当前位置:文档之家› 复合函数的单调性问题研究

复合函数的单调性问题研究

复合函数的单调性问题研究
复合函数的单调性问题研究

复合函数的单调性问题研究 函数2()log a f x ax x =-(0a >且1)a ≠在区间[3,4]上是增函数,求实数a 的取值范围。

解:当01a <<时,log a y x =是减函数,只要2ax x -在[3,4]上是减函数, 则2()log a f x ax x =-(0a >且1)a ≠在区间[3,4]上是增函数, 因为2

211()24ax x a x a a

-=--,所以要使2ax x -在[3,4]上是减函数, 则2211()24ax x a x a a -=--在[3,4]上是恒大于0的减函数或恒小于0的增函数, 即1421640a a ?≥???->?或1321640a a ?≤???-时,log a y x =是增函数,只要2ax x -在[3,4]上是增函数, 则2()log a f x ax x =-(0a >且1)a ≠在区间[3,4]上是增函数, 因为

112a <,所以2211()24ax x a x a a

-=--在[3,4]上单调递增, 所以只需930a ->,所以13

a >,所以1a >符合题意。 综上,11[,)(1,).64a ∈+∞U

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

复合函数的单调性完全解析与练习(终审稿)

复合函数的单调性完全 解析与练习 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

课题:函数的单调性(二) 复合函数单调性 北京二十二中刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若AB ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间; 当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

复合函数的单调性例讲

复 合 函 数 的 单 调 性 例 讲 山西忻州五寨一中 摄爱忠 高考主要考查:①求复合函数的单调区间;②讨论含参复合函数的单调性或求参数范围问题. ①“中间变量”是形成问题转化的桥梁. ②函数思想是解决问题的关键. 复合函数定义: 1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ?,则y 关于x 的函数)]([x g f y =叫做函 数 f 与 g 的复合函数,u 叫中间变量. 外函数:)(u f y =; 内函数:)(x g u = 复合函数的单调性:同增异减. 2. 若)(x g u = )(u f y = 则)]([x g f y = 增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数 增函数 减函数 3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性; (4)将中间变量的取值范围转化为自变量的取值范围; (5)求出复合函数的单调性。 题型1:内外函数都只有一种单调性的复合型. 例 题1: ◇已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )

(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0, ∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0 g(1)=2-a ·1>0 ,解得a<2,∴1-x ,得 00知函数的定义域为),1()3, (∞+-?--∞∈x , 因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2 +4x+4在x ∈(-∞,-3)上是减函数, 在(-1,+ ∞)上是增函数,根据复合规律知, 函数y=log 0.5(x 2 +4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数. 变式训练: ◇讨论函数3 4252+-? ? ? ??=x x y 的单调性。 解:函数定义域为R. 令u=x 2 -4x+3,y=0.8u 。 指数函数u y ?? ? ??=52在u ∈(-∞,+∞)上是减函数, u=x 2 -4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数, ∴ 函数3 4252+-? ? ? ??=x x y 在(-∞,2]上是增函数,在[2,+∞)上是减函数。 这里没有第四步,因为中间变量允许的取值范围是R ,无需转化为自变量的取值范围。 题型3:外函数有两种单调性内函数有一种单调性的复合型. 例 题3:

判断函数增减性

判断函数增减性 组合函数 增+增得增 减+减得减 增-减得增 减-增得减 复合函数 定义 一般地,对于两个函数()u f y =和()x g u =,当函数()x g u =的值域Rg (?≠Rg )是()u f y =的定义域Df 的子集时,通过变量u ,y 可以表示成x 的函数()[]x g f y =,那么称这个函数为函数()u f y =和()x g u =的复合函数,其中x 称为自变量,u 为中间变量,y 为因变量。 生成条件 ?≠?Rg Df Rg , 定义域 若函数()u f y =的定义域是Df ,()x g u =的定义域是Dg,则复合函数()[]x g f y =的定义域()Dg Df Dy ?= ,即取两个函数定义域的交集。 备注: 分段函数的定义域是各段函数定义域的并集。 周期性 设函数()u f y =的最小正周期为1T ,()x g u =的最小正周期为2T ,则复合函数()[]x g f y =的最小正周期为21*T T ,任一周期可表示为()+∈R k T T k 21**。 增减性 根据()u f y =,()x g u =的单调性决定。 即“增增得增,减减得增,增减得减”,可以简化为“同增异减” 推导: 令()x g t =,则()t f y = ()x g 是增函数,x 越大,()x g 越大,即t 越大 若()t f 是增函数,则()t f 越大,即y 越大 (同增) 若()t f 是减函数,则()t f 越小,即y 越小 (异减)

判断复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指数、对数函数); (3)判断每个常见函数的单调性; (4)将复合函数的定义域分段(每个常见函数在每段定义域上具有单调性); (5)根据“通增异减”求出复合函数的单调性。 例如: 讨论函数3428.0+-=x x y 的单调性。 解:函数定义域为R 令342+-=x x u 则u y 8.0= 指数函数u y 8.0=在定义域R 上是减函数 二次函数342 +-=x x u 在(]2,∞-上是减函数,[)∞+,2上是增函数 因此,函数3428.0+-=x x y 在(]2, ∞-上是增函数,[)∞+,2上是减函数 求导 复合函数()[]x g f y =的导数和函数()u f y =和()x g u =的导数间的关系为 '?'='x u x u y y

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

复合函数的单调性典型习题

复合函数的单调性练习题 山东 王宪华 ._____________,)21(.1322减区间为的增区间为-+-=x x y ._____________,2.2822减区间为的增区间为++-=x x y ._______________,)32(log .322减区间为的增区间为--=x x y .______________,)82-(log 4.22减区间为的增区间为++=x x y 的取值范围上是减函数,求在且a a a ax y a ]1,0[)1,0)(2(log 5.≠>+-= . 3-13-)(,)(log )(6.25.0的取值范围求)上是增函数,,在(且的值域为a x f R a ax x x f --=

参考答案 ]1,(:),,1[:.1-∞+∞减区间为增区间为 ]4,1[:]1,2[.2,减区间为增区间为:- )1,(:),,3(:.3--∞+∞减区间为增区间为 )4,1[:],1,2(:.4减区间为增区间为- 21:)2)(1() 2......(..................................................1),0(log . ]2,0[)2(log , 0,]2,0[2]2,0[,2s log ]1,0[),1(log ) 1........(..........2021, ]1,0[2,0.]1,0[)2(log ,02],1,0[]1,0[)1,0)(2(log 5min <<>∴+∞=∴+-=>+-=∈+-==∈+-=+?-=∴+-=∴>+-=>+-=∈?∴≠>+-=a a a t y ax y s ax s x ax s y x ax y a a s ax s a ax y ax s x a a ax y a a a a a a 的取值范围为式可知由上是增函数 在知由复合函数的单调性可上是减函数在且上是减函数在而的复合函数,与是上是减函数在上且递减在且上是减函数 在且解 )1...(..................................................04, )(log )(6.2225.0≥+=?∴--=∴--=a a a ax x s R a ax x x f 可以取到所有正实数 的值域为解 上是增函数 在且上是增函数, ,在)31,3()(log )()2.(....................0),31,3()3-13-()(log )(25.0225.0----=>--=--∈?∴--=a ax x x f a ax x s x a ax x x f 0)31()31()2()3........(. (312) :)31,3(:)31,3()(log ),0(log )31,3(,log ) 31,3(),(log )(2225.05.025.02≥--?--?-≥--∴----=∴----=+∞=--∈--==--∈--=a a a a ax x s a ax x y s y x a ax x s s y x a ax x x f a 且由二次函数的图象可知上是减函数在知由复合函数的单调性可上是增函数在是减函数,在而的复合函数 与是 200)31()31(312 04) 3)(2)(1(22≤≤???????≥--?---≥--≥+∴a a a a a a a 解得:同时满足综上可知

定义法判断函数的单调性

2.1定义判别法 使用函数单调性定义进行解题是一个重点,也是一个难点。关键在于对函数单调性定义的理解。掌握这一方法有利于形成解题思路。函数的单调性定义: 一般的,设函数)(x f 的定义域为I : 1)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f <.那么就说)(x f 为D 上的增函数; 2)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f >,那么就说D x f 为)(上的减函数。 例1:已知βα、是方程)(01442R k kx x ∈=--的两个不等实根,函数1 2)(2+-=x k x x f 的定义域为[]βα,,判断函数)(x f 在定义域内的单调性,并证明。 证:令144)(2--=kx x x g ,则函数图象为开口向上的抛物线。 设βα≤<≤21x x ,则01440144222121≤--≤--kx x kx x , ; 将上述两个式子相加得: 02)(4)(4212221≤-+-+x x k x x , 由均值不等式,可得 2221212x x x x +≤; 02 1)(22121<-+-∴x x k x x , 则[]) 1)(1(22)()(1212)()(222121211221122212+++-+-=+--+-=-x x x x x x k x x x k x x k x x f x f 又02 12)(22)(21212121>+-+>+-+x x x x k x x x x k ,

所以0)()(12>-x f x f ,故)(x f 在区间[]βα,上是增函数。 例2、求证x x x f -+=2)(在??? ? ?∞-47,上为增函数。 解:取2121212122)()()(4 7x x x x x f x f x x ---+-=-≤<,则, 分子、分母同时乘以2122x x -+-,得 2121212122) 122)(()()(x x x x x x x f x f -+---+--=-, 由2 12,212,02121≥->-<-x x x x ,所以0)()(21<-x f x f , 函数在??? ? ?∞-47,为单调递增函数。 从上面两个例子可以看出,在应用定义判别法的时候,首先取定定义域中不等两点,对其函数值作差,判断其大小。但是,在做题过程中,不乏对不等式的灵活应用,因此,需熟练掌握一些常用的不等式。 知识链接: 常用的基本不等式 (1)、设R b a ∈、 ,则0)(022≥-≥b a a ,(当且仅当b a a ==,0时取等号)。 (2)、设R b a ∈、,则2 222222,2??? ??+≥+≥+b a b a ab b a (当且仅当b a =时取等号)。 (3)、设R c b a ∈、、,则ca bc ab c b a ++≥++222; ()32222c b a c b a ++≥++ (当且仅当c b a ==时取等号)。 (4)、均值不等式: a 、设)0(∞+∈,、 b a ,则ab b a ≥+2 (当且仅当b a =时取等号)。

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

判断一个函数的单调性

判断一个函数的单调性 2.下列函数中,在区间(0,+∞)上是增函数的是( ) A .f (x )=x B .g (x )=-2x C .h (x )=-3x +1 D .s (x )=1 x 解析:函数g (x )=-2x 在R 上是减函数,函数h (x )=-3x +1在R 上是减函数,函数s (x )=1 x 在(0,+∞)上是减函数,故排除B 、C 、D ,选A. 答案:A 1.下列函数中,在区间(-∞,0)上是减函数的是( ) A .y =1-x 2 B .y =x 2+x C .y =--x D .y =x x -1 [答案] D [解析] y =1-x 2在(-∞,0)上为增函数,y =x 2+x 在(-∞,0)上不单调,y =--x 在(-∞,0)上为增函数,故选D. 3.下列函数中,在区间(0,2)上为增函数的是( ) A .y =3-x B .y =x 2+1 C .y =1 x D .y =-|x | [答案] B [解析] y =3-x ,y =1 x ,y =-|x |在(0,2)上都是减函数,y =x 2+1在(0,2)上是增函数. 11.考察单调性,填增或减 函数y =1-x 在其定义域上为________函数; 函数y = 1 x 在其定义域上为________函数. [答案] 减 减 1.(2009·福建高考)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1f (x 2)”的是 ( )

A .f (x )=1 x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )= ln(x +1) 解析:∵对任意的x 1,x 2∈(0,+∞),当x 1f (x 2),∴f (x )在(0,+∞) 上为减函数.故选A. 答案:A 2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 2)-f (x 1) x 2-x 1<0”的是( ) A .f (x )=1 x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1) 答案 A 解析 满足f (x 2)-f (x 1) x 2-x 1 <0其实就是f (x )在(0,+∞)上为减函数,故选A. 6.已知奇函数f (x )的定义域为(-∞,0)∪(0,+∞),且不等式f (x 1)-f (x 2) x 1-x 2 >0对任意两 个不相等的正实数x 1、x 2都成立.在下列不等式中,正确的是( ) A .f (-5)>f (3) B .f (-5)f (-5) D .f (-3)0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+ ∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,故选C. 2.(2009年高考福建卷)下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1 x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1) 解析:选A.由题意知函数f (x )在(0,+∞)上是减函数, 在A 中,由f ′(x )=-1 x 2<0得f (x )在(-∞,0)和(0,+∞)上为减函数; 在B 中,由f ′(x )=2(x -1)<0得x <1,所以f (x )在(-∞,1)上

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

复合函数的单调性

函数的值域与函数的单调性我们将复习函数的值域与函数的单调性两部分容. 通过本专题的学习,同学们应掌握求函数值域的常用方法;掌握函数单调性的定义,能用定义判定函数的单调性;会判断复合函数的单调性;了解利用导数研究函数单调性的一般方法. [知识要点] 一.函数的值域 求函数值域的方法主要有:配方法、判别式法、换元法、基本不等式法、图象法,利用函数的单调性、利用函数的反函数、利用已知函数的值域、利用导数求值域等.二.函数的单调性 1.定义 如果对于给定区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就称f(x)在这个区间上是减函数.如果y=f(x)在某个区间上是增函数或减函数,就说y=f(x)在这一区间上具有严格的单调性,这一区间叫做f(x)的单调区间.注:在定义域的一点处,这个函数是增函数还是减函数呢?函数的单调性是就区间而言,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题. 2.函数单调性的运算规律 在共同的定义域上,设“f型”是增函数,“g型”是减函数,则: (1)f1(x)+f2(x)是增函数; (2)g1(x)+g2(x)是减函数; (3)f(x)-g(x)是增函数; (4)g(x)-f(x)是减函数. [典型例题] 一.函数值域的求法 (一)配方法 例1. y- + x = - 求函数2 的值域 4x 2 3 解:

. 424 4)1(422 4)1(04 4)1(04 )1(42222≤≤∴≤+---≤∴≤+--≤∴≤+--≤+---=y x x x x y 值域 例2 求函数 y=2x+2-3×4 x (-1≤x ≤0) 的值域 解 y=2x+2-3·4x =4·2x -3·22x 令 2x =t 12 101≤≤∴≤≤-t x 3 411,3 43 4)32(3]949434[343min max 222≤≤∴==∴+--=-+--=+-=y y y t t t t t y 例3. 的值域求函数x x y -+-= 53 解: 530503≤≤? ??≥-≥-x x x 得由 ∴函数定义域为[3,5] 2 20 4 2)4(122)5)(3(2222 2≤≤∴>≤≤∴--+=--+=y y y x x x y 又 ]2,2[函数的值域为∴ 例4.若实数x 、y 满足x 2+4y 2=4x ,求S=x 2+y 2的值域 解:∵4y 2=4x-x 2≥0 ∴x 2-4x ≤0,即0≤x ≤4

函数单调性的判定方法(高中数学).docx

v1.0可编辑可修改 函数单调性的判定方法 学生:日期 ;课时:教师: 1.判断具体函数单调性的方法 定义法 一般地,设 f 为定义在D上的函数。若对任何x1、x2 D ,当 x1x2时,总有 (1) f ( x1 ) f (x2 ) ,则称 f 为D上的增函数,特别当成立严格不等 f (x1 ) f ( x2 ) 时,称 f 为D上的严格增函数; (2) f (x1) f ( x2 ) ,则称 f 为D上的减函数,特别当成立严格不等式 f ( x1) f (x2 ) 时,称 f 为D上的严格减函数。 利用定义来证明函数y f ( x) 在给定区间 D 上的单调性的一般步骤: ( 1)设元,任取x1,x2 D 且 x1x2; (2)作差f (x1) f (x2); (3)变形(普遍是因式分解和配方); ( 4)断号(即判断 f ( x1 ) f ( x2 ) 差与0的大小); ( 5)定论(即指出函数 f (x)在给定的区间D上的单调性)。 例 1. 用定义证明 )3 f x x a a R ,) 上是减函数。 (() 在( 证明:设 x1,x2(,) ,且 x1x2,则 f ( x1 ) f (x2 )x13 a ( x23a)x23x13( x2x1 )( x12x22x1 x2 ). 由于 x12x22x1 x2(x1x2)23 x220 , x2x10 24 则 f (x1 ) f ( x2 )( x2x1 )( x12x22x1 x2 )0 ,即f ( x1) f ( x2 ) ,所以 f (x) 在,上是减函数。

v1.0可编辑可修改 例 2. 用定义证明函数 f ( x)x k 0)在 (0,) 上的单调性。 ( k x 证明:设 x1、 x2 (0,) ,且x1x2,则 f ( x1 ) f (x2 )( x1k ) ( x2k )(x1x2 ) ( k k ) x1x2x1x2 (x1x2 ) k( x 2 x 1 ) ( x1x 2 ) k( x 1 x 2 ) ( x1x2)( x1 x2 k ) ,x1x2x1 x2x1 x2 又 0 x1x2所以 x1x20 , x1 x20 , 当 x1、x2(0,k ] 时x1x2k0 f ( x1 ) f (x2 )0 ,此时函数f ( x) 为减函数;当 x1、x2( k ,) 时x1x2k0 f ( x1 ) f ( x2 )0 ,此时函数 f (x) 为增函数。 综上函数 f ( x)x k (k0) 在区间(0,k ] 内为减函数;在区间 (k , ) 内为增函数。x 此题函数 f ( x) 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于x1 x2k 与0的大小关系 ( k0) 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数x1 , x2当 x1x2时,容易得出 f ( x1 ) 与f( x2 ) 大小关系的函数。在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比 较清晰,但通常过程比较繁琐。 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我们常见的简单函数的单调性 结合起来使用。对于一些常见的简单函数的单调性如下表: 函数函数表达式单调区间特殊函数图像 一当 k0 时,y在R上是增函数; 次 函y kx b(k0) 0 时,y在R上是减函数。 数当 k

相关主题
文本预览
相关文档 最新文档