当前位置:文档之家› 石油钻机转盘惯性刹车装置

石油钻机转盘惯性刹车装置

石油钻机转盘惯性刹车装置
石油钻机转盘惯性刹车装置

应用技术

石油钻机转盘惯性刹车装置

*

高龙岗 张 福

(宝鸡石油机械有限责任公司)

摘要 针对石油钻机转盘采用气胎离合器惯性刹车存在的刹车力矩小、响应速度慢等问题,

开发了一种钳盘式惯性刹车装置。该装置主要由连接法兰、刹车盘、刹车钳、支撑架、加力泵、液气管线和比例控制阀等组成。现已生产100多套,其良好的控制、使用性能得到用户的一致肯定。随着研究工作的深入,钳盘式惯性刹车装置将在我国石油钻机上得到更广泛的应用。 关键词 石油钻机转盘 钳盘式惯性刹车装置 刹车钳 刹车盘

0 引 言

惯性刹车作为石油钻机转盘钻井的一个重要组成部分,其主要功能是钻机转盘停转过程中,能够迅速安全地制动转盘。多年来,石油钻机转盘使用的惯性刹车一直为气胎式。气胎式惯性刹车受其自身气囊体积等结构形式的影响,实际工作中,由于气囊在充气达到所需压力并产生扭矩时往往需要一个较长的过程,即存在滞后现象,难以在短时间内控制,尤其对于电驱动钻机,控制系统一旦做得不好,容易引起大的钻井事故。针对石油钻机转盘采用气胎离合器惯性刹车存在的刹车力矩小、响应速度慢等问题,宝鸡石油机械有限责任公司开发了一种钳盘式惯性刹车装置,并首先在电驱动钻机上应用,现已推广到机械驱动钻机上。

1 技术分析

1 1 结构

钳盘式惯性刹车装置结构及安装位置见图1。该装置主要由连接法兰、刹车盘、刹车钳、支撑架、加力泵、液气管线和比例控制阀等组成。刹车盘是采用法兰螺栓连接到转盘驱动箱轴上;刹车钳固定在转盘驱动箱底座上;比例操作阀控制手柄安装在司钻控制房内,加力泵、管线等则按照易于操

作维护等原则并根据实际位置安装即可。

图1 钳盘式惯性刹车装置结构及安装位置

1 输出轴(连接转盘);

2 刹车盘;

3 连接法兰;

4 加力泵;

5 气管线;

6 油管线;

7 减速器;

8 输入轴(连接原动机)。

加力泵

[1]

结构见图2。工作过程是:给加力泵

供气,气压推动皮阀总成、推杆及活塞总成前移,活塞前移时会将进油杯下方的阀门补油孔封闭,并在液压缸体内产生油压,传递给刹车钳缸;当气压释放时,复位弹簧推动活塞后移并敞开补油孔,缸

体内的液压油自动通过补油孔返回油杯。

图2 加力泵结构示意图

1 皮阀总成;

2 推杆;

3 活塞总

成;4 油杯;5 复位弹簧;6 壳体。

刹车钳[1]

主要由制动钳体、活塞、密封圈、防尘套、制动摩擦块等组成,结构如图3所示。钳

104

石 油 机 械

CH I NA PETROLEUM MACH I NERY

2009年 第37卷 第9期

*钳盘式惯性刹车技术已获国家专利,专利号:ZL 200520078644 9。

体由左右2体构成,钳体内设有连通的活塞腔和油道,左右活塞腔呈对称布局形式,活塞与制动摩擦块连接在一起。工作时,液压油在活塞腔内推动活塞,活塞带动制动摩擦块推移对刹车盘实施夹持,

产生制动力矩。

图3 刹车钳结构示意图

1 制动盘;

2 密封圈;

3 活塞;

4 摩擦块;

5 钳体。

1 2 工作原理

钳盘式惯性刹车装置工作原理如图4所示。该装置是由钻机气源系统过来的净化压缩空气,通过比例调压阀调压后,向加力泵活塞缸一端充气,压缩气体通过加力泵内油缸活塞推动液压油,并将液压油送到刹车钳钳缸内形成油压,最终推动刹车钳对刹车盘实施夹持,达到刹车的目的。

钻井工作中,当需要实施惯性刹车逐渐释放钻杆扭矩时,可调节比例阀供气手柄以改变供气压力的大小。如果工作完毕需要转盘启动开始工作时,只需通过比例阀操作释放加力泵缸体内的气体即可,刹车盘在随设备转动时,

刹车钳会自动松开。

图4 钳盘式惯性刹车装置工作原理图

1 气源;

2 供气管线;

3 调压阀;

4 加

力泵;5 刹车钳;6 刹车盘;7 钳缸。

1 3 主要技术参数

额定工作气压:0 7MPa ;

工作介质:空气、耐高温合成制动液;工作温度:-30~80 ;加力泵增压比:1!18;最大液压排量:62 8c m 3

;活塞最大行程:50mm ;

刹车盘规格: 460mm ?16mm;单刹车钳额定扭矩:8500N #m 。1 4 性能特点

(1)钳盘式惯性刹车按照气推液原理设计,

弥补了气胎式气囊充气量大、停留时间长的不足。(2)控制操作手柄安装在司钻房座椅扶手上,便于司钻调节和操作,操作安全,控制性能好。

(3)采用钳盘式、液压控制刹车力,具有刹车能力强、制动力矩大、响应速度快等优点。(4)液压油量控制采用油杯补、卸油方法,结构简单;同时,刹车盘大小及钳缸数量可根据匹配钻机实际需要进行设计,不受结构限制。(5)易损件更换方便,且使用维修性好,寿命长,可靠性高。

2 现场应用情况

钳盘式惯性刹车装置自开发研制以来,已累计生产100多套,目前在宝鸡石油机械有限责任公司近年来研制的系列交流变频钻机、直流电驱动钻机及复合驱动钻机上均有不同程度的应用,特别是该技术被应用到我国自主研制的ZJ90DB 、ZJ120DB 大型钻机及出口美国、阿曼ZJ70DB 、ZJ50DB 、ZJ70D 、ZJ50D 等各型钻机上后,因其良好的控制、使用性能而得到了用户的一致肯定。

尽管如此,由于受钻机钻台面布局、国内生产条件和部分元器件等综合性能的影响,该产品在使用过程中也发现一些不足之处:一是由于加力泵等主要元件均安装在钻台下方不便于观察,尤其是加力泵上的油杯需要定期补充更换制动液等,从而给观察维护等带来一定困难;二是国产摩擦块在使用过程中寿命较短,需要定期更换,而摩擦块在现场更换存在空间小、拆卸不便及更换后必需进行间隙检测调整等问题,给用户带来一定麻烦。因此,钳盘式惯性刹车装置仍需要进一步改进和完善。相信随着研究工作的不断深入及我国钻机制造水平的发展提高,钳盘式惯性刹车装置必将在我国的石油钻机上得到更广泛的应用。

参 考 文 献

[1] 曹寅昌 工程机械构造[M ] 北京:机械工业出

版社,

1981:295~298,

300~302

第一作者简介:高龙岗,工程师,生于1965年,1989

年毕业于长安大学工程机械学院,现从事石油钻机设计工作。地址:(721002)陕西省宝鸡市。电话:(0917)3462182。E -m a i:l g l g2559@sohu com 。

收稿日期:

2009-06-01

(本文编辑 刘 锋)

105 2009年 第37卷 第9期高龙岗等:石油钻机转盘惯性刹车装置

constant pressure and steady flo w contro,l achiev i ng the f unc ti ons,such as concentrated m onitor i ng,da ta sto rage and curve p l o tti ng,and gua rantee i ng the qua lity contro l of m i x ed ac i d and conti nuous stab ilit y o f fl u i d d i scharg e.The fi ve m ixed prepa ra ti on contro lm ethods ensure t hat the equ i p m ent is strong i n adapt ab ility,h i gh i n reli ab ility and can sati sfy the requ i re m ent o fm an y operati ons.T he equip m ent achieves the on li ne m i xed prepa ra ti on of acid so l uti on,i m prov i ng t he precisi on o f ac i d?s m i xed preparati on,reduc i ng the opera tor?s l abo r i ntensity,sav i ng the costs and protecti ng t he env iron m ent.

K ey wo rds:auto m atic acid m ix i ng,conti nuous ac i d m i x i ng, aci d m ix i ng skid,ac i dizi ng opera tion

Zhou Ji aq i(B eijing Petroleu m M achinery P lan t,B eij i ng), Zhang G uo tian,L i D ongyang,et a.l D eve l op m en t and appli ca ti on of t he f u lly hydrau lic wh ile-drilli ng bu m per sub.CP M, 2009,37(9):89-91

In ligh t of t he co mmon l y seen downho le breakdo w n of dr ill i ng p i pe stick i ng i n the dr illi ng process,the new-type f u lly hy drau lic wh ile-dr illi ng bu m per sub w as deve l oped.The sub m a i nly consists o f connec ting m echanis m,m echan ical latch m echan is m,to rque trans m i ssi on m echan is m,stri k i ng and sea li ng dev i ces.It is a k i nd o f ne w-type p i pe-free i ng too l cha racte r ized by the i ntegrati on of up-down str i king.In practical ope ra ti on,the do w n-str i king m echan i s m can be started to unfreeze the stuck pipe if t he sti cki ng happens i n the pu lli ng out process. T he up-stri k i ng mechan i s m can be started to free the bit freez i ng if t he stick i ng happens i n t he go i ng-do w n process o r t he bit ge ts stuck i n t he bottom ho le.T he fac t o ry bench test and the fi e l d app licati on i nd ica te t hat t he design of the who le bu m per sub is reasonable,the mechan i ca l l ocking force is li nearly stable, and the hydraulic de l ay ti m e is stable,thus sa ti sfy i ng t he re qu ire m ent o f the field appli cation.

K ey w ords:hydraulic,wh ile dr illi ng,bu mper sub

X u Ji ngtian(College of Energy,X i?an Universit y of Science and T echnology,X i?an),L iShugang,Zhang N a il u,et a.l The de si gn of the contro l syste m o f the S7-300so ft ware redundancy-based dr illi ng r i g auto m ati c bit f eed.C PM,2009,37(9):98-101 Chi na?s first artifi c ial isl and7,000m deep r i ng ra il mobil e m odule r i g had a s m ooth spud-i n in H ebei P rov i nce?s N anpu O ilfi e l d i n February,2008.T he S7-300so ft w are redundancy-based dr illi ng ri g automa ti c bit feed contro l sy stem used by the rig has now successfull y undergone the fie l d acceptance.T his automa ti c b i t feed syste m is equipped w ith one m ore PLC contro l syste m wh i ch has bo th manua l and automa ti c operati ng m ode ls. T he autom atic b it feed m onitor i ng syste m m a i nly consists ofm any m odules,such as auto m a tic bit feed constant bit load pen-case contro,l e l ec tron i c anti-bump i ng,prec ise pos itioni ng and dy na m ic de m onstration of the i d le ca r?s po int,and fa ilure identifi ca tion,alar m i ng and treat m ent.The m on itor i ng system adopts the so ft w are redundancy scheme based on S i emens?s S7-300LC.The PLC processor is used i n pairs.W hen the m a j o r

processor fails,the back-up processo r w ill achieve data syn chron izati on accordi ng to t he m on itor i ng progra m and data ex change process i ng prog ram and co m plete aut om atic s w itchi ng.

T he field app lica ti on i ndicates t hat t he syste m is si m ple in opera ti on and conven i ent i n s w itch i ng,i m prov i ng the ri g control?s au to m atic l eve l and producti on m anag e m ent l eve l and guarantee i ng the s m ooth,safe and effecti ve opera ti on o f the r i g.

K ey wo rds:soft w are redundancy,au t om atic b it feed,d i sc brake,m on itor i ng syste m

G ao Longgang(Baoj i O ilfield M achinery Co.,Ltd.,Baoj i

C ity,Shaanx i Province),Zhang Fu.The i nertia brak i ng dev ice

o f the o il drilling r i g?s ro tary tab l e.CP M,2009,37(9):104-105

Conside ri ng t he prob l em that s m all braki ng mom ent and sl ow response speed are ex istent i n the i nerti a brake emp l oyed by the a ir t ube c l utch o f t he current drilli ng ri g?s ro tary i nertia brake,a k i nd of ca li per disc i nerti a brak i ng dev i ce was deve l oped.T he dev ice m a i n l y consists o f connecti on flange,brake

d i sc,brak i ng ca li p

e r,brac i ng fra m e,force-mu lti p lier pu mp,

hydropneu m a tic pi pe li ne and proporti onal con tro l valve.So far o ve r100sets of the i nertia braking dev i ces have been produced.

Its good performance o f contro l and operati on has w on a ll pra ises fro m t he users.W ith its f urther study,t he ca li per disc brak i ng ine rtia dev ice w ill have a good prospec t f o r applica ti on i n our country?s o il dr illi ng r i gs.

K ey wo rds:dr illi ng ri g ro tary tab l e,ca li pe r disc i nerti a bra k i ng dev i ce,brak i ng ca li per,brake disc

Q i Jianx i ong(B eiji ng P etroleu m M ac h i nery P lant,Beijing), Zhang Junq i ao,Pang H ui x i an,et a.l The fail ure ana l ys i s of the top driv i ng dev i ce?s ba l ance cyli nder and so l uti on sche m e.

CPM,2009,37(9):106-107

In ligh t of the fracture of the balance cyli nder?s shaft ea r ri ng i n ope ration site,i m prove m en ts w ere m ade on cy li nder structure,connecti ng m anner bet ween balance cy li nder and bian dan(.i e.carry i ng po l e)bea m,and balance m echanis m?s hy drau lic syste m.T he i ntegration of the p i ston rod i ncreases the a r ea o f the shearing l a tera l secti on,avo i d i ng t he stress concentra ti on of the scre w t h read reli e f groove and g rea tly reduc i ng the da m age of s hear i ng to the p i ston rod.The spher ica l p i n structure releases som e freedom o f the cyli nder?s front and back osc ill a ti on and reli eves the s hear i ng force produced by the osc ill a ti ng process.The i m prove m ent of the upward-bounc i ng f unc ti on of the balance m echanis m hydrauli c syste m re lieves the force cond i ti on o f the cy li nde r,re i n f o rces t he bounc i ng e ffect i n the break-out process and satisfies the requ irement of the bounci ng effect in operati on site.The fi e l d applica ti on show s t hat the prob le m of the s ha ft earr i ng fracturi ng has bas ica lly been so l ved.

K ey w ords:top dr i v i ng dev ice,ba l ance cy linder,shaft ea r ri ng fract ure,connection m anner,hydrauli c sy stem

4

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

石油钻井液压大钳安装、操作规程及维护保养

液压大钳安装、操作规程及维护保养 1范围 本标准规定了液压大钳的安装、操作及维护保养的方法。 本标准适用于钻井队液压大钳的安装、操作和维护保养。 2主要技术参数 2.1液压大钳主要技术参数见附录A。 2.2 液压大钳在不同压力下钳头扭矩见附录B。 3安装 3.1液压源安装在钻台底座或钻台偏房内,水平放置,固定牢靠。 3.2将额定钩载为5 t的滑轮,用φ15.875 mm的钢丝绳双股固定在井架天车大梁上,滑轮钩要封口。 3.3吊绳采用φ15.875 mm钢丝绳,将钢丝绳穿过滑轮,一端固定在大钳吊杆上,一端固定在3 t手拉葫芦吊钩上,手拉葫芦的下端用φ15.875 mm的钢丝绳双根固定在液压钳上。 3.4塔式钻机专用尾柱使用不小于φ137 mm的钢管,长度以高出钻台面1 m为宜,安装在钻台右前边,距井口3.3 m为宜,牢固地固定在井架底座上。A型井架也可以将井架大腿作为尾桩。 3.5将大钳与移送缸连接,吊起固定在吊绳上,再将移送缸与尾柱连接,移送缸与大钳连接端应比尾桩固定端低100 mm~350 mm,井口、大钳、尾柱保持一条线,手拉葫芦要留有足够的调节余量。 3.6接通液压管线、气路、电路。 4调试 4.1启动液压电源,观察电机转向,确保电机转向正确。 4.2井口立1柱钻杆,扣上吊卡,坐稳井口。打开气源阀门,扳动气开关将大钳送至井口。调节大钳高度,使其底面与吊卡上平面保持40 mm距离。大钳开口套入钻杆后,转动吊杆上螺旋杆,调平钳头,使上下钳两个堵头螺钉与钻杆公母螺纹贴合。 4.3操作高低档气阀、下钳夹紧气阀和移送缸气阀,观察是否灵活和漏气。 4.4试运转,压力在2.5 MPa以内低档空转1 min~2 min,压力在5 MPa以内高档空转1 min~ 2 min,确保: a)马达运转平稳,钳头复位机构正常; b)大钳送至井口,下钳准确卡住钻杆接头; c)各气、液管路无刺漏现象; d)各阀门灵活好用。 4.5调节扭矩。起下钻作业扭矩不超过100 kN·m。调节时,将钳子送到井口,夹住接头,操作高档上扣到钳子不转动时,关死钳子上的上扣溢流阀,调节油箱溢流阀到要求压力,然后再打开上扣溢流阀,调到规定上扣压力。不得用低档调节扭矩。压力、扭矩对照见附录B (资料性附录)。 5操作要求

石油钻井工程中钻机的智能电气液控制系统

石油钻井工程中钻机的智能电气液控制系统 摘要:智能的电气液控制系统具有适应性、可靠性和安全性、先进行的特点,反应的速度身十分快捷,有着安装快捷方便、维护和操作十分容易的特点,能够满足石油钻机在野外作业的需求。本文阐述了智能的电气液控制系统的基础原理和基础结构,并且分析了其在石油钻机上的可靠性应用和先进性应用,同时对适用性做出了分析比较,最终进行推广使用。 关键词:智能的电气液控制系统石油钻井工程钻机 随着钻机市场的不断发展,石油钻机开发和研制的市场有广大的前景,随着HSE管理的规范化和系统化,具有自动化性能高的石油钻机被广泛的使用。传统的石油钻机的控制系统存在着铺设的管线拆卸繁琐、维护安装复杂、危险性大、生产效率低的问题,气动阀件联系着各个逻辑控件,生产的效率很差,已经不能满足现代石油钻机的规范化布局、集中化控制、安全高效和快捷操作的需求。 1、智能的电气液控制系统的设计和结构原理 智能的电气液控制系统在进行设计的过程之中,要保持执行元件、工作介质和动力结构的特征的平稳性,主要对发令结构、控制元件、控制元件的工作方式和传令结构做出了更改。转而将通气开关、换向阀、溢流阀、继气器、调压阀,使用电控旋钮和电控换向阀等装置取代。在控制方式上采用PLC系统,对开关量、模拟量进行控制,同时实现定时、计算、逻辑运算、控制顺序、联锁保护、过程控制、计数、联网和算术运算的功能。智能的电气液控制系统的硬件主要由触摸屏、DDL、PCL和司钻房控制系统组成。智能的电气液控制系统中的CPU 硬件可以完成对数据的处理,对逻辑运算进行控制,实现与触摸屏和DDL的无线通讯功能。其中,触摸屏可以对钻进的参数和钻进的操作参数进行显示,智能控制系统中得控制元件都存在于阀导箱p 智能的电气液控制系统主要由对系统进行控制的硬件组成。钻机的智能的电气液控制系统是由控制元件、电源、核心的控制系统和辅助设备元件等构成。可以将它们按照控制方式的不同进行划分,分为模拟量及开关量的控制系统和数字式的控制系统。钻机的逻辑控制可以通过触摸屏的功能实现,通过对开关的转换实现二者的切换,同时触摸屏还可以显示和控制钻机的工作状态。一旦系统发生故障,会立刻切断电源、报警,对故障点进行显示并找出相应的解决办法。数字式的控制系统可以使用串联的工作方式,在司钻房的元件上安装DDL DRIVE模块,在绞车上进行DDL LINK模块的安装,当系统发出信号时,DDL模块可以转化数字信号,依据系统发出的指令对元件实现控制。在PCL的选择上,可以根据系统的输出点数和输入点数进行功能的联网和扩展,使用PROFIBUS作为系统的总线,依据系统的开关数量和寄存器、定时器的数量选择储存的容量。在智能的电气液控制系统阀件的选择上,主要包括绞车车厢内的控制元件和刹车系统的控制元件,采用活塞式的滑阀结构,可以改变传统的工作信号和工作介质的

海外石油钻井挤、注水泥塞安全操作规程

1 人员准备 1.1 井队带班队长,安全官,机械师,司机长,司钻,副司钻,井架工,钻工,场地工,水车司机,吊、叉车司机等 2 工具准备 2.1 与注灰管柱相匹配的安全阀与循环头 2.2 与上卸钻具相匹配的B型大钳,上扣扭矩仪,液压大钳等 2.3 与注灰队上水口相配的接头及管线 2.4 与钻具尺寸相配套的卡瓦和安全卡瓦/单根吊卡等 2.5 钻杆安全阀(球阀)、扳手、钻杆内防喷器、配合接头与循环头 2.6 检查泥浆泵安全阀压力设定在安全范围内。 2.7 足够长度的反循环管线。 2.8 泥浆比重计和取样杯。 3 安全注意事项 3.1 操作要求 3.1.1 在工作开始之前,要组织井队人员和注灰队人员召开安全会,明确注灰施工程序及顶替液量,通知司钻起钻立柱根数和循环井深及体积。 3.1.2 注灰管线试压时人员应当远离高压区。 3.1.3 起下钻时井口人员不能挡住司钻的视线。 3.1.4 对注灰管线和井口试压时井口阀门的开关应安排由第三方人员操作。

3.1.5 注水泥钻具一般用1000FT的3-1/2”油管作为注水泥管柱,下入油管长度不要短于水泥塞高度。 3.1.6 下油管期间认真通径,检查好丝扣,按照标准扭矩上扣。 3.1.7 下油管期间坐卡瓦后,使用安全卡瓦或单根吊卡做好二次防护。 3.1.8 若注灰浆中途失败,应采用反循环的方法排出灰浆,不允许灰浆通过BOP系统。 3.1.9 注灰施工前再次确认入井钻具数量,一定要和注灰工程师及监督沟通好上提管柱高度和根数。 3.1.10 预留一个泥浆仓作用来收集顶替灰浆的返出液。 3.1.11 井架工要在顶替灰浆时抵达二层台就位,等待起管柱。 3.1.12 入井的注灰管柱要求严格检查丝扣与本体,不能出现穿孔油管入井,油管连接扭矩不达标导致井下事故。 3.1.13 注灰管柱要避免使用原井管柱。 3.1.14 扣上吊卡后,一定要确认保险销子插好。 3.1.15 起下钻时井口做好防落物工作,气动卡瓦或者手动卡瓦座好后悬重要缓慢释放,防止挤扁管柱本体。 3.1.16 水泥灰顶替到位后要抓紧起钻至反循环深度,及早将多余灰浆洗出井筒。 3.1.17 利用注灰队的管线作为反洗井排出管线时,一定要落实泵车上的出口阀门是否打开。

钻机盘刹液压控制系统

钻机盘刹液压控制系统 盘式刹车具有刹车力矩容量大,制动效能稳定,耐衰退性能好,制动灵敏,操作省力,更换 维修方便结构紧凑,便于专业化、系列化生产等优点,国内外各工业部门均将其视作先进的 制动技术加以研究和发展。 工作原理:盘式刹车控制系统由液压元件和气控元件组成。 液压控制系统的工作原理:液压控制系统的动力,是用2套规格相同的液压泵分别作为主液

压泵2和备用液压泵2,主液压泵由电动机驱动,备用液压泵由气马达6带动。当停电或主液压泵出现故障时,按下按钮阀7,备用液压泵2就可代替主液压泵2短时间向系统供油,不影响钻井作业。 根据液压站提供的油压是松闸或是紧闸状态,盘式制动器又可分为常闭式和常开式两种。 图3为液压控制系统工作原理图,液压系统分为4个部分:一是油液供给系统,它主要由油箱、粗滤油器1、油泵2、精滤油器3,安全阀4以及单向阀5组成。二是正常刹车部分,它主要由两个减压刹车阀6和9,二位三通换向阀7和8组成。三是安全刹车系统,它主要由二位三通换向阀7、8、14、两位两通换向阀15、蓄能器10、延时阀11、单向阀12和减压阀13组成,四是气控系统,它由1个手动二位三通换向阀和1个气控二位三通换向气阀组 成。 液压控制系统的主油路可分为正常工作部分和安全刹车部分。正常工作时,液压油经吸油管由泵2打出,经精滤器3和单向阀5由油路b、c分别进人两个叠加式减压刹车阀6和9,再经换向阀7和8到刹车钳油缸通过刹把组件可以调节叠加式减压刹车阀,即调节刹车钳油缸内油压值的大小。当刹把处于零位时,叠加式减压刹车阀出口压力最大,此时绞车处于工作状态。当需要刹车时,司钻仅需下压刹把,使其出口压力降低,便可达到刹车的目的。司钻可凭手感

钻机液压盘式刹车制动分析

钻机液压盘式刹车制动分析 制动系统是钻机的重要组成部分,是保障钻井作业正常进行的关键,其性能直接影响钻井工程的质量与效益。从完成钻井作业角度讲,带式刹车由于受制动原理与结构的限制,制动能力和总体性能难以全面满足钻井工艺的要求。而盘式刹车由于其自身技术的特点,根据工艺需要配置制动系统以提高其总体性能的可能性要大得多。因此,盘式刹车制动系统的性能就成为体现对盘式刹车技术认识与设计水平的重要方面。 1 液压盘式刹车制动系统的特点与分析 钻井作业要求制动系统工作可靠且具有良好的工艺特性。可靠性首先表现在紧急情况时,刹车装置可在人为干预下快速作出反应,并提供足够的制动力矩;其次,系统可不在人为干预下实施应急自动刹车。制动系统工艺特性是最大限度地满足送钻、起下管柱制动要求的性能以及满足正常情况下短时或长时停车制动要求的性能。刹车钳是制动的执行元件,其性能直接影响整个系统的工作. 开式钳的制动力随油压的上升而增加,更符合带式刹车的操作习惯,油压调节特性更适合送钻和起下管柱等常规作业的要求。因此,应选择开式钳作为完成常规作业制动的执行机构,以保证制动性能。而意外情况下的紧急制动则主要应由闭式钳承担。这是因为泄压制动快速,制动力来自碟簧的机械力,在无电力的条件下仍可制动。因此,钻机盘式刹车的刹车钳应该由开式和闭式两种钳型组成。 1。1钻机液压盘式刹车制动系统 图1是根据上述原则与要求设计的钻机盘式刹车制动系统原理图。 图1ZJ50钻机盘式刹车制动系统原理图 1—闭式钳;2—紧急阀;3—驻车阀;4—开式钳;5—司钻阀;6—防碰解除阀 1。2液压盘式刹车制动受力分析 1。2。1 钻机盘式刹车的常开钳与常闭钳均是通过调节钳缸内油压的大小对制动力进行调节的。常开钳依靠液压力制动,弹簧力松闸,不充油时处于松闸状态。常闭钳依靠弹簧力制动,液压力松闸,不充油时处于制动状态。无论是常开钳还是常闭钳,均有完全松闸和制动状态。完全松闸时刹车块与刹车盘之间存在间隙Δ。制动时刹车块与刹车盘之间的间隙为0,弹簧不再变形,弹簧力为定值。为方便分析,假设两种钳的制动力(最大正压力Nmax)相同,间隙Δ相同,刹车块与刹车盘的接触面积A相同,所用弹簧相同。弹簧力F是弹簧变形量f的函数,用F(f)表示。图2是常开钳工作状态简图。图中,f1是刹车钳完全松闸时弹簧的变形量,此变形量是弹簧的最小变形量。f2是刹车钳制动时弹簧的变形量,此变形量是弹簧的最大变形量。

定钳盘式制动器的CAD图纸 装配 零件图

定钳盘式制动器的CAD图纸装配零件图 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20)

一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。 二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形

石油钻机

OIL DRILLING RIG 石油钻机 公司可提供钻井深度2000-12000米之间的钻机与修井机,有车载、橇装、整托等运输形式;并可根据用户需求,提供适应陆地、

SKID-MOUNTED DRILLING RIG 橇装钻机 4000米(1000HP)系列钻机型号及参数 TECHNICAL P ARAMETERS 技术参数 The design meets GB/T 23505 Petroleum Drilling and Workover Rigs, and the main supporting parts conform to API specifications Reasonable overall layout, safe and fast demolition, complying with highway transport requirements Features explosion-proof, leak-proof, anti-corrosion, moisture-proof, cold resistant, high temperature resistant and sand prevention Mechanical drive, electromechanical drive, and electric drive are available The mast is front opening K type, featuring low installation and integral lifting The substructure is in parallelogram structure and uses drawworks power for lifting, which is safe and fast 设计符合国标GB/T▲23505《石油钻机和修井机》,主要配套部件符合API 规范 总体布局合理,拆迁安全快速,符合高速公路运输要求 产品具有防爆、防漏、防腐、防潮、防寒、耐高温、防沙等性能 采用机械驱动、机电复合驱动、电驱动等型式。 井架采用前开口K 型,低位安装,整体起升 底座采用平行四边形结构,利用绞车动力起升,安全、快捷

汽车液压盘式制动器设计研究

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

石油钻机的主要系统

石油钻机的主要系统 石油钻机 在石油钻井中,带动钻具破碎岩石,向地下钻进,获得石油或天然气的机械设备。 一部常用石油钻机主要由动力机、传动机、工作机及辅助设备组成。一般有八大系统(起升系统、旋转系统、钻井液循环系统、传动系统、控制系统、动力驱动系统、钻机底座、钻机辅助设备系统),要具备起下钻能力、旋转钻进能力、循环洗井能力。其主要设备有:井架、天车、绞车、游动滑车、大钩、转盘、水龙头(动力水龙头)及钻井泵(现场习惯上叫钻机八大件)、动力机(柴油机、电动机、燃气轮机)、联动机、固相控制设备、井控设备等、 [编辑本段] 石油钻机的主要系统 1. 提升系统 提升系统主要是由绞车、井架、天车、游动滑车、大钩及钢丝绳等组成。其中天车、游动滑车、钢丝绳组成的系统称为游动系统。提升系统的主要作用是起下钻具、控制钻压、下套管以及处理井下复杂情况和辅助起升重物。 2.旋转系统 旋转系统是由转盘、水龙头(动力水龙头)、井内钻具(井下动力钻具)等组成。其主要作用是带动井内钻具、钻头等旋转,连接起升系统和钻井液循环系统。 3.钻井液循环系统 钻井液循环系统是由钻井泵、地面管汇、立管、水龙带、钻井液配制净化处理设备、井下钻具及钻头喷嘴等组成。其主要作用是冲洗净化井底、携带岩屑、传递动力。 4.传动系统 传动系统是由动力机与工作机之间的各种传动设备(联动机组)和部件组成。其主要作用是将动力传递并合理分配给工作机组。 5.控制系统 控制系统由各种控制设备组成。通常是机械、电、气、液联合控制。机械控制设备有手柄、踏板、操纵杆等;电动控制设备有基本元件、变阻器、继电器、微型控制等;气动(液动)控制设备有气(液)元件、工作缸等。 6.起升系统 起升系统一般由液压缸组成。随着液压缸活塞杆的伸出将井架起升,活塞杆的缩回井架下放。

盘式制动器结构和原理

盘式制动器结构和原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器 3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,

并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

液压盘式刹车培训教材

液压盘式刹车装置 培训教材 中国石油勘探开发研究院采油采气装备所任丘市博科机电新技术有限公司 2011-10-10

目录 一.机构组成 (2) 1.液压站 (3) 2.操纵机构 (5) 3.执行机构 (7) 二.装置调试 (8) 1.系统压力的调定(出厂前已调好) (8) 2.现场安装调试内容 (9) 三.操作使用 (10) 1.工作制动 (10) 2.驻车制动 (11) 3.紧急制动 (11) 四.维护保养 (12) 1.注意检查事项 (12) 2.关键元器件的拆装和更换 (13) 五.故障检修 (17)

前言 本培训教材针对中油中国石油勘探开发研究院采油采气装备所(原机械研究所)设计生产的液压盘式刹车装置,其它液压盘式刹车装置不一定适合参考。 中国石油勘探开发研究院采油采气装备所为各钻井总公司钻机配套的液压盘式刹车装置为液控操作控制方式,下面以液控操作盘式刹车为基础进行讲解。

一.机构组成 液压盘式刹车系统主要由三部分组成,液压站、操作台、执行机构(执行机构又包括钳架、刹车盘和刹车钳三部分,刹车钳有工作钳和安全钳之分)。液压站、操作台和执行机构三部分之间用液压管线连接,管线分为:从液压站到操作台有四根管线(ZJ40、ZJ50、ZJ70 ),分别为P1、P2、P3、T,其中P1管线通过液压阀的控制给安全钳一路供油,P2、P3经液压阀控制后分别给两路工作钳(左右路工作钳)供油,T为系统回油。从操作台到执行机构的刹车钳油缸有B1、B2、B3三根液压管线连接。其中B1管线接安全钳油缸,B2、B3管线接工作钳油缸。ZJ30LDB、ZJ30DB钻机配套的液压盘式刹车液压管线从液压站到操作台有三根管线,分别为P1、P2、T,其中P1管线通过液压阀的控制给安全钳一路供油,P2经液压阀控制后给两路工作钳(左右路工作钳)供油,T为系统回油。从操作台到执行机构的刹车钳油缸有B1、B2两根液压管线连接。其中B1管线接安全钳油缸,B2管线接工作钳油。

物联网在石油钻机控制系统上的探索运用

物联网在石油钻机控制系统上的探索运用 为适应各种不同地域环境油气的勘探开发,石油企业不断的利用新科技对石油钻机控制系统进行改进。物联网是一个社会发展的新环境,物联网中的技术应用于石油钻井方面,帮助石油企业更好开发出优质石油。本文针对石油钻机控制系统进行介绍,探讨出物联网在石油钻机控制系统中的应用,分析石油发展前景。 标签:物联网;石油钻机控制系统 一、石油钻机控制系统现状 目前,石油钻探行业正逐步与国际接轨,对石油钻井国内和国际的要求也越来越高,而石油钻井井场防爆电路标准化体系,是基于当前国内外石油钻采设备和新技术的钻井,新技术和现代钻井生产的要求,为了防止火花因石油钻井过程电气控制设备,造成可燃气体爆炸,实现高品质,生产效率和安全钻井,并与国际市场和诞生出的新产品。石油钻机标准化防爆电路系统主要用于陆上石油钻井、海上石油钻井平台、固体控制设备和井场电气设备及照明控制。该系统适用于有爆炸性气体混合物环境的1区、2区,爆炸性气体混合物属Ⅱ类,A、B级,T1--T4组的场所,作为配电或集中控制三相鼠笼异步电动机的启动、停止,具有失压、短路、过载及断相保护功能,关键部位还具有无负载拒绝合闸功能。井场具有标准化电路防爆,水和灰尘,特别适用于油田恶劣的环境,这是油田钻井设备和标准化作业的最佳选择。井场标准防爆电路系统的设计和制造是以“性能先进、安全可靠、运输方便、操作经济、符合hse要求”为原则。 二、石油钻机控制系统 2.1集中控制方式 所謂集中控制,是利用MCC电子控制室将井场所有交流电机的起动装置和其他地区的区域电源集中起来,采用两地独立供电和起动交流电机的方式,通过MCC控制室的插接柜通过快速防爆插头将电源和控制电源线连接到各电气设备上。固体控制区进入一电源和控制电源线,也通过快速防爆连接器结合到罐接线盒的固体控制结束,然后将电缆通过所述防爆接线盒,以提供过渡表面罐子固体控制设备。简化了井场电气控制设备,实现了井场电气设备的集中控制,即井场内所有交流电机的集中控制,两地之间的独立供电和起动。使用集中控制室分区电源的交流电机的场区和井场并与防爆和防爆接线盒与实施的控制转接盒其它井MCC电控房。井场中所有交流电动机的供电和控制以及其他地区的分区供电集中在电控室。采用独立供电和双向起动模式,有利于井上电气人员的集中运行。容易观察,同时也有利于电力的维护和检修。缺点是来自MCC电气控制室的电源和控制电缆太多,不利于人员的安装。从经济的角度来看,总体价格略高。 2.2分散控制方式

钳盘式制动器简介

定钳盘式制动器的制动钳固定安装在车桥上,既不能旋转,也不能沿制动盘轴向移动,因而必须在制动盘两侧都装设制动块促动装置,以便将两侧 的制动块压向制动盘。因此,结构较为复杂,尺寸较大,热负荷较大,制动液容易受热汽化,而且若用于驻车制动,必须加装一个机械促动的制动器。由于以上缺点,使得定钳盘式制动器难以适应现代汽车的使用要求,自上世纪70年代,逐渐让位于浮钳盘式制动器。浮钳盘式制动器的制动钳一般可设计得可以相对制动盘轴向滑动。其中,只在制动盘的内侧设置液压缸。浮钳盘式制动器的工作原理如图十八所示。制动钳支架3固定在转向节上(盘式制动器一般用于前轮,当用于后轮时,一般是高级轿车,则制动钳支架就装在后轴分头上),制动钳体1与支架3可沿导向销2轴向滑动。制动时,活塞8在液压力p1的作用下,将活动制动块6(带摩擦块磨损报警装置)推向制动盘4。与此同时,作用在制动钳体1的反作用力p2推动制动钳体沿导向销2向右移动,使固定在制动钳体1上的固定制动块5压靠到制动盘上。于是,制动盘两侧的摩擦块在p1和p2的作用下压紧制动盘,使之在制动盘上产生与运动方向相反的制动力矩,促使汽车制动。盘式制动器与鼓式制动器相比有以下优点:⑴一般无摩擦助势作用,因而制动器效能受摩擦因素的影响较小,即效能较稳定。⑵浸水后效能降低较少,而且只需经一两次制动即可恢复正常。⑶在输出制动力矩相同的情况下,尺寸和质量一般较小。⑷制动盘沿厚度方向的热膨胀量较小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大。⑸较容易实现间隙自动调整,其他保养修理作业也比较简单。但盘式制动器也有明显的不足之处:⑴效能较低,故用于液压制动系时所需的制动促动管路压力较高,一般要伺服装置。⑵兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂,因而在后轮上的应用受到限制。目前,盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以获得汽车在较高车速下制动时的方向稳定性。在货车上,盘式制动器目前也采用,但离普及还有相当的距离

盘式制动器设计

目录 绪论 (1) 一、设计任务书 (1) 二、盘式制动器结构形式简介 .................... 错误!未定义书签。 2.1、盘式制动器的分类....................... 错误!未定义书签。 2.2、盘式制动器的优缺点..................... 错误!未定义书签。 2.3、该车制动器结构的最终选择............... 错误!未定义书签。 三、制动器的参数和设计 ........................ 错误!未定义书签。 3.1、制动盘直径 ............................ 错误!未定义书签。 3.2、制动盘厚度 ............................ 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径............... 错误!未定义书签。 3.4、摩擦衬块面积 .......................... 错误!未定义书签。 3.5、制动轮缸压强 .......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算........... 错误!未定义书签。 3.7、制动力矩的计算和验算................... 错误!未定义书签。 3.8、驻车制动计算 .......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 .............. 错误!未定义书签。 4.1、制动盘 ................................ 错误!未定义书签。 4.2、制动钳 ................................ 错误!未定义书签。 4.3、制动块 ................................ 错误!未定义书签。 4.4、摩擦材料 .............................. 错误!未定义书签。

石油钻井岗位操作规程

第一章司钻岗位操作规程 一、操作前检查与准备 1、召开班前会,根据生产任务搞好工作安排,使全班每个人都能明确本班任务和安全生产注意事项,确保生产有条不紊,安全无事故。 2、检查主刹车及辅助刹车系统工作情况。 3、检查大绳的死、活绳头固定情况及大绳有无断丝。 4、检查所有钢缆、给进、绞车、吊索。 5、检查液压系统、性能良好,各种仪表灵敏可靠。 6、检查提升系统及动力大钳。 7、防碰天车装置必须灵敏可靠。 8、指挥岗位人员清理钻台面,便于操作。 二、正常钻进 1、钻进中严格执行技术指令。 2、均匀送钻,观察参数仪(指重表、泵压表)变化,准确地判断井下情况。 3、钻进中发生蹩、跳现象,及时汇报,根据指令调整钻压、转速等参数。 4、钻进中泵压下降,应立即停钻检查。排除地面因素后起钻检查钻具。 5、牙轮钻头使用到后期,出现蹩、跳钻、转盘负荷大、打倒车、钻时明显增加等现象,立即循环钻井液,起钻换钻头。 6、设备发生故障,尽量循环钻井液,活动钻具;不能循环钻井液及活动钻具时,可下放钻具,将悬重的2/3压至井底,使钻具弯曲,以防粘卡,排除故障后,起钻检查钻具。 7、接单根前按规定进行划眼,卸扣时不磨扣,上扣时不压扣。上提方钻杆时,观察游车,待单根下接头出鼠洞时应缓慢起出。接好单根后先开泵,正常后方可下放钻进。 8、操作失误造成顿钻或溜钻,立即循环钻井液起钻检查。 三、起钻操作 1、起钻时严格执行技术指令。 2、起钻前将钻头提离井底2m以上,循环钻井液,并活动钻具。待钻井液性能稳定,井下情况正常,准备工作完成后,方可起钻。 3、井口挂好吊环,插入磁性保险销,待大钩弹簧拉紧后方可上提。 4、上提钻具时精力集中,平稳操作,右手不离刹把,左手不离开关,目视井口,观察指重表、滚筒钢丝绳缠绕情况及钻杆接头数,判断游动滑车位置,防止顶天车。 5、起钻中途按规定进行放气,钻杆下接头出转盘面0.5-0.6m后,刹住钻具,待井口放好卡瓦或吊卡后,缓慢下放钻具。 7、井下正常时根据钻具负荷和设备起升能力合理选择起钻速度。 8、起钻遇卡,应上下活动钻具,上提拉力不得超过原悬重100KN,严禁猛提硬转,无效后接方钻杆循环钻井液,汇报请示。 四、下钻操作 1、下钻时严格执行技术指令。 2、入井钻头及喷嘴符合设计、无损伤,否则不能入井,钻头装卸器尺寸合适。 3、钻头紧扣先用链钳人力上紧,再用顶驱紧扣,扭矩符合要求,下入时缓慢通过井口。 4、入井钻铤符合规定标准(弯曲度及磨损情况等),按规定扭矩紧扣。 5、根据钻铤尺寸选择卡瓦、安全卡瓦。卡瓦距内螺纹端面50 cm ;安全卡瓦要卡平、卡紧,不能卡反,所卡部位至卡瓦距离5-8cm。

钻井绞车盘式刹车液压系统研究_朱小平

钻井绞车盘式刹车液压系统研究 Hydraulic System of the Disk Brake in Drilling Drawworks 朱小平1) 高纪念1) 张铜均金2) 1)西安石油学院机械系,710065;2)中原石油勘探局机仪所.第一作者:男,1953年生,副教授 摘 要 根据钻井绞车盘式刹车的结构原理和钻井作业对其液压系统的要求,提出一种新的钻井绞车盘式刹车液压系统方案,分析了其工作原理及特点.在液压系统中以先导减压阀为主阀,分别采用刹把和比例溢流阀进行调节,控制刹车力矩的变化,既保留了手动操作灵活方便的特点,又可实现自动送钻;油路采用压力控制和方向控制两种方式并联,油源采用二级赘余配置,系统可靠性高;利用气控换向阀控制紧急制动油缸,对钻井作业中可能出现的辅助刹车失效、溜钻、游车与天车相碰三种意外紧急情况提出了可行的处理措施,进一步保证了钻井作业的安全.分析表明,这套液压系统适用于钻井绞车盘式刹车的控制,具有一定的实用价值. 主题词 钻井设备,绞车刹车,液压系统,研究 中图资料分类法分类号 TE823 盘式刹车由于具有制动力矩可调性好、操作惯性小、动作灵敏、易实现自动控制、使用维护方便等优点[1],在钻井绞车制动系统中具有广阔的应用前景[2].盘式刹车主要采用液压系统进行操作和控制,其液压系统性能好坏直接影响到盘式刹车的工作性能.本文在研究盘式刹车结构的基础上,结合钻井作业的特点,提出一种新的钻井绞车盘式刹车液压系统,并对其工作原理和特点进行分析. 1 盘式刹车对液压系统的要求 典型的绞车盘式刹车结构如图 1.主要由刹车盘、刹车钳架、刹车钳、液压油缸等组成[3].刹车钳为一钳式杠杆机构,一端与液压缸活塞杆相连,另一端为嵌装摩擦片的刹瓦.液压油使油缸活塞杆伸出,推动杠杆使刹瓦压紧在刹车盘上,刹车盘与滚筒为一体,刹瓦与刹车盘间的摩擦力产生制动力矩,实现滚筒轴的制动.活塞杆收回时,刹瓦离开刹车盘,制动力矩消失,滚筒可自由转动.根据盘式刹车功能和钻井作业的特殊性,其液压系统应满足以下要求: (1)具有足够的液压力和制动力矩,保证在以最大钻具重量下钻的条件下,可靠地制动滚筒; (2)反应灵敏,刹瓦能迅速地压紧松开刹车盘; (3)操作方便满足起下钻作业和送钻操作的要求(符合钻井操作的习惯); (4)控制可靠,决不能因液压系统的故障造成井下事故; (5)能在出现意外情况时紧急制动滚筒 . 图1 盘式刹车结构示意图 1-刹车钳;2-滚筒;3-刹车钳架;4-刹车盘;5-油缸 2 盘式刹车液压系统工作原理 2.1 盘式刹车液压系统的组成 根据盘式刹车主要功能和对液压系统的要求,拟定液压系统方案如图2所示.该液压系统由执行、控制和油源三大部分组成. 52西安石油学院学报·1999年11月·第14卷·第6期(J.of Xi’an Petr.Inst.Nov.1999Vol.14No.6)

液压盘刹使用说明书

液控盘式刹车装置 使用操作维护手册川油广汉宏华有限公司CHUAN YOU GUANGHAN HONGHUA 二零零三年八月

目录 1、简介 --------------------------------------------------------------------------- 1 2、主要性能参数 --------------------------------------------------------------- 2 3、工作原理与结构特征 ------------------------------------------------------ 3 4、安装 --------------------------------------------------------------------------- 11 5、调试 --------------------------------------------------------------------------- 15 6、操作规程 -------------------------------------------------------------- ----- - 18 7、维护与保养 -------------------------------------------------------------- ---- 20

8、故障检修 -------------------------------------------------------------------- - 25 9、关键元器件的拆装与更换 -------------------------------------------- ---- 26 10、推荐备件清单 ----------------------------------------------------------- ---- 31 一、简介 液压盘式刹车装置由三部分组成:制动执行机构、液压站及操作台,它们之间用液压管线连接。液压站是动力源,为执行机构提供必需的液压动力;操作台是动力控制环节;执行机构是制动执行部分,它由刹车钳、钳架、刹车盘三部分组成,其中刹车钳又分为常开式工作钳和常闭式安全钳两种型式。 该装置具有以下五种功能 1、工作制动通过操作刹车阀的控制手柄,调节工作钳对制动盘的正压力,从而为主机提供大小可调的刹车力矩,满足送钻、起下钻等不同工况的要求。 2、紧急制动遇到紧急情况时,按下紧急制动按钮,工作钳、安全钳全部参与制动,实现紧急刹车。

相关主题
文本预览
相关文档 最新文档