当前位置:文档之家› 函数单调性的判定方法

函数单调性的判定方法

函数单调性的判定方法
函数单调性的判定方法

函数单调性的判定方法

1.判断具体函数单调性的方法

对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种:

1.1 定义法

首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、

D x ∈2,当21x x <时,总有

(1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数;

(2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。

给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数

)(x f y =在给定区间D 上的单调性的一般步骤:

(1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -;

(3)变形(普遍是因式分解和配方);

(4)断号(即判断)()(21x f x f -差与0的大小);

(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。

证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=-

由于04

3)2(2

2221212

2

21>++=++x x x x x x x ,012>-x x 则0))(()()(212

2211221>++-=-x x x x x x x f x f ,

即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。

例2.用定义证明函数x

k

x x f +

=)( )0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则

)()()()(2

21121x k

x x k x x f x f +-+

=-)()(2121x k x k x x -+-=

)(

)(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2

12121x x k

x x x x --=, 又210x x << 所以021<-x x ,021>x x ,

当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x

k

x x f +=)( )0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。

此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当

21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直

接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。

1.2 函数性质法

函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我们常见的简单函数的单调性结合起来使用。对于一些常见的简单函数的单调性如下表:

函数函数表达式单调区间特殊函数图像一

函数

)0

(≠

+

=k

b

kx

y

当0

>

k时,y在R上是增函数;

当0

<

k时,y在R上是减函数。

二次函数

c

bx

ax

y+

+

=2

)

,

,

,0

(R

c

b

a

a∈

当0

>

a时,

a

b

x

2

-

<时y单调减,

a

b

x

2

-

>时y单调增;

当0

<

a时,

a

b

x

2

-

<时y单调增,

a

b

x

2

-

>时y单调减。

例函

x

k

y=

R

k∈

(且0

k)

当0

>

k时,y在0

<

x时单调减,在0

>

x

时单调减;

当0

<

k时,y在0

<

x时单调增,在0

>

x

时单调增。

指数函数

x

a

y=

)1

,0

(≠

>a

a

当1

>

a时,y在R上是增函数;

当1

0<

对数函数

x y a log =

)1,0(≠>a a

当1>a 时,y 在),0(+∞上是增函数;

当10<

对于一些常用的关于函数单调的性质可总结如下几个结论: ⑴.)(x f 与)(x f +C 单调性相同。(C 为常数)

⑵.当0>k 时,)(x f 与)(x kf 具有相同的单调性;当0

反的单调性。

⑶.当)(x f 恒不等于零时,)(x f 与

)

(1

x f 具有相反的单调性。 ⑷.当)(x f 、)(x g 在D 上都是增(减)函数时,则)(x f +)(x g 在D 上是增(减)函 数。

⑸.当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒大于0时,)(x f )(x g 在D 上 是增(减)函数;当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒小于0时,)(x f )(x g 在D 上是减(增)函数。

⑹.设)(x f y =,D x ∈为严格增(减)函数,则f 必有反函数1-f ,且1-f 在其定义 域)(D f 上也是严格增(减)函数。

我们可以借助以上简单函数的单调性来判断函数的单调性,下面我们来看以下几个例子:

例3.判断5)1(2log )(21323+++++=+x x x x x f x 的单调性。

解:函数)(x f 的定义域为),0(+∞,由简单函数的单调性知在此定义域内

323log ,,x x x 均为增函数,因为021>+x ,012>+x 由性质⑸可得)1(221++x x 也是增函数;由单调函数的性质⑷知x x x 23l o g ++为增函数,再由性质⑴知函数

)1(2

l o g )(21323++++=+x x x x x f x +5在),0(+∞为单调递增函数。

例4.设函数)0()(>>++=

b a b x a

x x f ,判断)(x f 在其定义域上的单调性。 解:函数b

x a

x x f ++=)(的定义域为),(),(+∞-?--∞b b .

先判断)(x f 在),(+∞-b 内的单调性,由题可把b

x a

x x f ++=)(转化为b x b a x f +-+=1)(,又

0>>b a 故0>-b a 由性质⑶可得b x +1为减函数;由性质⑵可得b

x b

a +-为减函数;再

由性质⑴可得b

x b

a x f +-+=1)(在),(+∞-

b 内是减函数。

同理可判断)(x f 在),(b --∞内也是减函数。故函数b

x a

x x f ++=)(在)

,(),(+∞-?--∞b b 内是减函数。

函数性质法只能借助于我们熟悉的单调函数去判断一些函数的单调性,因此首先把函数等价地转化成我们熟悉的单调函数的四则混合运算的形式,然后利用函数单调性的性质去判断,但有些函数不能化成简单单调函数四则混合运算形式就不能采用这种方法。

1.3 图像法

用函数图像来判断函数单调性的方法叫图像法。根据单调函数的图像特征,若函数)(x f 的图像在区间I 上从左往右逐渐上升则函数)(x f 在区间I 上是增函数;若函数)(x f 图像在区间I 上从左往右逐渐下降则函数)(x f 在区间I 上是减函数。、 例5. 如图1-1是定义在闭区间[-5,5]上的函数)(x f y =的图像,试判断其单调性。

解:由图像可知:函数)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5).其 中函数)(x f y =在区间[-5,-2),[1,3)上的图像是从左往右逐渐下降的,则函数)(x f y =在区间[-5,-2),[1,3)为减函数;函数)(x f y =在区间[-2,1),[3,5]上的图像是从往右逐渐上升的,则函数)(x f y =在区间[-2,1),[3,5]上是增函数。

例 6.利用函数图像判断函数①1)(+=x x f ;②x x g 2)(=;③12)(++=x x h x 在[-3,3]

上的单调性。

分析:观察三个函数,易见)()()(x g x f x h +=,作图一般步骤为列表、描点、作图。首先作出1)(+=x x f 和x x g 2)(=的图像,再利用物理学上波的叠加就可以大致作出12)(++=x x h x 的图像,最后利用图像判断函数12)(++=x x h x 的单调性。 解:作图像1-2如下所示:由以上函数图像得知函数①1)(+=x x f 在闭区间[-3,3] 上是单调增函数;②x x g 2)(=在闭区间[-3,3]上是单调增函数;利用物理上波的叠加可以直接大致作出③12)(++=x x h x 在闭区间[-3,3]上图像,即③12)(++=x x h x 在闭区间[-3,3]上是单调增函数。事实上本题中的三个函数也可以直接用函数性质法判断其单调性。

用函数图像法判断函数单调性比较直观,函数图像能够形象的表示出随着自变量的增加,相应的函数值的变化趋势,但作图通常较烦。对于较容易作出图像的函数用图像法比较简单直观,可以类似物理上波的叠加来大致画出图像。而对于不易作图的函数就不太适用了。但如果我们借助于相关的数学软件去作函数的图像,那么用图像

法判断函数单调性是非常简单方便的。

1.4 复合函数单调性判断法

定理1:若函数)(u f y =在U 内单调,)g(x u =在X 内单调,且集合{u ︳)g(x u =,

X x ∈}U ?

(1)若)(u f y =是增函数,)g(x u =是增(减)函数,则)]([x g f y =是增(减)函数。(2)若)(u f y =是减函数,)g(x u =是增(减)函数,则)]([x g f y =是减(增)函数。

归纳此定理,可得口诀:同则增,异则减(同增异减) 复合函数单调性的四种情形可列表如下:

情形

函数 单调性 第①种情形

第②种情形

第③种情形

第④种情形

内层函数)(x g u = ↑ ↓ ↑ ↓

外层函数)(u f y = ↑ ↓ ↓ ↑ 复合函数)]([x g f y =

显然对于大于2次的复合函数此法也成立。

推论:若函数)(x f y =是K(K ≥2),N K ∈)个单调函数复合而成其中有K m ≤个减函数:

① 是减函数时,则当)(12x f y k m =+=; ② 是增函数时,则当)(2x f y k m ==。

判断复合函数)]([x g f y =的单调性的一般步骤: ⑴合理地分解成两个基本初等函数)(),(x g u u f y ==; ⑵分别解出两个基本初等函数的定义域; ⑶分别确定单调区间;

⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则

)]([x g f y =为增函数,若为一增一减,则)]([x g f y =为减函数(同增异减);

⑸求出相应区间的交集,既是复合函数)]([x g f y =的单调区间。

以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。下面我们就用“八字”求法来判断函数的单调性。

例7.求)253(log )(2-+=x x x f a (0>a 且1≠a )的单调区间。

解:由题可得函数)253(log )(2-+=x x x f a 是由外函数u y a log =和内函数

2532-+=x x u 符合而成。由题知函数)(x f 的定义域是),3

1

()2,(+∞--∞ 。内函数

2532-+=x x u 在),3

1

(+∞内为增函数,在)2,(--∞内为减函数。

①若1>a ,外函数u y a log =为增函数,由同增异减法则,故函数)(x f 在),31(+∞上是

增函数;函数)(x f 在()2,-∞-上是减函数。

②若10<

是减函数;函数)(x f 在()2,-∞-上是增函数。 1.5 导数法

我们在前面也曾利用函数图像的特点判断函数的增减性,图像上升则递增,图像下降则递减.用定义法、图像法等这些初等方法来判断函数的单调性,一般比较繁杂,下面我们将以导数为工具来判断函数的单调性。函数)(x f 的导数)('x f 反映了函数增加或减小的快慢,即变化率.因此我们可以利用导数判断函数的单调性.这种用导数的符号来判断函数单调性的方法叫导数法。在给定区间内只要能求出其导数我们就可以用导数法来判断函数单调性。为此先看如下定理:

定理2:设)(x f 在区间I 上可导,则)(x f 在I 上递增(减)的充要条件是:

)0(0)(≤≥'x f .

即)(x f 在区间I 上可导,且)(x f 在I 上递增(减)?)0(0)(≤≥'x f 。 导数法判断函数)(x f y =单调性的一般步骤:

(1)首先确定函数)(x f 的定义域(判断函数的单调性,必须首先考虑其定义域); (2)求导数)(x f ;

(3)在)(x f 的定义域内)('x f 与0的大小关系; (4)写出)(x f 的单调区间. 下面我们来看下面几个例题:

例8.确定函数32)(2+-=x x x f 的单调区间.

解:32)(2+-=x x x f 的定义域为R ,22)('-=x x f ,解不等式022>-x 得1>x 所以32)(2+-=x x x f 在(1,+∞)内是增函数;解不等式022<-x 得1

32)(2+-=x x x f 在(-∞,1)内是减函数。

显然这里我们用定义法、函数性质法、图像法、复合函数单调性判断法都能判断其单调性。利用导数研究函数的单调性,一般应先确定函数的定义域,在解题过程中容易忽略函数的定义域,应予以重视.再求导数)(x f ',通过判断函数定义域被导数为零的点所划分的各区间内)(x f '的符号来确定函数)(x f 在该区间上的单调性. 例9.确定函数x x a a x f --=)((0>a 且1≠a )的单调区间.

解:函数)(x f 的定义域为R ,a a a x a a a a x f x x x x ln )()(ln ln )(--+='-??-=', 当1>a 时,,0,0ln >+>-x x a a a 即0)(>'x f ,故函数)(x f 在),(+∞-∞上是增函数; 当10<+<-x x a a a 即0)(<'x f ,故函数)(x f 在),(+∞-∞上是减函数。

综上可得当1>a 时函数)(x f 在),(+∞-∞上是增函数。当10<

),(+∞-∞上是减函数。

例10.(同例7)

解:由题可得函数)(x f 的定义域是),3

1

()2,(+∞--∞ , 且

)

2)(13(log )56()253(253log )(2

2

+-+='-+?-+=

'x x e x x x x x e x f a a ①若1>a ,则当3

1

>x 时,0)2)(13(,056,0log >+->+>x x x e a ,即0)(>x f ‘,

故函数)(x f 在),3

1(+∞上是增函数;当2-

是减函数

②若10<

>

x 时,0)(<'x f ,故函数)(x f 在),3

1(+∞上是减函数;当2-'x f ,故函数)(x f 在()2,-∞-上是增函数

导数法通过判断函数定义域被导数为零的点和导数不存在的点所划分的各区间内)(x f '的符号来确定函数)(x f 在该区间上的单调性.导数法判断函数单调性主要适用于函数)(x f 在其定义域内可导并且容易判断其导函数与零的大小关系时的情况。导数法是解决诸多问题的有力工具,它既给学生提供了一种重要的解题思想,又给学生提供了一种解题方法。

2.判断抽象函数单调性的方法

如果一个函数没有给出具体解析式,那么这样的的函数叫做抽象函数。抽象函数没有具体的解析式,需充分提取题目条件给出的信息。 2.1 定义法

通过作差(或者作商),根据题目提出的信息进行变形,然后与0(或者1)比较大小关系来判断其函数单调性。通常有以下几种方法:

2.1.1 凑差法

根据单调函数的定义,设法从题目中“凑出”“)()(21x f x f -”的形式,然后比较)()(21x f x f -与0的大小关系。

例11.已知函数)(x f 对任意实数m 、n 均有)()()(n f m f n m f +=+,且当0>m 时,

0)(>m f ,试讨论函数)(x f 的单调性。

解:由题得)()()(n f m f n m f =-+, 令m x n m x =+=21,,且21x x >,021>-=x x n

又由题意当0>m 时,0)(>m f 0)()()(21>=-?n f x f x f ,所以函数)(x f 为增函数。

2.1.2添项法

弄清题目中的结构特点,采用加减添项或乘除添项,以达到能判断“)()(12x f x f -”与0大小关系的目的。 例12.(同例11)

解:任取2121,,x x R x x <∈,则012>-x x ,)()(12x f x f -)(])[(1112x f x x x f -+-= 由题意函数)(x f 对任意实数m 、n 均有)()()(n f m f n m f +=+,且当0>m 时,

0)(>m f 0)()()(1212>-=-?x x f x f x f ,所以函数)(x f 为增函数。

2.1.3 增量法

由单调性的定义出发,任取2121,,x x R x x <∈设)0(12>+=δδx x ,然后联系题目提取的信息给出解答。 例13.(同例11)

解:任取2121,,x x R x x <∈设)0(12>+=δδx x 由题意函数)(x f 对任意实数m 、n 均有

)()()(n f m f n m f +=+,

)()()()()(1112δδf x f x f x f x f =-+=-?,又由题当0>m 时, 0)(>m f )0(0)()()(12>>=-?δδf x f x f ,所以函数)(x f 为增函数。

2.1.4 放缩法

利用放缩法,判断)(1x f 与)(2x f 的大小关系,从而得)(x f 在其定义域内的单调性。

例14.已知函数)(x f 的定义域为(0,+∞),对任意正实数m 、n 均有

)()()(n f m f mn f =,且当1>m 时1)(0<

解: 设210x x <<,则

112

>x x 又当1>m 时1)(0<

2<m ,1=n 得1)1(=f 当10<x ,由)1

()()1(x

f x f f =易知此时1)(>x f ,故0)(>x f 恒成立。 因此)()(1)()()(

)(1111

21122x f x f x f x x

f x x x f x f =?<=?=)()(12x f x f

对于抽象函数,由于抽象函数没有具体的解析式,因此需充分提取题目条件给出的信息,观察结构特点。用定义法判定抽象函数单调性比较适用于那种对于定义域内任意两个数21,x x 当21x x <时,容易得出)(1x f -)(2x f 与0大小关系的函数。定义法是最直接的方法,思路也比较清晰,在解题中灵活选择凑差法、添项法、增量法、放缩法等恰当的方法,可使解题过程更加简单方便。 2.2 列表法

对于比较复杂的复合函数,除了用复合函数单调性判断法外,还可以用列表,将各个函数的单调性都列出来,然后再判断复合函数单调性。

例15.已知)(x f y =在R 上是偶函数,且在[0,+∞)上是增函数,求)2(2x f -是 减函数的区间

解:列表如下

由表知)2(2x f -是减函数的区间)2,(--∞,)2,0[。

利用列表法比较直观,精确、易懂、量与量之间的关系又很明确。列表法在实际生活当中应用也是比较广泛的。但是列表法也有其局限性:在于适用题型狭窄,求解范围小,大部分是跟探寻规律或反映规律有关。

函数单调性是函数的一个非常重要的性质,本文从单调性的定义入手,总结了判断单调性的常见方法。本文把函数分为具体函数和抽象函数两大类进行讨论,对于每类函数都给出了判定单调性的若干方法。对于具体的函数,我们可以用多种方法去判断其单调性,特别地导数法是普遍适用的,若借助于计算机,那么图像法也是最简单最直观的。对于抽象函数的单调性问题,我们给出了用定义法及列表法。这种题型不仅抽象,而且综合性较强,对学生的思维能力有很高的要求,学生往往很难发现数学符号与数学语言之间的内在关系。因此在判断函数单调性的问题上,应灵活选择恰当的方法,从而使解题过程最简单。

函数 表达式

单调性

)2,(--∞ )0,2[- )2,0[ ),2[+∞

22x y -= ↑ ↑

↓ )(u f y =

↓ ↑ ↑

)2(2x f y -=

函数单调性的判定方法(高中数学)

函数单调性的判定方法 学生: 日期; 课时: 教师: 1.判断具体函数单调性的方法 定义法 一般地,设f 为定义在D 上的函数。若对任何1x 、D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; . (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3 R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则 ).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212 221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 22 11221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。 ~ 例2.用定义证明函数x k x x f + =)( )0(>k 在),0(+∞上的单调性。

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

《函数的单调性》教材分析

《函数的单调性》教材分析 一、内容结构 1、通过观察几个不同的函数图像,直观感受图像的变化 教材中通过以下三个不同的函数图像,让学生去发现它的变化规律,从而体验函数图像的上升与下降的变化。 2、结合直观图像和列表,归纳函数值的变化规律 教材中以二次函数为例,先从图像直观函数图像的上升与下降的变化,再结合列表归纳函数在某个区间上函数值与自变量的变化规律。 3、由特殊过渡到一般,得出增(减)函数的定义 教材中先由函数在某个区间上函数值与自变量的变化规律定义出该函数在某个区间是增函数还是减函数,再由特殊向一般转变,从而得出一般的增(减)函数的定义。 4、利用增(减)函数的定义,证明函数的单调性 教材中通过证明玻意耳定理,让学生得知如何利用定义证明函数的增减性,从而归纳证明函数单调性的一般证明方法与步骤。 二、教学目标与教学重、难点 依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为: 1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。 2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。 3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。

在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下 教学重点:函数的单调性的判断与证明; 教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。 三、地位与作用 《函数的单调性》选自人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性。这节内容是初中有关内容的深化、延伸和提高。这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 四、教学建议 函数的单调性是描述函数的整体特征之一,因此观察函数的图像时,首先应注意图像的升降变化,还有某些特殊位置的函数值的状态。让学生观察图像获得图像的变化规律时,应注意使用数形结合的思想。此外教学时,要特别重视从几个实例的共同特征过渡到一般性质的概括过程,引导学生用数学语言表示出来,生成数学概念。具体的,研究函数单调性应遵循“三步曲”: 第一步:观察图像,直观感知图像的变化 第二步:结合图表,用自然语言描述函数图像的变化规律 第三步:用数学语言定义函数的单调性

定义法判断函数的单调性

2.1定义判别法 使用函数单调性定义进行解题是一个重点,也是一个难点。关键在于对函数单调性定义的理解。掌握这一方法有利于形成解题思路。函数的单调性定义: 一般的,设函数)(x f 的定义域为I : 1)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f <.那么就说)(x f 为D 上的增函数; 2)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f >,那么就说D x f 为)(上的减函数。 例1:已知βα、是方程)(01442R k kx x ∈=--的两个不等实根,函数1 2)(2+-=x k x x f 的定义域为[]βα,,判断函数)(x f 在定义域内的单调性,并证明。 证:令144)(2--=kx x x g ,则函数图象为开口向上的抛物线。 设βα≤<≤21x x ,则01440144222121≤--≤--kx x kx x , ; 将上述两个式子相加得: 02)(4)(4212221≤-+-+x x k x x , 由均值不等式,可得 2221212x x x x +≤; 02 1)(22121<-+-∴x x k x x , 则[]) 1)(1(22)()(1212)()(222121211221122212+++-+-=+--+-=-x x x x x x k x x x k x x k x x f x f 又02 12)(22)(21212121>+-+>+-+x x x x k x x x x k ,

所以0)()(12>-x f x f ,故)(x f 在区间[]βα,上是增函数。 例2、求证x x x f -+=2)(在??? ? ?∞-47,上为增函数。 解:取2121212122)()()(4 7x x x x x f x f x x ---+-=-≤<,则, 分子、分母同时乘以2122x x -+-,得 2121212122) 122)(()()(x x x x x x x f x f -+---+--=-, 由2 12,212,02121≥->-<-x x x x ,所以0)()(21<-x f x f , 函数在??? ? ?∞-47,为单调递增函数。 从上面两个例子可以看出,在应用定义判别法的时候,首先取定定义域中不等两点,对其函数值作差,判断其大小。但是,在做题过程中,不乏对不等式的灵活应用,因此,需熟练掌握一些常用的不等式。 知识链接: 常用的基本不等式 (1)、设R b a ∈、 ,则0)(022≥-≥b a a ,(当且仅当b a a ==,0时取等号)。 (2)、设R b a ∈、,则2 222222,2??? ??+≥+≥+b a b a ab b a (当且仅当b a =时取等号)。 (3)、设R c b a ∈、、,则ca bc ab c b a ++≥++222; ()32222c b a c b a ++≥++ (当且仅当c b a ==时取等号)。 (4)、均值不等式: a 、设)0(∞+∈,、 b a ,则ab b a ≥+2 (当且仅当b a =时取等号)。

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳 1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 搜集整理,仅供参考学习,请按需要编辑修改

判断增减函数的两种常用方法

判断增、减函数常用的两种方法 有关函数的单调性问题是高考久考不衰的热点,判断函数单调性的基本方法有:①定义法②图像法③复合函数法④导数法等等。而定义法和导数法是做题中最常用的两种方法。今天我们主要来讲这两种方法,我们先来讲定义法。 现在一起来回顾下函数的单调性是怎么定义的。 定义:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个 自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或 都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 根据定义,我们可以归纳出用定义法证明函数单调性的思路为: (1)取值:设21,x x 为该相应区间的任意两个值,并规定它们的大小,如21x x <; (2)作差:计算)()(2 1x f x f -,并通过因式分解、配方、有理化等方法作有利于判断其符号的变形;

(3)定号:判断)()(2 1x f x f -的符号,若不能确定,则可分区间讨论; (4)结论:根据差的符号,得出单调性的结论。 好,现在根据归纳出的思路来做几道题 例1试讨论函数2 ()=-1x f x x [(-1,1)]x ∈的单调性。 解:设12 -1<<<1x x 则122112122 2221212 (-)(+1)()-()=-=-1-1(-1)(-1)x x x x x x f x f x x x x x . 12-1<<<1,x x Q 1221<1,<1,->0,x x x x ∴221212-1<0,-1<0,<1x x x x ,即12-1<<1x x , ∴12+1>0x x 21122212(-)(+1)>0(-1)(-1)x x x x x x ∴ . 所以函数为减函数。 这个时候我们在题目上做个小变动,加个a 之后函数的单调性还一样吗我们同样可以用定义来证明。好,自己先动手做做。 例2试讨论函数2 ()=-1ax f x x [(-1,1)]x ∈的单调性. 解:设12 -1<<<1x x

函数单调性的判定方法(高中数学).docx

v1.0可编辑可修改 函数单调性的判定方法 学生:日期 ;课时:教师: 1.判断具体函数单调性的方法 定义法 一般地,设 f 为定义在D上的函数。若对任何x1、x2 D ,当 x1x2时,总有 (1) f ( x1 ) f (x2 ) ,则称 f 为D上的增函数,特别当成立严格不等 f (x1 ) f ( x2 ) 时,称 f 为D上的严格增函数; (2) f (x1) f ( x2 ) ,则称 f 为D上的减函数,特别当成立严格不等式 f ( x1) f (x2 ) 时,称 f 为D上的严格减函数。 利用定义来证明函数y f ( x) 在给定区间 D 上的单调性的一般步骤: ( 1)设元,任取x1,x2 D 且 x1x2; (2)作差f (x1) f (x2); (3)变形(普遍是因式分解和配方); ( 4)断号(即判断 f ( x1 ) f ( x2 ) 差与0的大小); ( 5)定论(即指出函数 f (x)在给定的区间D上的单调性)。 例 1. 用定义证明 )3 f x x a a R ,) 上是减函数。 (() 在( 证明:设 x1,x2(,) ,且 x1x2,则 f ( x1 ) f (x2 )x13 a ( x23a)x23x13( x2x1 )( x12x22x1 x2 ). 由于 x12x22x1 x2(x1x2)23 x220 , x2x10 24 则 f (x1 ) f ( x2 )( x2x1 )( x12x22x1 x2 )0 ,即f ( x1) f ( x2 ) ,所以 f (x) 在,上是减函数。

v1.0可编辑可修改 例 2. 用定义证明函数 f ( x)x k 0)在 (0,) 上的单调性。 ( k x 证明:设 x1、 x2 (0,) ,且x1x2,则 f ( x1 ) f (x2 )( x1k ) ( x2k )(x1x2 ) ( k k ) x1x2x1x2 (x1x2 ) k( x 2 x 1 ) ( x1x 2 ) k( x 1 x 2 ) ( x1x2)( x1 x2 k ) ,x1x2x1 x2x1 x2 又 0 x1x2所以 x1x20 , x1 x20 , 当 x1、x2(0,k ] 时x1x2k0 f ( x1 ) f (x2 )0 ,此时函数f ( x) 为减函数;当 x1、x2( k ,) 时x1x2k0 f ( x1 ) f ( x2 )0 ,此时函数 f (x) 为增函数。 综上函数 f ( x)x k (k0) 在区间(0,k ] 内为减函数;在区间 (k , ) 内为增函数。x 此题函数 f ( x) 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于x1 x2k 与0的大小关系 ( k0) 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数x1 , x2当 x1x2时,容易得出 f ( x1 ) 与f( x2 ) 大小关系的函数。在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比 较清晰,但通常过程比较繁琐。 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我们常见的简单函数的单调性 结合起来使用。对于一些常见的简单函数的单调性如下表: 函数函数表达式单调区间特殊函数图像 一当 k0 时,y在R上是增函数; 次 函y kx b(k0) 0 时,y在R上是减函数。 数当 k

判断函数单调性知识点及练习题

判断函数单调性的常用方法一、定义法 设x 1,x 2 是函数f(x)定义域上任意的两个数,且x 1 <x 2 ,若f(x 1 )<f(x 2 ),则此函数为增函数; 反知,若f(x 1)>f(x 2 ),则此函数为减函数. 【例1】证明:当1≤X时,f(x)=x2-2x是增函数。 二、性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有: ⑴ f(x)与f(x)+C(C为常数)具有相同的单调性; ⑵ f(x)与c?f(x)当c>0具有相同的单调性,当c<0具有相反的单调性; ⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 三、同增异减法(适用于复合函数) 这是处理复合函数的单调性问题的常用方法. 对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数. 注:奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性; 设单调函数y=f(x)为外层函数,y=g(x)为内层函数 (1) 若y=f(x)增,y=g(x)增,则y=f﹝g(x)﹞增. (2) 若y=f(x)增,y=g(x)减,则y=f ﹝g(x)﹞减. (3) 若y=f(x)减,y=g(x)减,则y=f﹝g(x)﹞增. (4) 若y=f(x)减,y=g(x)增,则y=f ﹝g(x)﹞减. 例1. 求函数 2 2 2 ) (-+ =x x x f的单调区间. 四、图像法

相关主题
文本预览
相关文档 最新文档