当前位置:文档之家› 高桩码头课程设计计算书

高桩码头课程设计计算书

高桩码头课程设计计算书
高桩码头课程设计计算书

目录

第一章设计资料 ........................................................................................... 错误!未定义书签。

码头用途 .............................................................................................. 错误!未定义书签。

工艺要求 ................................................................................................ 错误!未定义书签。

自然条件................................................................................................... 错误!未定义书签。

地形................................................................................................... 错误!未定义书签。

原有护岸情况............................................................................... 错误!未定义书签。

地基土壤物理力学性质指标........................................................... 错误!未定义书签。

水位 ................................................................................................ 错误!未定义书签。

建材供应 ................................................................................................ 错误!未定义书签。

施工条件 ................................................................................................ 错误!未定义书签。

码头规划尺度......................................................................................... 错误!未定义书签。第二章码头结构选型 ..............................................................................错误!未定义书签。第三章码头结构布置及构造 ...................................................................错误!未定义书签。

码头结构总尺度的确定......................................................................... 错误!未定义书签。

码头结构的宽度............................................................................... 错误!未定义书签。

码头结构沿码头长度方向的分段................................................. 错误!未定义书签。

桩顶高程......................................................................................... 错误!未定义书签。

码头上工艺设备的型式及布置............................................................. 错误!未定义书签。

门机轨道的布置............................................................................. 错误!未定义书签。

工艺管沟的位置和尺寸................................................................. 错误!未定义书签。

系船柱的型式和布置..................................................................... 错误!未定义书签。

橡胶防冲设备的型式和布置......................................................... 错误!未定义书签。

护轮槛............................................................................................. 错误!未定义书签。

码头上部结构系统的布置和型式........................................................... 错误!未定义书签。

横向排架......................................................................................... 错误!未定义书签。

纵梁 ................................................................................................ 错误!未定义书签。

面板和面层..................................................................................... 错误!未定义书签。

靠船构件......................................................................................... 错误!未定义书签。

基桩的布置及构造................................................................................. 错误!未定义书签。

横向排架中桩的布置..................................................................... 错误!未定义书签。

桩的纵向布置................................................................................... 错误!未定义书签。

桩的构造......................................................................................... 错误!未定义书签。

桩帽的构造..................................................................................... 错误!未定义书签。第四章码头荷载....................................................................................错误!未定义书签。

永久荷载 ................................................................................................ 错误!未定义书签。

永久荷载计算图示......................................................................... 错误!未定义书签。

永久荷载的计算............................................................................. 错误!未定义书签。

可变荷载 ................................................................................................ 错误!未定义书签。

船舶荷载......................................................................................... 错误!未定义书签。

堆货荷载......................................................................................... 错误!未定义书签。

门机荷载......................................................................................... 错误!未定义书签。

作用效应组合设计值的确定................................................................. 错误!未定义书签。第五章横向排架计算 ..............................................................................错误!未定义书签。

计算基本假定......................................................................................... 错误!未定义书签。

桩的刚性系数......................................................................................... 错误!未定义书签。

桩上荷载及符号定义............................................................................. 错误!未定义书签。

桩顶的变位............................................................................................. 错误!未定义书签。

桩顶断面的内力..................................................................................... 错误!未定义书签。

静力平衡方程......................................................................................... 错误!未定义书签。

基桩承载力验算..................................................................................... 错误!未定义书签。第六章附件 (26)

(1) 高桩码头平面图与立面图 (26)

(2)高桩码头断面图 (26)

第一章设计资料

1.1 码头用途

拟设计的码头系天津港所属船舶修理厂的配套工程之一,供待修船舶系靠、检修、修理和新建船舶舾装之用。

工艺要求

满足主机马力为1900HP,长45.79米宽9.8米型深5.0米,最大吃水4.5米港作拖轮停靠和修理要求,满足长度为67.52米载重量1000吨,满载排水量为1830吨供游轮停靠要求。

满足轨距为10.5米,起重量为10吨,荷载代号为M h-4-25门座起重机(1台)在码头上作业的要求。

满足自重为吨,最大其中量为吨,使用吊重为9吨(打支腿工作)的Q161型轮胎吊在码头上作业的要求。

满足码头上堆置15kN/m2的负荷要求。

码头前沿设两条工艺管沟,一条供敷设水、乙炔、压缩空气之用,一条供敷设电缆用。

码头前沿设置供船舶和电焊机使用的供电箱4个和供门机使用的供电箱1个。

码头前沿设置船桩和防冲设备以供船舶安全方便系靠。

自然条件

1.3.1地形

修船码头位于海河下游左侧凹岸内,现有岸坡稳定,水深无明显变化。

1.3.2 原有护岸情况

现有护岸为木桩基L型钢筋混凝土结构,横断面如图1-1所示,经唐山大地震考验,安全可靠可继续使用,护岸前岸坡平均坡度为1:5。

图1-1 原有护岸的横断面图

1.3.3地基土壤物理力学性质指标

地基土壤物理力学性质指标见表1-1:

土层标高(m ) 土的

名称

天然含水量

(%)W

湿重度

3(/)KN m

孔隙比ε

固结快剪

桩侧极限摩阻力2(/)KN m

()φ?

2

/C Kg cm

4.7-以上

泥质亚粘土

42.2

17.7

1.2

19

0.19

15

4.7~12.0--

深灰色粘土

46.6

17.5

1.3

13

0.13

15

12.0~20.0

-- 深灰色亚粘土

28.6

19.6

0.79

19

0.11

60

20.0~22.0

--

黄褐色粘土

29.5

19.7

0.81

16

0.25

60

表1-1 地基土壤物理力学性质指标

当桩尖打至20.0m -以下时,桩端极限阻力2

1600/R KN m =。

1.3.4 水位

设计高水位:+3.50米;

设计低水位:+1.00米;

平均水位:+2.20米。

建材供应

钢筋、水泥、木材按计划满足供应,钢筋品种、规格按实际构造需要选用,橡胶防冲设备可采用天津市工厂生产的产品,砂石料由外地供应宜节约使用。

施工条件

码头施工可委托一航局一公司承担,该公司技术力量雄厚,施工经验丰富,有规模大、机械化程度高的构件预制厂,能制作各种规格的钢筋混凝土和预应力混凝土构件(桩、梁、板、靠船物件等)有大型和小型的起重运输机械和各种工程船舶(打桩船、起重船、拖轮、驳船等)可满足施工需要。

1.6 码头规划尺度

码头平行于护岸布置,码头前沿线距钢筋混凝土L型挡土墙32.5m。

码头长90m,码头宽度可根据使用要求和选用的结构形式确定。

码头前沿标高+4.5M

码头前水深-4.0M。

第二章码头结构选型

天津港海岸地貌为淤泥质海岸类型,土质较软,多为粘性土壤,承载能力差,适合打桩,故选用高桩码头。

由此码头的用途和工艺要求可知,码头上部结构中除了面板、靠船构件等主要组成外,还应布置工艺管沟和门机轨道梁等。所以对于其上部结构,承台式适用于水位变化较大,且岸坡土质较好的情况;无梁板式只能采用非预应力面板,且跨度不宜太大,桩的承载力不能充分发挥,码头面不能承受集中荷载;桁架式构造复杂,易损坏,难维修,造价往往就高。

梁板式高桩码头将码头面上的堆货荷载和流动机械荷载通过面板传给纵梁和横梁;门机荷载直接由门机轨道梁承受;作用在靠船构件和系船柱块体上的船舶荷载通过横梁传给桩基,故梁板式码头各构件受力合理明确;由于采用预应力钢筋混凝土结构,提高了构件抗裂性能,减少了钢筋用量;横向排架跨度大,桩的承载力能充分发挥,装配程度高,施工速度较承台式和桁架式快;因横梁位置较低,靠船构件的悬臂长度较无梁板式短;适用于荷载较大且复杂的大型海港码头。故此码头上部结构采用梁板式。

由于此地区地基中软土层较厚、土质差,且土坡已经较为稳定,所以可以建造宽桩台式高桩码头,这样既可以保证码头建筑物的整体稳定性,还可以减少填方。由于码头宽度较大,通常将整个码头结构用纵向变形缝分成前后桩台。

第三章码头结构布置及构造

3.1 码头结构总尺度的确定

3.1.1码头结构的宽度

由于本码头采用宽桩台式高桩码头,码头结构宽度较大,而在此宽度内前后区域所受的荷载差异较大,故把码头用纵向变形缝分为前方桩台和后方桩台。前方桩台的宽度一般采用码头前沿地带的宽度,此码头的码头前沿地带设有宽度为10.5m的门机,且从码头前沿线到门机后轨外1.5m处的范围内。故码头前沿地带宽度为14m,且门机轨道下分别设有纵梁。

-=。

后方桩台宽度取为32.51418.5m

3.1.2 码头结构沿码头长度方向的分段

为避免在结构中产生过大的温度应力和沉降应力,沿码头长度方向设置变形缝。变形缝的宽度取为25mm,变形缝内用泡沫塑料的功能柔性材料填充,以保证结构自由伸缩。

本码头长度为90m,采用梁板式高桩码头,故变形缝的间距取为45m。变形缝的形式取为悬臂梁式,悬臂的长度取为1.5m。为防止相邻两分段水平位移不一致,造成轨道错牙,变形缝在平面上应作成凹凸形,凹凸缝的齿高为300mm。

3.1.3 桩顶高程

桩顶高程为+。

3.2 码头上工艺设备的型式及布置

3.2.1 门机轨道的布置

门机轨道布置在码头的前方桩台的纵梁上,从码头前沿线到门机后轨外的距离为2m。

3.2.2 工艺管沟的位置和尺寸

此码头为舾装码头,在码头前沿应设置两条管沟,一条供铺设电缆和提供压缩乙炔用,另一条供为船舶供水和提供压缩空气和氧气的管线。

对于高桩码头,管沟的位置一般设置在码头前沿靠船构件和前纵梁之间,在系船柱下方,两条管沟之间用墙开。采用小尺寸管沟,管沟的宽度为0.7m,深度为0.9m。上面盖设厚度为0.2m,宽度为1.80m的盖板,下部铺设0.1m的底板。

管沟底板接于靠船构件上,厚度为10mm。为排除管沟内积水,在管沟底部设置排水孔。管沟的尺寸如图3-1:

图3-1 工艺管沟结构图

3.2.3 系船柱的型式和布置

本码头应满足载重量为1000t 的船舶,故船舶系缆力的下限值为150KN ,选择15t 级,在距码头前沿0.8m 处设置,系船柱之间的间距取为21m ,沿码头长度方向布置5个。选用单挡檐型,底盘形状选为方形,柱壳材料选为铸铁。系船柱的形式如图3-2:

图3-2 系船柱的型式及尺

3.2.4 橡胶防冲设备的型式和布置

由于海水腐蚀性强,同时船舶的尺度较大,故采用橡胶护舷。由于D 形橡胶护舷具有吸收能量大,反力适中,安装与维修方便,护舷底宽较小等优点,故在本码头中选用D 形橡胶护舷。

船舶靠岸时的有效撞击能量:

202

n E MV ρ

=

式中:ρ——有效动能系数,取为0.7。 M ——船舶的质量,1830M t =

n V ——船舶靠岸时的法向速度, 1.6/n V m s =

求得:016.40E KJ =,船舶一般是斜靠码头,因此船舶的撞击能量通常是考虑由一个护舷吸收,故选用D 形橡胶护舷30015003H L Z ?-。护舷尺寸如图3-3:

图3-3 50015003H L z ?- D 形橡胶护舷

橡胶护舷的布置应满足船舶在各种水位和不同吃水条件下的安全靠泊,沿码头前沿立

面竖向间端布置,船舶满载吃水时的干舷高度为1.3m ,而设计高水位与设计低水位之差为

2.5m ,故在靠船构件上设置3排橡胶护舷,高程分别为: 1.7m +、 2.8m +、 4.0m +。

3.2.5 护轮槛

护轮槛断面尺寸为100100mm mm ?。

3.3码头上部结构系统的布置和型式

3.3.1 横向排架

3.3.1.1 前方桩台

前方桩台的横向排架间距取为7m ,两侧悬臂的长度为1.5m ,每分段设置7组横向排架。 3.3.1.2 后方桩台

后方桩台的横向排架间距取为3.5m ,两侧悬臂长度为1.5m ,每分段设置1.3组横向排架。 3.3.1.3 横梁的构造

前方桩台横梁的横断面形式采用到T 形,下部预制的预应力结构,上部采用现浇形式,构成现场叠合式结构。为使桩帽伸出的钢筋穿入预制的下横梁,在横梁的端部预留椭圆形安装孔,其长轴(沿梁长方向)和短轴的长度分别为80mm 和

40mm 。横梁宽度取为800mm 。断面结构尺寸见图3-4:

图3-4 横梁的结构尺寸图

后方桩台为了减小梁的宽度又满足板的搁置长度,采用倒梯形断面。横梁宽度取为600mm。

横梁高度取为1600mm。

3.3.2 纵梁

3.3.2.1 纵梁的布置

本码头为只设门机不设铁路的梁板式码头,所以在前方桩台的门机轨道下设置两个纵梁。后方桩台不设纵梁。

3.3.2.2 纵梁的构造

纵梁的横断面采用空心矩形断面,选用下部预应力结构预制,上部结构现浇的叠合梁型式。纵梁高度取为1200mm,宽度取为400mm。纵梁构件如图3-5:

图3-5 纵梁的构造图

3.3.3 面板和面层

面板采用叠合式的实心板,下部分为预应力的预制结构,上半部分现浇。在预制部分的表面做成齿坎型。板的厚度为200mm,其中预制部分的厚度为120mm,现浇部分厚度为80mm。前方桩台板长取为7m,板宽为3m。后方桩台板长为3.5m,板宽为3m。为防止面板钢筋锈蚀和下面保护层脱落,在面板内设置排气孔,直径为50mm,间距为3m。面板的断面如图3-6:

图3-6 实心板的断面形式

本码头采用叠合板,故面层与面板一起浇筑,面层的厚度为30mm。为防止面层混凝土在气温变化时引起膨胀或收缩而产生裂缝,故在面层上设置竖向不贯

通的伸缩缝。缝宽10mm,缝深15mm,用聚乙烯填充。缝的间距取为3m。面层做排水坡,坡度为0.8%。

3.3.4 靠船构件

本码头为舾装码头,为使沿码头长度方向有全面的防护,小船不致误入码头下面,防护桩免受冰凌或其他漂浮物的撞击,码头的靠船构件采用悬臂板式。

悬臂板式靠船构件由悬臂版、胸墙板和水平纵梁组成,每两个横向排架之间设置一块靠船构件。悬臂板在预制场整体预制,运到现场安装,并与横梁整体连接。两个靠船构件在施工水位上的连接在现场浇筑,使其在码头方向连成整体。靠船构件断面图如图3-7:

图3-7 靠船构件断面图

基桩的布置及构造

3.4.1 横向排架中桩的布置

前方桩台本码头上含有门座起重机,在靠海一侧门机轨道梁下直接布置双直桩,在后门机梁下布置一组叉桩,叉桩的坡度取用为3:1。在前后轨道梁的中间布置一根直桩,桩距为5.25m。

后方桩台在横向排架下设置五组直桩,直桩间距为4m,后方桩台不设叉桩。

3.4.2桩的纵向布置

在码头中间的结构分段,一侧在有约束设置一根直桩,在无约束一侧设置一

组纵向半叉桩。在试车系船柱的下面设置纵向叉桩。

3.4.3 桩的构造

本设计中采用预应力钢筋混凝土空心方桩,方桩的断面尺寸取为

550mm 550mm ?,空心直径为200mm ,混凝土标号采用C40。

桩尖段的长度为()1.0~1.5b 550~825mm mm =,取为700mm ,桩尖宽度为

()0.2~0.25b 110~137.5mm

mm =,取为120mm ;桩头段的长度为

4b 44502200mm ?==。

桩长:打桩深度为28m

对于直桩:桩长 1.742829.74m =+= 对于叉桩:桩长=29.7410331.35m =?÷=

图3-8 桩的结构图

3.4.4 桩帽的构造

桩帽采用现浇混凝土,在本设计中采用方形桩帽,桩帽高度为800mm 。

对于尺寸为550mm 550mm ?的单桩,桩帽底面尺寸为850mm 850mm ?,桩帽顶面尺寸为1400mm 1400mm ?。桩帽的形式及断面尺寸如图3-9:

图3-9 单桩桩帽的形式与尺寸

对于双直桩和叉桩上桩帽,桩帽底面尺寸为1700mm850mm

?,桩帽顶面尺寸为2250mm1200mm

?。桩帽的形式及断面尺寸如图3-10:

图3-10 双桩桩帽的形式和尺寸

第四章码头荷载

永久荷载

4.1.1 永久荷载计算图示

永久荷载包括面层、面板、横纵梁等构件的自重。考虑到面板和面层的重力均由横梁承担。

图4-1 永久荷载的计算图示

4.1.2 永久荷载的计算

1、面层自重

2

?

=240.05=1.2/

g KN m

面层

2、面板自重

2

?

g N m

=250.2=5k/

面板

3、横梁自重

??+?

g KN m

=25(0.80.60.4 1.0)=22/

横梁

4、纵梁自重

()

2

????

g N m

=250.4 1.2-3.140.05-0.10.4=10.80k/

纵梁

5、管沟盖板自重

g??

=24 1.80.2=8.64kN/m

管沟盖板

6、靠船构件自重

()

=240.10.20.20.30.50.3 1.2(0.10.3) 1.5222.32/??++?+?++?÷=

g kN m

??

??靠船构件

7、管沟隔板自重

g??

=24 1.00.1=2.4kN/m

管沟隔板

8、管沟底板

2

g??

=240.1 1.4=3.36kN/m

管沟底板

9、管沟下梁

??

=250.60.8=12k/

g N m

管沟下梁

系船柱跟橡胶护舷的自重不计。

作用在横向排架上的永久荷载集中力为:

1+P ++P +P =10.807+8.647+22.327+2.47+3.367=332.64k P P P N =?????纵梁管沟盖板管沟隔板管沟底板靠船构件

2=10.807=75.6k P P N =?纵梁 1=15k /g g N m =管沟下梁

2=g +g +g =22+1.27+57=65.4k /g N m ??面板面层横梁 横向排架上永久荷载集中力矩为:

18.6417 2.470.95 3.360.9722.327 1.70363.412M kN m =??+??+??+??=?

可变荷载

4.2.1 船舶荷载

4.2.1.1 作用在船舶上的风荷载

作用在船舶上的风压力的横向分力xw F 和纵向分力yw F 可按下式计算:

风压力的横向分力(垂直于码头前沿线):

521273.610xw xw x A V F ξξ-=?

风压力的纵向分力(平行于码头前沿线):

521249.010yw yw y A V F ξξ-=?

其中:xw F ——作用在船舶上的计算风压力的横向分力

yw F ——作用在船舶上的计算风压力的纵向分力

1ξ——风压不均匀折减系数,设计船长为67.52m ,故取10.9ξ=。

2ξ——风压高度变化修正系数,由《港口工程荷载规范》查得:21ξ=。

xw A 、yw A ——船体水面以上横向受风面积和纵向受风面积

对于油轮受风面积采用如下公式计算:

lg 0.6180.620lg xw A DW =+

lg 0.1640.575lg yw A DW =+

其中DW 为船舶载重量,为1000t ,代入上式解得:

2300.61xw A m =,277.45yw A m =

x V 、y V ——计算风速的横向分量和纵向分量

基本风压公式:21

1600

W V =

由《港口工程荷载规范》,00.55/W KN m =,计算得:29.66/V m s =。 考虑最不利情况,假设其完全为横风时:29.66/x V m s =,0y V = 计算得:5273.610300.6129.660.9175.17xw kN F -=????=

0yw F =

4.2.1.2 船舶系缆力

船舶系缆力采用以下公式计算:

sin cos cos cos y x F F K

N n

c αβαβ??=

+????

∑∑ sin cos x N N αβ= cos cos y N N αβ=

sin z N N β=

式中:x F ∑——可能出现的风和水流对船舶作用产生的横向分力总和。

y

F

∑——可能出现的风和水流对船舶作用产生的纵向分力总和。

K ——系船柱受力分布不均匀系数,其中系船柱数目2n =,故 1.2K =。

n ——计算船舶同时受力的系船柱的数目,船舶总长为67.52m ,故

2n =,系船柱间距为20m 。

α——系船缆的水平投影与码头前沿线的夹角,在本码头的计算中,采

用30α=?。

β——系船缆与水平面的夹角,本码头计算中,采用15β=?。

计算得: 1.2175.17217.622sin 30cos15

N kN =

?=? 217.62sin 30cos15105.11x N kN =??=

217.62cos30cos15182.04y N =??=

217.62sin1556.32z N kN =?=

横梁的中性轴为0.41 1.10.80.60.3

0.6680.410.80.6

c y m ??+??=

=?+?

x N 的作用点距横梁中性轴为:0.030.2 1.60.668 1.162m ++-=

故:105.11 1.162122.14M kN m =?=?系缆力 4.2.1.3 船舶撞击力

船舶靠岸时,船舶的撞击动能用下式计算:

202

n E MV ρ

=

式中:n V ——法向速度,根据规范查得其值约在0.15~0.20/m s 之间,取为

0.16/m s 。

M ——船舶质量,1830M t =。

ρ——有效动能系数,约在0.7~0.8之间,取为0.70。 则:200.7

18300.1616.402

E kN m =

??=? 根据规范,查表得:175H kN =,船舶撞击力的作用点距中和轴为:0.558m ,故:作用在横梁的弯矩为:1750.55897.65M kN m =?=?撞击力

4.2.2 堆货荷载

设计码头堆货荷载215/q kN m =,传递给横梁的分布荷载为:

1157105/q kN m =?=

4.2.3 门机荷载

门机荷载为主导可变荷载,堆货荷载和船舶撞击力为非主导可变荷载。 取门机起重臂与码头前沿线平行时计算,由结构力学求解器求得

2488013200.02691559.97,559.97P kN P kN =?-?==

结点,1,0,0

结点,2,7,0

结点,3,14,0

结点,4,21,0

结点,5,28,0

结点,6,35,0

单元,1,2,1,1,1,1,1,1单元,2,3,1,1,1,1,1,1单元,3,4,1,1,1,1,1,1单元,4,5,1,1,1,1,1,1单元,5,6,1,1,1,1,1,1结点支承,1,3,0,0,0结点支承,2,1,0,0结点支承,3,1,0,0结点支承,4,1,0,0结点支承,4,1,0,0结点支承,5,1,0,0结点支承,6,1,0,0

单元材料性质,1,5,10000,100,0,0,-1 影响线参数,-2,2,1,3

作用效应组合设计值的确定

永久荷载包括面层、面板、横纵梁的那个构件的自重,门机荷载为主导可变荷载,堆货荷载和船舶荷载为非主导荷载。

作用效应组合设计值按下式确定:

()0111d G G K Q Q K Qi Qi iK S C G C Q C Q γγγ?γ??=++??

式中:0γ——结构重要性系数,设码头安等级为二级,故取为; G γ——永久作用分项系数,其值为; ?——可变作用组合系数,其值为;

1Q γ——主导可变作用分项系数,取门机荷载作为主导可变作用,系

数取为;

Qi γ——可变作用分项系数,船舶撞击力取为。 由作用与作用效应得线性关系,对荷载进行组合简化得:

1 1.0(1.2332.64 1.5559.970.7 1.556.32)1298.26P KN =??+?+??=

2 1.0(1.275.6 1.5559.970.7 1.4105)1033.58P KN =??+?+??= 1 1.0 1.21214.5/q kN m =??=

2 1.0(1.265.40.7 1.5105)188.73/q kN m =??+??=

[]1 1.0 1.2363.4120.7 1.5(122.1497.65)666.87M KN m =??+??+=?

1.00.7 1.5(175 1.5105.11 1.4)121.11H KN =????-?=

第五章 横向排架计算

计算基本假定

某高桩码头施工组织设计

某高桩码头工程 施 工 组 织 设 计 审核人:赵苏政 主编人:张翰坤 编制日期:2011.04.12

目录 1.编制说明 (3) 2.工程概况 (3) 3.施工总体计划和关键节点计划,各项工程施工安排,施工方法的一般描述,各分项工程的施工工序衔接 (6) 4.主要工程项目的施工方案、施工方法 (8) 5. 质量保证体系、质量保证措施 (12) 6. 安全保证体系保证措施 (12) 7. 环境保护措施、文明施工方案 (14) 8. 附表 (15) 1.编制说明 1.1编制依据

1.1.1码头工程“施工合同”。 1.2.2 设计院提供的相关设计图。 1.2.3 有关规范与标准: 1)《港口工程桩基规范》(JTJ254-98); 2)《高桩码头设计及施工规范》(JTJ291-98); 3)《水运工程混凝土施工规范》(JTJ268-96); 4)《水运工程混凝土质量控制标准》(JTJ269-96); 5)《港口工程混凝土结构设计规范》(JTJ267-98); 6)《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000); 7)《港口工程粉煤灰混凝土技术规程》(JTJ/T273-97); 8)《港口设备安装工程质量检验评定标准》(JTJ244-93); 9)《水运工程测量规范》(JTJ203-2001); 10)《水运工程混凝土试验规程》(JTJ270-98); 11)《港口工程质量检验评定标准》(JTJ221-98) 及其局部修订; 12)《建筑工程施工质量验收统一标准》(GB50300-2001); 13)《混凝土结构工程施工质量验收规范》(GB20204-2002); 14)《建筑钢结构焊接规程》(JGJ81-2002); 15)《钢筋焊接及验收规程》(JGJ18-2003); 16)《普通混凝土配合比设计规程》(JGJ55-2000); 17)《施工现场临时用电安全技术规范》(JGJ46-2005); 18)《建筑防腐蚀工程施工及验收规范》(GB50212-2002); 19)《硅酸盐水泥、普通硅酸盐水泥》(GB175-99); 20)《钢筋混凝土用热轧带肋钢筋》(GB1499-98); 21)《钢筋混凝土用热轧光圆钢筋》(GB13013-91); 22)《普通低碳钢热轧光圆盘条》(GB701-97); 23)国家、交通部及地方政府颁布的有关技术法规和规范; 24)设计文件规定的其它规范及标准; 25)其它与本工程有关的国家及部颁规范、标准。 2.工程概况 2.1概况 2.1.1工程内容 60米高桩码头工程。

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

工程桩基础设计计算书

基 础 工 程 课 程 设 计 计 算 书 系别:土木工程系 姓名:盛懋 目录 1 .设计资料 (3) 1.1 建筑物场地资料 (3) 2 .选择桩型、桩端持力层、承台埋深 (3)

2.1 选择桩型 (3) 2.2 选择桩的几何尺寸以及承台埋深 (3) 3 .确定单桩极限承载力标准值 (4) 3.1 确定单桩极限承载力标准值 (4) 4 .确定桩数和承台底面尺寸 (4) 5 .确定复合基桩竖向承载力设计值及群桩承载力和 (5) 5.1 四桩承台承载力计算 (5) 6 .桩顶作用验算 (6) 6.1 四桩承台验算 (6) 7 .桩基础沉降验算 (6) 7.1 桩基沉降验算 (6) 8 .桩身结构设计计算 (9) 8.1 桩身结构设计计算 (9) 9 .承台设计 (10) 9.1 承台弯矩计算及配筋计算 (10) 9.2 承台冲切计算 (11) 9.3承台抗剪验算 (12) 9.4 承台局部受压验算 (12) 1. 工程地质资料及设计资料 1) 地质资料 某建筑物的地质剖面及土性指标表1-1所示。场地地层条件:粉质粘土土层取q sk=60kpa,q ck=430kpa;饱和软粘土层q sk=26kpa;硬塑粘土层q sk=80kpa,q pk=2500kpa;设上部结构传至桩基顶面的最大荷载设计值为:V=2050kn,M=300kn?m,H=60kn。选择钢筋混凝土打入桩基础。柱的截面尺寸为400mm?600mm。已确定基础顶面高程为地表以下0.8m,承

台底面埋深1.8m 。桩长8.0m 。 土层的主要物理力学指标 表1-1 编号 名称 H m W % ? kn/m 3 ? ° S r e I p I L G s E s mpa f ak kpa a 1-2 mpa -1 1 杂填土 1.8 16.0 2 粉质粘土 2.0 26.5 19.0 20 0.9 0.8 12 0.6 2.7 8.5 190 3 饱和软粘土 4.4 42 18.3 16.5 1.0 1.1 18.5 0.98 2.71 110 0.96 4 硬塑粘土 >10 17.6 21.8 28 0.98 0.51 20.1 0.25 2.78 13 257 2)设计内容及要求 需提交的报告:计算说明书和桩基础施工图: (1)单桩竖向承载力计算 (2)确定桩数和桩的平面布置 (3)群桩中基桩受力验算 (4)群桩承载力和 (5)基础中心点沉降验算(桩基沉降计算经验系数为1.5) (6)承台结构设计及验算 2 .选择桩型、桩端持力层 、承台埋深 1)、根据地质勘察资料,确定第4层硬塑粘土为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,为400mm ×400mm ,桩长为8米。桩顶嵌入承台50cm ,则桩端进持力层1.55米。承台底面埋深1.8m ,承台厚1m 。 2)、构造尺寸:桩长L =8m ,截面尺寸:400×400mm 3)、桩身:混凝土强度 C30、 c f =14.3MPa 4φ16 y f =210MPa 4)、承台材料:混凝土强度C20、 c f =9.6MPa 、 t f =1.1MPa 3.确定单桩竖向承载力标准值 (1)单桩竖向承载力标准值Quk

高桩码头毕业设计

本科毕业设计高桩码头结构

第1章设计依据及条件 1.1 设计依据 《港口工程地基规范》JTS 147-1-2010 《港口工程制图标准》JTJ 206-96 《高桩码头设计与施工规范》JTS 167-1-2010 《河港总体设计规范》JTJ 212-2006 《水运工程混凝土结构设计规范》JTS 151-2011 1.2 吞吐量与设计船型 1.2.1 吞吐量 根据港区功能、分货类吞吐量预测结果,到2020年本工程的设计吞吐量为460万吨,其中出口为285万吨,进口为175万吨。吞吐量见表1-6。 表1.1 吞吐量安排表 1.2.2 设计船型 设计代表船型的选择,首先必须考虑货物的货种、流量、流向及船舶的现有情况,其次要考虑航道、水文、波浪、进出港航道条件,同时还要考虑船舶的营运经济性等因素。根据本项目所涉及的货种,本工程的设计船型为杂货船、散货船。 根据对枣庄港滕州港区以及京杭运河枣庄段现有通行船舶情况的调查,船型标准主要按交通运输部《京杭运河运输船舶标准船型主尺度系列》有关规定,综合考虑货种、货物批量、货源稳定性、运距及航道的通达性等方面的因素,规划采用多种混合设计船型。

表1.2 设计船型尺度表 1.3 自然条件 1.3.1 地理位置 枣庄市位于山东省南部,泰沂山区的西南边缘,地跨东经116°48′30″至117°49′24″,北纬34°27′48″至35°19′12″之间。东与临沂市的苍山县接壤。南与江苏省的铜山县、邳州市为邻,西濒独山湖、昭阳湖、微山湖,北与济宁市的邹城毗连。 本工程位于枣庄市滕州市西岗镇,距离柴里矿区及其铁路专用线较近,可利用专用铁路线与柴里矿区铁路专用线相连接,交通便利。 1.3.2 气象 (1)气温 多年平均气温13.2 ℃~14.2℃ 年最高气温41.4℃ 年最低气温-21.8℃ 最热月平均温度26.9℃ 最冷月平均温度-1.8℃ (2)降水

换热器课程设计

课程实训任务书 课程石油装备设计综合实训 题目炼油厂柴油换热器的选用和设计 主要内容: 1.液化气工艺概述; 2.换热器的工艺计算; 3.换热器的结构设计; 4.换热器的强度校核; 5.换热器的结果汇总。 设计条件: 炼油厂用原油将柴油从1750C冷却至1300C,柴油流量为12500kg/h;原油初温为700C,经换热后升温到1100C。换热器的热损失可忽略。操作压力为60KPa 管、壳程阻力压降均不大于30KPa。污垢热阻均取0.0003Pa s。 主要参考资料: [1] GB150-2011,压力容器[S] . [2]郑津洋,董其伍,桑芝富.过程设备设计[M] .北京:化学工业出版社,2010. [3]JB 4731-2005,钢制卧式容器[S] . [4]JB4712-2007,容器支座[S]. [5] JB 4715-1992,固定管板式换热器型式与基本参数[S]. 完成期限2013年3月24日 指导教师 专业负责人 2013年2月25日

目录 第1章液化气工艺及流程图概述 (1) 1.1液化石油气工艺概述 (1) 1.1.1液化石油气的特点 (1) 1.1.2液化石油气的来源 (1) 1.1.3液化石油气的提取 (2) 第2章列管式换热器的选用与工艺设计 (4) 2.1列管式换热器的概述 (4) 2.2 初算换热器的传热面积 (4) 2.3主要工艺及结构基本参数的计算 (6) 2.4管、壳程压强降的校验 (9) 2.5总传热系数的校验 (12) 2.6列出所涉及换热器的结构基本参数 (14) 第3章换热器的结构设计 (15) 3.1 筒体部分计算 (15) 3.2 椭圆封头厚度 (16) 3.3 管板选取 (17) 3.4 法兰选取 (17) 3.5 鞍式支座 (19) 3.6 接管 (19) 第4章换热器的强度校核 (21) 4.1 计算容器重量载荷的支座反力 (21) 4.2 筒体轴向应力验算 (21) 4.3 鞍座处的切向剪应力校核 (23) 4.4 鞍座处筒体周向应力验算 (24) 第5章设计结果汇总 (26) 参考文献 (27)

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

列管式换热器课程设计计算过程的参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下: 设计要求: 1.某工厂的苯车间,需将苯从其正常沸点被冷却到40℃;使用的冷 却剂为冷却水,其进口温度为30℃,出口温度自定。 2.物料(苯)的处理量为1000 吨/日。 3.要求管程、壳程的压力降均小于30 kPa。 1、换热器类型的选择。 列管式换热器 2、管程、壳程流体的安排。 水走管程,苯走壳程,原因有以下几点: 1.苯的温度比较高,水的温度比较低,高温的适合走管程,低温适合走壳程 2.传热系数比较大的适合走壳程,水传热系数比苯大 3.干净的物流宜走壳程。而易产生堵、结垢的物流宜走管程。 3、热负荷及冷却剂的消耗量。 冷却介质的选用及其物性。按已知条件给出,冷却介质为水,根进口温度t1=30℃,冷却水出口温度设计为t2=38℃,因此平均温度下冷却水物性如下: 密度ρ=994kg/m3粘度μ2=0.727Χ10-3Pa.s 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ 密度ρ=880kg/m3粘度μ2=1.15Χ10-3Pa.s 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

桩基础课程设计计算书范本

桩基础课程设计计 算书

土 力 学 课 程 设 计 姓名: 学号: 班级: 二级学院: 指导老师:

地基基础课程设计任务书 [工程概况] 某城市新区拟建一栋10层钢筋混凝土框架结构的办公楼,长24.0m ,宽9.6m ,其1-5轴的柱底荷载效应标准组合值如下所示。建筑场地位于临街地块部·位,地势平坦,室外地坪标高同自然地面,室内外高差450mm 。柱截面尺寸均为500mm ×500mm ,横向承重,柱网布置图如图1所示。场地内地层层位稳定,场地地质剖面及桩基计算指标详见工程地质资料,如表1所示。勘察期间测得地下水水位埋深为 2.5m 。地下水水质分析结果表明,本场地地下水无腐蚀性。试按乙级条件设计柱下独立承台桩基础。 柱底荷载效应标准组合值 1轴荷载:5417;85.m;60k k k F kN M kN V kN ===。 2轴荷载:5411;160.m;53k k k F kN M kN V kN ===。 3轴荷载:5120;88.m;63k k k F kN M kN V kN ===。 4轴荷载:5300;198.m;82k k k F kN M KN V kN ===。 5轴荷载:5268;140.m;60k k k F kN M kN V kN ===。

图1 框架结构柱网布置图 (预制桩基础)--12土木1班 工程概况 某市新区钢筋混凝土框架结构的办公楼,长24.0米,柱距6米,宽9.6米,室内外地面高差0.45米。柱截面500×500mm 。建筑场地地质条件见表1。 表1 建筑场地地质条件

注:地下水位在天然地面下2.5米处 目录 地基基础课程设计任务书............................................................................ - 0 -工程概况....................................................................................................... - 1 - 1.设计资料.................................................................................................... - 4 - 2.选择桩型与桩端持力层、确定桩长和承台埋深...................................... - 4 - 3.确定单桩极限承载力标准值..................................................................... - 5 - 4.确定桩数和承台尺寸 ................................................................................ - 6 - 5.桩顶作用效应验算 .................................................................................... - 7 - 6.桩基础沉降验算 ........................................................................................ - 8 - 6.1 求基底压力和基底附加压力 ........................................................... - 8 - 6.2 确定沉降计算深度 ........................................................................... - 8 - 6.3 沉降计算........................................................................................... - 8 -

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

高桩码头计算说明

第6章水工建筑物 6.1 建设内容 本工程拟建5万t级通用泊位2个。水工建筑物包括码头平台、固定引桥与护岸。结构安全等级均为二级。 6.2 设计条件 6.2.1 设计船型 5万t级散货船:船长×船宽×型深×满载吃水=223×32.3×17.9×12.8m 6.2.2 风况 基本风压 0.70Kpa 按九级风设计,风速为22m/s,超过九级风时,船舶离港去锚地避风。 6.2.3 水文 (1)设计水位(85国家高程) 设计高水位: 2.77m 极端高水位: 4.18m 设计低水位: -2.89m 极端低水位: -3.96m (2)水流 水流设计流速 V=1.2m/s 流向:与船舶纵轴线平行。 (3)设计波浪: 波浪重现期为50年,设计高水位下H1%=1.81m; H4%=1.52m;H13%=1.22m; T mean=3.8s,L=22.96m。

6.2.4 地质条件 码头平台与固定引桥区在勘察控制深度范围内地基土层为海陆交互相沉积、陆相冲洪积成因类型和凝灰岩风化岩层,从上而下分别为淤泥、块石、残积粘性土、强风化凝灰岩与中风化凝灰岩。其中淤泥层厚为20.95m ~51.15m ;块石厚度分布不均;残积粘性土厚度3.5~9.69m ;强风化凝灰岩厚度分布不均;中风化凝灰岩最大揭露厚度为5.70m ,未揭穿。其物理力学性质指标见表3-2。 护岸与陆域部分在勘察控制深度范围内地基土层自上而下分别为耕土、淤泥、粘土、角砾混粉质粘土、粘土、含角砾粉质粘土、强风化基岩与中等风化基岩等。其中,淤泥厚15.50~37.00m ;粘土层厚0.7~26.00m ;角砾混粉质粘土厚0.8~16.00m ;含角砾粉质粘土厚4.5~32.80m ;强风化基岩厚0.2~3.70m ;中等风化基岩最大揭露深度为6.90m ,未揭穿。其物理力学性质指标见表3-3。 6.2.5 设计荷载 6.2.5.1 船舶荷载 (1)系缆力 [ ]sin cos cos cos y x F F K N n αβαβ = +∑∑ 式中:∑x F ,∑y F ——分别为可能同时出现的风和水流对船舶作用产生的横向分力总和及纵向分力总和(kN); K ——系船柱受力分布不均匀系数,K 取1.3; n ——计算船舶同时受力的系船柱数目,取n=5; α——系船缆的水平投影与码头前沿线所成的夹角 (°),取α=30°; β——系船缆与水平面之间的夹角(°),取β=15°。 情况一:风向与船舶纵轴线垂直时,22/x V m s =;0y V =。

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

深基础课程设计计算书 (1)

深基础课程设计计算书 学校:福建工程学院 层次:专升本 专业:土木工程____姓名:林飞____ 2016年09 月16 日

目录 一、外部荷载及桩型确定 (1) 二、单桩承载力确定 (1) 三、单桩受力验算 (4) 四、群桩承载力验算 (5) 五、承台设计 (6) 六桩的强度验算 (9)

一、 外部荷载及桩型确定 1、柱传来荷载:F= 3000kN 、M = 600kN ·m 、H = 60kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:400mm ×400mm 3)、桩身:混凝土强度等级 C30、c f =14.3 N/mm 2 、 4Φ16 y f =300 N/mm 2 4)、承台材料:混凝土强度等级C30、c f =14.3 N/mm 2 、 t f =1.43 N/mm 2 二、单桩承载力确定 1、单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0,配筋Φ16) ()() kN A f A f R S y p c 1.25298.8033004003.140.12=?+??=''+=? 2)、根据地基基础规范公式计算: ①、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 由书105页表4-4知,当h 在9和16之间时,当L I =0.75时,1500=pk q kPa,当L I =0.5时,2100=pa q ,由线性内插法: 75 .06.01500 75.05.015002100--=--pk q 1860=pk q k P a ②、桩侧土摩擦力: 粉质粘土层1: 1.0L I = ,由表4-3,sik q =36~50kPa ,由线性内插法,取36kPa 粉质粘土层2: 0.60L I = ,由表4-3,sik q =50~66kPa ,由线性内插法可知,

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学 《材料工程原理B》课程设计 设计题目: 5.5×104t/y热水冷却换热器设计 专业: ----------------------------- 班级: ------------- 学号: ----------- 姓名: ---- 日期: --------------- 指导教师: ---------- 设计成绩:日期:

换热器设计任务书

目录 1.设计方案简介 2.工艺流程简介 3.工艺计算和主体设备设计 4.设计结果概要 5.附图 6.参考文献

1.设计方案简介 1.1列管式换热器的类型 根据列管式换热器的结构特点,主要分为以下四种。以下根据本次的设计要求,介绍几种常见的列管式换热器。 (1)固定管板式换热器 这类换热器如图1-1所示。固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。 (2)U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 (3)浮头式换热器 浮头式换热器的结构如下图1-3所示。其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

管壳式换热器设计-课程设计

一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表 接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 气体工作压力 管程:半水煤气0.75MPa 壳程:变换气 0.68 MPa 壳、管壁温差55℃,t t >t s 壳程介质温度为220-400℃,管程介质温度为180-370℃。 由工艺计算求得换热面积为140m2,每组增加10 m2。 四、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。 五、设计安排

内容化工设备设 计的基本知 识管壳式换热 器的设计计 算 管壳式换热 器结构设计 管壳式换热器 设计制图 设计说明书的 撰写 设计人李海鹏 吴彦晨 王宜高 六、说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质; (3)确定焊接材料。 4.绘制结构草图 (1)换热器装配图 (2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示; (3)标注形位尺寸。 (4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等 5.壳体、封头壁厚设计 (1)筒体、封头及支座壁厚设计; (2)焊接接头设计; (3)压力试验验算; 6.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 7.结束语:对自己所做的设计进行小结与评价,经验与收获。 8.主要参考资料。 【格式要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计说明书目录要有序号、内容、页码;

桩基础设计计算书样本

桩基础设计计算书

桩基础设计计算书 1、研究地质勘察报告 1.1地形 拟建建筑场地地势平坦,局部堆有建筑垃圾。 1.2、工程地质条件 自上而下土层一次如下: ① 号土层:素填土,层厚约为 1.5m ,稍湿,松散,承载力特征值 a ak KP f 95= ② 号土层:淤泥质土,层厚 5.5m ,流塑,承载力特征值 a ak KP f 65= ③ 号土层:粉砂,层厚 3.2m ,稍密,承载力特征值a ak KP f 110= ④ 号土层:粉质粘土,层厚 5.8m ,湿,可塑,承载力特征值 a ak KP f 165= ⑤ 号土层:粉砂层,钻孔未穿透,中密-密实,承载力特征值 a ak KP f 280= 1.3、 岩土设计参数 岩土设计参数如表1和表2所示。 表1地基承载力岩土物理力学参数

表2桩的极限侧阻力标准值 q和极限端阻力标准值pk q单位KPa sk 1.4水文地质条件 ⑴拟建场区地下水对混凝土结构无腐蚀性。 ⑵地下水位深度:位于地表下4.5m。 1.5 场地条件 建筑物所处场地抗震设防烈度为7度,场地内无可液化沙土、粉土。 1.6 上部结构资料 拟建建筑物为六层钢筋混凝土结构,长30m,宽9.6m。室外地坪标高同自然地面,室内外高差450mm。柱截面尺寸均为 400mm 400mm,横向承重,柱网布置如图所示。

2.选择桩型、桩端持力层、承台埋深 根据地质勘查资料,确定第⑤层粉砂层为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,400mm×400mm桩长为15.7m。桩顶嵌入承台70mm,桩端进持力层1.2m承台埋深

相关主题
文本预览
相关文档 最新文档