6V ?环境适应性能包括: ?热冲击测试。不爆炸,不起火。 ?恒定湿热性能。不爆炸,不起火;不漏气或漏液。 电池基本知识 1、什么是电池? ?电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它们的电化学成分和电极的结构可知,可充电电池的内部结构之间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极的体积和结构上引起可逆的变化,那么可充电电池的内部设计就支持这种变化。而一次电池在给定的电池环境中两个电极之间的电化学反应是不可逆的,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济。如果需要反复使用,应选择真正的循环次数在1000次左右的充电电池,这种电池又称为二次电池。 ?另一明显的区别就是二次电池具有较高的比能量和负载能力,但自放电率较大。一次电池能量密度远比二次电池高。然而他们的负载能力相对要小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能。就二次电池而言(另一术语也称可充电便携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上。

锂电池培训资料(内部使用)

锂电池运输法规主讲人:周志强 日期:201503日期:2015-03

主要内容1、电池的基本概述 1电池的基本概述 2、研究锂电池的意义 3、锂电池的定义 4、锂电池UN38.3的测试项目 4锂电池UN383的测试项目 5、UN38.3检测数量 6、锂电池的运输包装、判定 7、MSDS 7MSDS 8、IEC62133

电池的基本概述 电池的定义 广义的电池(Battery)是一种将其它形式的能量直接转换为直流电的装置。电池按转换能量方式分两大类:一类是物理电池,如太阳能电池、飞轮电池;另一类是化学电池,即把化学量方式分两大类类是物理电池如太阳能电池飞轮电池另类是化学电池即把化学能转变为电能的装置,一般又称化学电池或化学电源。

电池的基本概述 有关电池的分类 依外形区分 圆柱形 钮扣形 方形 依使用循环次数区分 一次电池:用完即丢,无法重复使用者,如:碳锌电池、碱性电池、水银电池、锂电池。 二次电池:可充电重复使用者,如:镍镉充电电池、镍氢充电电池、锂充电电池、铅酸电池、太阳能电池。 依原材料区分 铅酸电池、银锌电池、锂电池(钴酸锂锰酸锂三元材料磷酸铁锂)、燃料电池、镍氢、镍镉等

研究锂电池的意义 锂电池由于重量轻、电压高、容量高、环保等优点广泛应用于水力、火力、风力和太阳能电站等储能电源系统,邮电通讯的不间断电源,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域,同时以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。 由于锂是一种特别容易发生化学反应的金属(化学性质非常活泼),易延伸和燃烧,如果锂电池包装和运输,如处理不当,易燃烧和爆炸,事故也时有发生。所以安全运输锂电池势在必行,国际上也不断推行强制性的法规,对锂电池的运输进行全方位的管控(现行IATA -DGR和IMDG主要法规),锂电池通过UN38.3测试(ST/SG/AC.10/11/Rev.5/Amend.1&Amend.1&Amend.2)是首要前提,运输包装也需要满足要求,方可运输。 IATA-DGR:International Air Transport Association-Dangerous Good Regulations国际航空运输协会IMDG:International Martine Dangerous Good 国际海运协会 International Martine Dangerous Good ST/SG/AC.10/11/Rev.5/Amend.1&Amend.1&Amend.2 联合国关于危险货物运输的建议书—试验标准手册

培训教材之蓄电池知识

储能专用蓄电池 本文讨论了阀控式密封和免维护铅酸蓄电池作为太阳能灯具、光伏电站和光伏户用系统的储能电源,在全天候运行时的耐候性问题,即自然环境下温度对蓄电池寿命、容量的影响,以及光伏系统储能铅酸蓄电池的研究、开发。 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目,太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池 (以下简称铅酸蓄电池缩写为VRLA、胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40C,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。 (一)硫酸电解液干涸:硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制 因素之一。 酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因:( 1)气体再化合的效率偏低,析氢析氧、水蒸发;( 2)从电池壳体内部向外渗水;( 3)控制阀设计不当;( 4)充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。 VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4) 三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA 铅酸蓄电池寿命的致命因素,因此VRLA蓄电池不适于在35C以上高温条件下使用。 (二)热失控:蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒 面 铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%勺孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下易发生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 (三)内部短路:由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生

锂离子电池安全性问题(最新版)

锂离子电池安全性问题(最新 版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0176

锂离子电池安全性问题(最新版) 1、使用安全型锂离子电池电解质 目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于抑制电解液的燃烧。目前研究的氟代溶剂包括氟代酯和氟代醚。 阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。阻燃电解液是目前解决锂离子电池安全性最经济有效的措施,所以尤其受到产业界的重视。 使用固体电解质,代替有机液态电解质,能够有效提高锂离子

电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的改善非常有限。干态聚合物电解质由于不像凝胶型聚合物电解质那样包含液态易燃的有机增塑剂,所以它在漏液、蒸气压和燃烧等方面具有更好的安全性。目前的干态聚合物电解质尚不能满足聚合物锂离子电池的应用要求,仍需要进一步的研究才有望在聚合物锂离子电池上得到广泛应用。相对于聚合物电解质,无机固体电解质具有更好的安全性,不挥发,不燃烧,更加不会存在漏液问题。此外,无机固体电解质机械强度高,耐热温度明显高于液体电解质和有机聚合物,使电池的工作温度范围扩大;将无机材料制成薄膜,更易于实现锂离子电池小型化,并且这类电池具有超长的储存寿命,能大大拓宽现有锂离子电池的应用领域。 常规的含阻燃添加剂的电解液具有阻燃效果,但是其溶剂仍是易挥发成分,依然存在较高的蒸气压,对于密封的电池体系来说,

锂电池安全管理制度

锂电池安全管理制度 一、目的 为加强公司锂电池组装及存储管理,防止发生火灾爆炸事故造成人员伤亡及财产损失,特制订本公司锂电池安全管理制度。 二、使用范围 本制度适用于公司组装及存储锂电池的车间及仓库。 三、职责 1、安全科职责 人力资源部安全科负责制定、修改公司级锂电池安全管理规程并监督该管理规定的贯彻落实,将锂电池组装及存储部位作为巡查工作重点,着重检查现场安全防护及消防设施配备和运行情况以及现场安全措施的有效性,发现“三违”问题及时制止,现场安全及防护措施存在隐患及时上报处理。 2、生产部门 锂电池组装及存储部门负责制定安全生产操作规程(SOP)并根据部门情况制定相应规章制度,确保所有员工接受培训,将锂电池的生产、运输、存储作为现场安全管理的重要工作。 四、锂电池火灾危险性 1、锂电池火灾特性 锂电池能够自燃,随后会因为过热而发生爆炸。产生过热的原因包括电短路,快速放电,过度充电,制造缺陷,设计不良或机械损坏等等。过热会导致”热失控”过程的产生,也就是电池内部的放热反应会导致电池内部温度和压力以很快速率上升,从而将能量浪费掉。一旦某个电池单元进入热失控状态,它会产生足够的热量,

使得相邻的电池单元也进入热失控状态。随着每个电池单元轮流破裂并释放其内含物,就会产生一种反复燃烧的火焰。这就造成电池中的可燃性电解液发生泄漏,如果使用一次性锂电池,则还会释放可燃烧的锂金属。于是就会产生一个巨大的问题,这些火灾不能像“正常”火灾一样对待,需要开展有针对性的培训,防控规划,合理存储和建立灭火系统等。 2、事故原因 ●存储运输时,电池机械损伤引发热失控; ●电池组装过程中,收到挤压或刺破损坏; ●锂电池因工艺或其他问题造成内部短路,造成迅速升温、过热自燃或爆炸; ●锂电池对环境温度和湿度比较敏感,发生自燃; ●锂电池与金属物品或其他易燃易爆物品接触导致火灾事故。 五、管理要求 1、生产安全要求 生产车间必须按照公司生产要求制定标准生产操作规程(SOP)用于指导电池的组装、运输和接收、存储和日常使用以及其他涉及到锂电池的过程。车间所有人员应接受培训并确保员工能熟练掌握安全操作规程。 2、运输要求 锂电池在运输过程中发生的机械损伤是锂电池发生事故的一个重要原因,现场生产人员转运锂电池或者组装好的成品时,应注意以下要求: ●搬运者应使用合格的搬运工具(叉车、推车等),电池运输时应轻取轻放避免锂电池受到机械损伤; ●进行物料搬运时,无论使用何种搬运工具,都应考虑负荷、叠层、方向性等问题,应妥善处理,以防物料掉落或损伤;

培训体系锂电池培训资料

(培训体系)锂电池培训资 料

锂电池培训资料 壹、电池基础 二、锂离子电池基础三、锂电池的安全四、保护板BMS具体功能介绍五、锂离子电池的储藏和运输 壹、电池基础1、电池的发展简史:公元前100~公元100年电池原形1780~1791发明伽尼尔电池 1800年伏特发明电池1833年发现法拉第法则 1836年发明丹尼尔电池1859年发明铅酸电池 1868年发明干电池1899年发明Ni-Cd蓄电池 1901年发明Ni/Fe电池 1951年发明密封Ni-Cd电池 1990年发明锂离子电池 1995年发明聚合物电解质锂离子电池 2、电池的要素和组成: ◆电极 负极:通常将电池电极中电压较低的壹极称为负极 正极:通常将电池电极中电压较高的壹极称为正极 ◆隔膜:于电池中,防止正负极间电子导通,而又能让离子通过(离子传导)的隔离材料,壹般为多孔薄膜材 料 ◆电解质溶液(电液):于电池内正负极间提供离子传输作用 ◆其他构件:如外壳,极柱,密封件等

3、电池的分类 壹次电池(干电池) 二次电池(充电电池或蓄电池) ·铅酸电池 ·镍-镉电池 ·镍-氢电池 ·锂离子电池 ·液态锂离子电池 ·聚合物态锂离子电池 另外仍有燃料电池、太阳能电池等等 4、常见可充电电池性能比较:组成电池能量密度电池体系负极电解液正极环保性能电压(V) Wh/kgWh/L充电循环自放电率 锂离子电池碳LiPF6LiMn2O4或绿色环保3.6130-150350-400≥10008% LiCoO2 铅酸电池PbH2SO4PbO2铅污染严重2.030-5050-80300-50020% 镍镉电池CdKOHNiOOH镉污染严重1.250-60130-150400-60025% 镍氢电池储氢KOHNiOOH环保1.260-70190-200≥50010% 材料 二、锂离子电池基础 1、锂离子电池的“前世今生”:锂离子电池是20世纪90年代开发成功的新型高能电池。 锂离子电池的“前世”:早期负极为金属锂的“锂电池”,但金属锂的化学活性太大,充电时产生的枝晶会使电池短路,目前尚未真正解决其安全问题。锂离子

汽车电池知识培训资料

汽车电池知识培训资料 2012年3月15日

一、铅酸蓄电池的发展历史和现状 蓄电池是1859年由普兰特(Plante)发明的,至今已有一百多年的历史。铅酸蓄电池自发明后,在化学电源中一直占有绝对优势。这是因为其价格低廉、原材料易于获得,使用上有充分的可靠性,适用于大电流放电及广泛的环境温度范围等优点。 到20世纪初,铅酸蓄电池历经了许多重大的改进,提高了能量密度、循环寿命、高倍率放电等性能。然而,开口式铅酸蓄电池有两个主要缺点:①充电末期水会分解为氢,氧气体析出,需经常加酸、加水,维护工作繁重;②气体溢出时携带酸雾,腐蚀周围设备,并污染环境,限制了电池的应用。近二十年来,为了解决以上的两个问题,世界各国竞相开发密封铅酸蓄电池,希望实现电池的密封,获得干净的绿色能源。 1912年ThomasEdison发表专利,提出在单体电池的上部空间使用铂丝,在有电流通过时,铂被加热,成为氢、氧化合的催化剂,使析出的H2与O2重新化合,返回电解液中。但该专利未能付诸实现:①铂催化剂很快失效;②气体不是按氢2氧1的化学计量数析出,电池内部仍有气体发生;③存在爆炸的危险。 60年代,美国Gates公司发明铅钙合金,引起了密封铅酸蓄电池开发热,世界各大电池公司投入大量人力物力进行开发。 1969年,美国登月计划实施,密封阀控铅酸蓄电池和镉镍电池被列

入月球车用动力电源,最后镉镍电池被采用,但密封铅酸蓄电池技术从此得到发展。 1969-1970年,美国EC公司制造了大约350,000只小型密封铅酸蓄电池,该电池采用玻璃纤维棉隔板,贫液式系统,这是最早的商业用阀控式铅酸蓄电池,但当时尚未认识到其氧再化合原理。 1975年,GatesRutter公司在经过许多年努力并付出高昂代价的情况下,获得了一项D型密封铅酸干电池的发明专利,成为今天VRLA的电池原型。 1979年,GNB公司在购买Gates公司的专利后,又发明了MFX正板栅专利合金,开始大规模宣传并生产大容量吸液式密封免维护铅酸蓄电池。 1984年,VRLA电池在美国和欧洲得到小范围应用。 1987年,随着电信业的飞速发展,VRLA电池在电信部门得到迅速推广使用。 1991年,英国电信部门对正在使用的VRLA电池进行了检查和测试,发现VRLA电池并不象厂商宣传的那样,电池出现了热失控、燃烧和早期容量失效等现象,这引起了电池工业界的广泛讨论,并对VRLA

锂离子电池论坛_培训资料

第一章锂离子电池的历史和发展 1、电池发展史 电池是将物质化学反应产生的能量直接转换成电能的一种装臵。1800年,意大利科学家伏打(V olta)将不同的金属与电解液接触,作成Volta堆,这被认为是人类历史上第一套电源装臵。从1859年普莱德(Plante)试制成功铅酸蓄电池以后,化学电源便进入了萌芽状态。1868年法国科学家勒克郎谢(Leclanche)研制成功以NH4Cl为电解液的锌—二氧化锰干电池;1895年琼格发明了镉-镍电池;1900年爱迪生(Edison)研制成功铁-镍蓄电池。进入20世纪后,电池理论和技术一度处于停滞状时期,但在二次世界大战之后,随着一些基础研究在理论上取得突破、新型电极材料的开发和各类用电器具日新月异的发展,电池技术又进入了一个快速发展的时期,科学家首先发展了碱性锌锰电池。进入80年代,科学技术发展越发迅速,对化学电源的要求也日益增多、增高。如集成电路的发展,要求化学电源必须小型化;电子器械、医疗器械和家用电器的普及不仅要求化学电源体积小,而且还要求能量密度高、密封性和贮存性能好、电压精度高。因此电池池的研究重点转向蓄电池,1988年,镍镉电池实现商品化。1992年,锂离子电池实现商品化,1999年,聚合物锂离子蓄电池进入市场。 2、锂电池发展史 2.1锂原电池 美国航空航天航空局(NASA)及世界上其它一些研究机构是最早从事锂原电池研究的,他们努力的结果使锂原电池在1970年初实现了商品化。这种锂原电池采用金属锂,正极活性物质采用二氧化锰和氟化炭等材料。与传统的原电池相比,这种锂离子电池的放电容量高数倍,而且其电动势在3V以上,可用作特殊需求的长寿命电池或高电压电池。 上述使用金属锂作活性负极物质的一次锂电池已顺利实现了商品化,但锂离子蓄电池的开发且遇到了非常大的困难,最大的困难是金属锂负极存在很大的问题。这是由于在充电反应中过程中会产生枝晶锂(纤维状结晶),这种现象会导致蓄电池产生两个致命的缺陷,第一个缺陷是对电池特性的影响,那就是以纤维状沉积的金属锂会以100%的效率放电,由此导致电池充放电循环困难,并引起电池的循环寿命和贮存等性能的下降,第二个缺陷就是枝晶通过充放电的循环反复形成,枝晶锂可能穿透隔膜,造成电池内部短路,从而发生爆炸。为了解决这些问题,虽然采用了锂合金来替代金属锂,并改进了电解质,但这些努力的结果仍无法使锂蓄电池实现商品化生产。 2.2液体锂离子电池 为了克服锂原电池的以上的不足,提高电池的安全可靠性,1980年,Armand率先提出了RCB概念,锂蓄电池负极不再采用金属锂,而是正负极均采用能让锂离子自由脱嵌的活性物质。从此以后,锂电池得到了迅猛的发展。1990年日本的索尼(Sony)公司率先研制成功锂离子电池,它是把锂离子嵌入碳中形成负极,取代传统锂原电池的金属锂或锂合金作负极。1992年,锂离子蓄电池实现商品化,1999年,聚合物锂离子电池实现商品化。 2.3聚合物锂离子电池 聚合物锂离子电池是一种全新结构的锂离子电池。聚合物锂离子电池的出现是锂离子电池发展历史上的一个重大突破。聚合物锂离子电池在电池结构和电池制造工艺上都与液态锂离子电池有着根本的区别:首先,这种电池的电解质是以固态或胶体的形式存在的,没有自由液体,因而加工性和可靠性大大提高,不需要金属外壳,可以制成全塑包装,减轻重量。其次,电解质可以同塑料电极叠合,使高能量与长寿命结合起来,并且形状和大小可调,使用范围和销路将大大拓宽,适用的范围大大增加。再者,由于电解液被聚合物中的网络所捕捉,均匀地分散在分子结构中,因而电池的安全性也大大地提高。

新能源锂电各工序安全生产培训 (2)

各工序安全生产培训 目录 一、二次锂离子电池制造工序图 二、各工序消防管控事项 一、二次锂离子电池制造工序图 二、各工序消防管控事项 1、消防名词解释 闪点:又叫闪燃点,是指可燃性液体表面上的蒸汽和空气的混合物与火接触而初次发生闪光时的温度。 燃点:又叫着火点,是指可燃性液体表面上的蒸汽和空气的混合物与火接触而发生火焰能继续燃烧不少于5s时的温度。 自燃:可燃物在空气中没有受火的作用,靠自热或外热而发生的燃烧现象。 2、来料检验 目的:对凯德公司的进货原材料按规定进行检验和试验,确保产品的最终质量。

分类:对于非易燃易爆原材料,品质部IQC按相关标准进行检验,合格后入原材料仓即可。对于易燃易爆原材料(包括溶剂NMP,溶剂DMC,酒精,电解液,丙酮和甲苯等),品质部IQC检验合格后,统一入危险品仓。 仓库分为原材料仓,成品仓和危险品仓。原材料仓主要放置制作电池所需的非易燃易爆原材料以及生产及办公用的辅料。由于目前凯德的危险品仓还未交付使用,所以包括溶剂NMP,溶剂DMC及电解液均放在原材料仓中,这是极大的安全隐患。另外,原材料仓中仅仅放了3个4公斤装的干粉灭火器,且间距较远,无法满足消防需求。原材料仓中严禁烟火。原材料仓中一旦有纸板或塑料被引燃,必须立即使用干粉灭火器灭火。危险品仓是用来储存易燃易爆液体及各种有毒化学试剂的仓库。所放危险品包括:溶剂NMP,溶剂DMC,电解液,酒精,丙酮,甲苯等。危险品仓需遵循以下几点: 1 必须是独立的混凝土结构. 2 门上或窗上需开孔以保持仓内空气和外界流通 3 有专人进行管理并每天做好巡查记录4领料需严格登记,有毒化学试剂领回使用部门后,需存放在防腐耐燃试剂柜中,并做好相应的使用记录。危险品仓必须严禁烟火,在危险品仓门口靠墙区域放置干粉灭火器,凯德有3间危险品仓,每间配置2个4公斤装的干粉灭火器。保安必须每晚定时去巡查危险品仓,并做好记录,必须将隐患扼杀在襁褓中。 3、搅拌 生产部的正极搅拌室角落储存有2桶NMP溶剂,正极搅拌室内有温湿度管控,温度25 ℃,湿度40%-45%。正极搅拌室有2个4公斤装的干粉灭火器。由于研发部搅拌间太小,所以在A栋4楼放置一桶NMP。整个4楼目前空置,通风,有空气对流。当研发部投正极料搅拌前,会去四楼取回一定量的NMP,然后在第一时间将桶盖封紧。 4、 NMP的基本理化性能 NMP中文名为N-甲基吡咯烷酮,无色透明油状液体,沸点202℃,闪点95℃,对眼、鼻和皮肤有一定的刺激性。在使用NMP的场合严禁烟火;打开NMP的桶盖必须使用专用扳手,严禁在找不到扳手的情况下使用锤子加起子通过敲击的方式打开桶盖,防止产生火花而引发安全问题。由NMP引起的着火必须使用干粉灭火器灭火。储存NMP的注意事项:1 存放在阴凉、通风良好的地方2 容器密封存放3 远离热源、蒸汽管道或太阳光直接照射的地方4避免与氧化材料、有机过氧化物或易燃材料放在一起使用NMP的环境最好有温湿度管控,这不仅控制了室内空气中NMP的含量,而且使NMP尽可能少吸水,保证电池的品质。4取

锂离子电池安全性问题(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锂离子电池安全性问题(标准版)

锂离子电池安全性问题(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1、使用安全型锂离子电池电解质 目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于抑制电解液的燃烧。目前研究的氟代溶剂包括氟代酯和氟代醚。 阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。阻燃电解液是目前解决锂离子电池安全性最经济有效的措施,所以尤其受到产业界的重视。 使用固体电解质,代替有机液态电解质,能够有效提高锂离子电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的

电池人必须解的锂电池的安全性、检测及解决方案!

一、锂离子电池的组成及工作原理 锂离子电池主要由正极、负极、电解液、隔膜以及外部连接、包装部件构成。其中,正极、负极包含活性电极物质、导电剂、粘结剂等,均匀涂布于铜箔和铝箔集流体上。 锂离子电池的正极电位较高,常为嵌锂过渡金属氧化物,或者聚阴离子化合物,如钴酸锂、锰酸锂、三元、磷酸铁锂等;锂离子电池负极物质通常为碳素材料,如石墨和非石墨化碳等;锂离子电池电解液主要为非水溶液,由有机混合溶剂和锂盐构成,其中溶剂多为碳酸之类有机溶剂,锂盐多为单价聚阴离子锂盐,如六氟磷酸锂等;锂离子电池隔膜多为聚乙烯、聚丙稀微孔膜,起到隔离正、负极物质,防止电子通过引起短路,同时能让电解液中离子通过的作用。 在充电过程中,电池内部,锂以离子形式从正极脱出,由电解液传输穿过隔膜,嵌入到负极中;电池外部,电子由外电路迁移到负极。在放电过程中:电池内部锂离子从负极脱出、穿过隔膜,嵌入到正极中;电池外部,电子由外电路迁移到正极。随着

充、放电,迁移于电池间的是“锂离子”,而非单质“锂”,因此电池被称为“锂离子电池”。 二、锂离子电池的安全隐患 一般来说,锂离子电池出现安全问题表现为燃烧甚至爆炸,出现这些问题的根源在于电池内部的热失控,除此之外,一些外部因素,如过充、火源、挤压、穿刺、短路等问题也会导致安全性问题。锂离子电池在充放电过程中会发热,如果产生的热量超过了电池热量的耗散能力,锂离子电池就会过热,电池材料就会发生SEI膜的分解、电解液分解、正极分解、负极与电解液的反应和负极与粘合剂的反应等破坏性的副反应。 1、正极材料的安全隐患 当锂离子电池使用不当时,导致电池内部温度的升高,使正极材料会发生活性物质的分解和电解液的氧化。同时,这两种反应能够产生大量的热,从而造成电池温度的进一步上升。不同的脱锂状态对活性物质晶格转变、分解温度和电池的热稳定性影响相差很大。 2、负极材料的安全隐患

锂电池安全管理规定图文稿

锂电池安全管理规定集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

锂电池安全管理制度 一、目的 为加强公司锂电池组装及存储管理,防止发生火灾爆炸事故造成人员伤亡及财产损失,特制订本公司锂电池安全管理制度。 二、使用范围 本制度适用于公司组装及存储锂电池的车间及仓库。 三、职责 1、安全科职责 人力资源部安全科负责制定、修改公司级锂电池安全管理规程并监督该管理规定的贯彻落实,将锂电池组装及存储部位作为巡查工作重点,着重检查现场安全防护及消防设施配备和运行情况以及现场安全措施的有效性,发现“三违”问题及时制止,现场安全及防护措施存在隐患及时上报处理。 2、生产部门 锂电池组装及存储部门负责制定安全生产操作规程(SOP)并根据部门情况制定相应规章制度,确保所有员工接受培训,将锂电池的生产、运输、存储作为现场安全管理的重要工作。 四、锂电池火灾危险性 1、 锂电池火灾特性 锂电池能够自燃,随后会因为过热而发生爆炸。产生过热的原因包括电短路,快速放电,过度充电,制造缺陷,设计不良或机械损坏等等。过热会导致”热失控”

过程的产生,也就是电池内部的放热反应会导致电池内部温度和压力以很快速率上升,从而将能量浪费掉。一旦某个电池单元进入热失控状态,它会产生足够的热量,使得相邻的电池单元也进入热失控状态。随着每个电池单元轮流破裂并释放其内含物,就会产生一种反复燃烧的火焰。这就造成电池中的可燃性电解液发生泄漏,如果使用一次性锂电池,则还会释放可燃烧的锂金属。于是就会产生一个巨大的问题,这些火灾不能像“正常”火灾一样对待,需要开展有针对性的培训,防控规划,合理存储和建立灭火系统等。 2、事故原因 存储运输时,电池机械损伤引发热失控; 电池组装过程中,收到挤压或刺破损坏; 锂电池因工艺或其他问题造成内部短路,造成迅速升温、过热自燃或爆炸; 锂电池对环境温度和湿度比较敏感,发生自燃; 锂电池与金属物品或其他易燃易爆物品接触导致火灾事故。 五、管理要求 1、生产安全要求 生产车间必须按照公司生产要求制定标准生产操作规程(SOP)用于指导电池的组装、运输和接收、存储和日常使用以及其他涉及到锂电池的过程。车间所有人员应接受培训并确保员工能熟练掌握安全操作规程。 2、运输要求 锂电池在运输过程中发生的机械损伤是锂电池发生事故的一个重要原因,现场生产人员转运锂电池或者组装好的成品时,应注意以下要求: 搬运者应使用合格的搬运工具(叉车、推车等),电池运输时应轻取轻放避免锂电池受到机械损伤;

相关主题
文本预览
相关文档 最新文档