当前位置:文档之家› 积分变换的应用

积分变换的应用

积分变换的应用
积分变换的应用

浅谈积分变换的应用

学院:机械与汽车工程学院

专业:机械工程及自动化

年级:12级

姓名:郑伟锋

学号:201230110266

成绩:

2014年1月

目录

1.积分变换的简介 (3)

1.1积分变换的分类 (3)

1.2傅立叶变换 (3)

1.2拉普拉斯变换 (4)

1.3梅林变换和哈尔克变换 (5)

1.3.1梅林变换 (5)

1.3.2汉克尔变换 (6)

2.各类积分变换的应用 (6)

2.1总述 (6)

2.2傅立叶变换的应用 (6)

2.2.1傅立叶变换在图像处理中的应用 (6)

2.2.2傅立叶变换在信号处理中的应用 (7)

2.3拉普拉斯变换的应用 (8)

2.3.1总述 (8)

2.3.2 运用拉普拉斯变换分析高阶动态电路 (8)

参考文献 (9)

1.积分变换的简介

1.1积分变换的分类

通过参变量积分将一个已知函数变为另一个函数。已知?(x),如果

存在(α、b可为无穷),则称F(s)为?(x)以K(s,x)为核的积分变换。

积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。

1.2傅立叶变换

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。其定义如下

f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换,

②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做

F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。

①傅里叶变换

②傅里叶逆变换

1.2拉普拉斯变换

拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏转换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥0)的函数转换为一个引数为复数s的函数。

如果定义:

?f(t)是一个关于的函数,使得当t<0时候,f(t)=0;

?s是一个复变量;

?是一个运算符号,它代表对其对象进行拉普拉斯积分;F(s)是f(t)的拉普拉斯变换结果。

则f(t)的拉普拉斯变换由下列式子给出:

拉普拉斯逆变换,是已知F(s),求解f(t)的过程。用符号表示。

拉普拉斯逆变换的公式是:

对于所有的t>0;

c是收敛区间的横坐标值,是一个实常数且直线Re(s)=c处在F(s)的收敛域内。

1.3梅林变换和哈尔克变换

1.3.1梅林变换

当K(s,x)=x s_1,x>0,而?(x)定义于【0,+∞),函数

(1)

称为?(x)的梅林变换,式中s=σ+iτ为复数。M(s)的梅林反变换则定义为

(2)

这里积分是沿直线Re s=σ进行的。

(1)式与(2)式在一定条件下互为反演公式。例如,设(1)绝对收敛,在任何有限区间上?(x)是有界变差的,且已规范,则由(1)可推得(2),在l2(0,∞)空间中也有类似结果。

若以M(s,?′)表示?′(x)的梅林变换, 则在一定条件下,有

在一定条件下,还有下列梅林交换的卷积公式:

式中с>Re s。

1.3.2汉克尔变换

设Jγ(x)为у阶贝塞尔函数(见特殊函数),?(x)定义于【0,+∞),则称

(3)为?(x)的у阶汉克尔变换;而称

(4)

为h(t)的汉克尔反变换。有的作者代替(3)与(4)改用与

效果是一样的。在一定条件下,(3)与(4)成为一对互逆公式,此外,还有

2.各类积分变换的应用

2.1总述

积分变换是数学史上一颗璀璨的明珠,且不说它在数理计算等方面的运算,单说它在我们实际生活中的应用也是数不胜数,下面我们一起来探究这些奥秘。

2.2傅立叶变换的应用

2.2.1傅立叶变换在图像处理中的应用

数字图像处理中,图像的傅氏变换可由二维离散傅氏变换(DFT)完成,根据傅氏变换的可分离性,可得

这样,二维傅氏变换就可以由两次一维变换实现.但采用上式完成傅氏变换时,所需复数加法和复数乘法操作次数为N2,计算量很大。为此,可用一维快速傅立叶变换(FFT) 实现二维变换,其计算效率可提高近100倍。

傅氏变换在图像处理中有很多用途,如滤波、图像恢复等.物函数的一次傅立叶变换,反映了该图象在系统频谱面上的频率分布。如在频谱面上做某些处理,然后在做傅立叶逆变换,就能改变物函数的某些特征,以达到人们要求的结果。

2.2.2傅立叶变换在信号处理中的应用

Fourier变换的基本思想是将信号分解成一系列不同频率的连续正弦波的叠加,它在处理信号时具有重要的物理意义,即信号f(x)的Fourier变换

(1)

表示了信号的频谱,是把信号从时域转化到频域。然而,信号在时域上是没有任何局部化的,即从-∞延伸到∞,没有任何时间分辨特性,而在频域上是完全局部化的,能够看到时域上的每个正弦波的单一频域。

令L2(0,2π)为2π周期的平方可积函数空间,则对任意f∈L2(0,2π),Fourier 分析有3个基本公式。

Fourier级数表示式:

(2)

Fourier系数:

(3)

两者由Parseval恒等式联系:

(4)

傅立叶分析将平稳信号分解成谐波的线性组合,是一种传统的信号处理方法,

它对信号的处理,尤其是对平稳信号的处理具有成熟的理论基础和广泛的应用前景。

2.3拉普拉斯变换的应用

2.3.1总述

拉普拉斯变换也是跟傅立叶变换一样在积分变换中占很大的份额,但是跟傅立叶变换不同的是,它的作用更多是在帮助工程数学的解题上。

有些情形下一个实变量函数在实数域中进行一些运算并不容易,但若将实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。

2.3.2 运用拉普拉斯变换分析高阶动态电路

应用拉普拉斯变换的复频域分析法是分析动态电路的一种主要的变换域分析法时域分析法易于一阶电路和简单二阶电路的分析,这是因为对于高阶电路采用时域经典法分析计算时,确定初始条件和积分常数计算很麻烦,然而,这时应用拉普拉斯变换的复频域分析法,可以简化分析的计算。拉普拉斯变换将用时域分析法描述电路动态过程的常系数线形微分方程转换为复频域的线性多项式方程,在复频域内求解代数方程,得出复频域函数,再利用拉氏反变换,变为时域原函数,最后求得时域响应这种变换分析方法,其本质就是把时域问题转化为复频域来分析求解,大大简化了分析和计算应用拉普拉斯变换分析动态电路,有两种方法一是列时域微分方程,用微积分性质求拉氏变换;二是直接按电路的S域模型建立代数方程。

参考文献

(1)杨毅明.数字信号处理(A).北京:机械工业出版社2012.89

(2)网友.积分变换百度百科(Z).

(3)网友.傅立叶变换百度百科(Z).

(4)网友.拉普拉斯变换百度百科(Z).

(5)王晓东王荣芝.傅立叶变换在图像处理中的应用.(N)牡丹江师范学院学报.2003.22-24

(6)王计生喻俊馨. 基于傅立叶变换和小波变换的信号处理.(N)四川工业学院学报.2003.47-49

(7)张守平吴波英. 浅谈拉普拉斯变换的应用.(J)科技资讯.2010 26 .133

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

积分变换论文

河南城建学院 期末考试(论文) 题目:Laplace变换在定积分中的应用 系别:电气与电子工程系 专业:电气工程及其自动化 班级:0912102(班) 学号:091210247 学生姓名:张晓东 指导教师:秦志新 完成日期:2011.05.23

河南城建学院 期末考试(论文)任务书

摘要 Laplace变换应用广泛,本文只给出一些最基本的性质和应用举例,以求举一反三,从而激活思绪,开阔思路,扩大视野,增强学习兴趣。 为了更好的掌握高等数学中关于定积分的内容,使一些利用高等数学的思想解决起来很难,或者无法解决的定积分问题利用laplace 变换的思想考虑会很快、很容易的得出结果。这就使高等数学中定积分的问题转换成S域中的问题,这样就可以利用laplace变换这个方便的解题工具去解决。 本文中只是把laplace变换作为解题工具,最终要解决的是定积分问题。所以,laplace只是手段,解决高等数学中的定积分问题才是最终目的! 关键字:laplace 工具解决定积分

一、 问题的提出 在高等数学学习中,定积分的计算是我们不容易掌握的,因为这一部分学习中问题的形式灵活多变,多种多样。例如:∫ ∞ 0! n t n d t ,∫∞0t e at ωsin - d t 计算时需要分步积分,且要连续的运用分步积分法。甚至,有时一个定积分的求解的问题能花费我们很长的时间,且做到最后还有可能得到无法求解的结果。例如形如0 () f t dt t +∞ ?的定积分。而对于这种问题在高等数学中还没有一个系统的,方便快捷的解题思路。只有听过解决一般定积分所用的经典方法去进行计算,而这样则会造成事倍功半的结果。 二、 解决的思路 如果我们利用积分变换中laplace 变换的思想去考虑和解决这些问题就会得到很快、很简单的解决。Laplace 变换是在S 域中进行积分,它可以把一些复杂的时域函数的定积分的求解转化到S 域中再进行分析求解。例如:利用laplace 的微分性质、积分性质、位移性质、延迟性质,这样就可以绕过很多复杂的数学计算,而使求解变得简单、快捷。下面利用利用具体定积分来分别说明laplace 变换的性质在解决定积分中的应用。 三、 方法分析 1、 利用laplace 变换的微分性质

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

积分变换的认识与应用

积分变换的一些应用 积分变换 积分变换是数学中对于函数的作用子,理论上用以处理微分方程等问题。所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换。最常见的积分变换有两种:傅里叶变换和拉普拉斯变换,其他的还包括梅林变换和汉克尔变换等。积分变换法凭借着它灵活方便的特点在理工科方面有很大的应用,本文将会讲述关于傅里叶变换和拉普拉斯变换的一些应用。 傅里叶变换 定义 傅里叶其实是一种分析信号的方法,既可以分析信号的成分,也可以利用这些成分合成信号。设f(t)是t的周期函数,如果t满足狄里赫莱条件:在下一个周期内具有有限个间断点,并且在这些间断点上函数是有限值;在一个周期内具有有限个极值点;绝对可积。则函数满足傅里叶变换: 它存在逆变换,则傅里叶逆变换: 有一种特殊的变换叫离散傅里叶变换,它是对一个序列进行的变换,为: 傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 个别应用 傅里叶变换最常见于图像处理跟数学信号处理中,而现在现在我介绍其中一种比较不错的应用:加密、解密图像。 根据Candan等人提出的离散分数傅里叶变换的定义为,X(n)是带有N个矢量元素的输入信号,是变换核矩阵,是分数阶。Soo-Chang Pei 等人将离散分数傅里叶变换核矩阵定义为,当N为奇数时,矩阵 ,当N为偶数时,,是一个对角矩阵,其对角线上的元素是V中年每列特征向量的特征根。我们将NXN DFT矩阵定义为: ,进而可以将阶DFRFT矩阵定义为:

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换第五版习题解答

复变函数与积分变换第五版答案 目录 练 习 一...............................1 练 习 二...............................3 练 习 三...............................5 练 习 四...............................8 练 习 五..............................13 练 习 六..............................16 练 习 七..............................18 练 习 八..............................21 练 习 九 (24) 练 习 一 1.求下列各复数的实部、虚部、模与幅角。 (1)i i i i 524321-- --; 解:i i i i 524321---- = i 2582516+ z k k Argz z z z ∈+== = = π22 1 arctan 25 5825 8Im 25 16 Re (2)3 ) 231(i + 解: 3) 231(i + z k k Argz z z z e i i ∈+===-=-==+=π ππ π π 210Im 1Re 1 ][)3 sin 3(cos 333 2.将下列复数写成三角表示式。 1)i 31- 解:i 31-

)35sin 35(cos 2ππi += (2)i i +12 解:i i +12 )4 sin 4(cos 21π π i i +=+= 3.利用复数的三角表示计算下列各式。 (1)i i 2332++- 解:i i 2332++- 2sin 2 cos π π i i +== (2)4 22i +- 解:4 22i +-4 1 )]43sin 43(cos 22[ππi += 3,2,1,0] 1683sin 1683[cos 2]424/3sin ]424/3[cos 283 8 3 =+++=+++=k k i k k i k ππππππ 4..设 321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位 圆z =1的一个正三角形的项点。 证:因,1321===z z z 所以321,,z z z 都在圆周 32z z ++=0 则, 321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又 ,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 这个学期我们学习了复变函数与积分变换这门课程,虽然它同概率统计一样也是考查课,但它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。 每周二都很空闲,除了体育课就没课了,又因为这门课程是公共考查课,是四个班级在一起上课,所以有时候经常想逃课,但自从上了梁老师的一堂课,就感觉到了他是一个很负责的老师,他每次来教室都来得很早,他很喜欢点名,上课上的也很生动,他经常会叫同学上黑板做题目,来检查学生学得怎么样,他不希望同学带早餐进教室。以后的星期二基本上都没逃过课,我深深地被复变函数与积分变换这门课程给吸引住了。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、电磁学、无线电技术、信号系统和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。如单位脉冲函数,对于集中于一点或一瞬时的量如点电荷、脉冲电流等,这些物理量都可以用通常的函数形式来描述。 复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学

复变函数与积分变换第六章测验题与答案

第六章 共形映射 一、选择题: 1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( ) (A )21< z (B )211<+z (C )21>z (D )2 11>+z 2.映射i z i z w +-= 3在i z 20=处的旋转角为( ) (A )0 (B ) 2 π (C )π (D )2 π - 3.映射2 iz e w =在点i z =0处的伸缩率为( ) (A )1 (B )2 (C)1-e (D )e 4.在映射i e iz w 4 π +=下,区域0)Im( w (B )22)Re(->w (C )22)Im(> z (D )2 2 )Im(->w 5.下列命题中,正确的是( ) (A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43 +=在0=z 处的伸缩率为零 (C ) 若)(1z f w =与)(2z f w =是同时把单位圆1w 的分式线性变换,那么)()(21z f z f = (D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(2 2 =-+-y x 的对称点是( )

(A )i +6 (B )i +4 (C )i +-2 (D )i 7.函数i z i z w +-=33将角形域3arg 0π<w (C ) 0)Im(>w (D )0)Im(z 映射为( ) (A )ππ <<- w arg 2 (B ) 0arg 2 <<- w π (C ) ππ <z 映射成圆域2

复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i π ππ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 13i + 解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2 221cos sin 2sin 2sin cos 2sin (sin cos ) 2 2 2 2 2 2 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα ?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos 3sin 3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin 1i i e ee e i +==+ (7) 11i i -+ 解: 3/4 11cos 3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) a ib + 解: 1ar 2ar 2 2 22 4 21ar 2 2421ar 2242 b b i ctg k i ctg k a a b i ctg a b i ctg a a i b a b e a b e a b e a b e ππ?? ?? ++ ? ? ?? ?? += += +?+?=? ?-+? (2) 3 i 解:6 226 36346323 2332 2322 i k i i i i k i e i i e e e e i π ππππππππ?? ??++ ? ???????+ ?????+ ??? ?=+ ?? ??====-+? ??=-?

复变函数与积分变换结课感想

工程数学的科学魅力 ------《复变函数与积分变换》结课论文《复变函数与积分变换》是继《高等数学》之后的一门工科电类专业的公共基础课程。通过对它的学习使自己进一步认识了数学世界,认识了工程数学的无穷魅力,感叹于前人灵光一闪的发现,惊讶于人类智慧的浩瀚无尽,同时也学会了学习,学会了如何运用学到的数学工具解决一些简单问题。数学之于其他自然科学的高度抽象性和基础性使之当之无愧地成为众学科之父,《复变函数与积分变换》作为数学的一个小的分支自然而然地对我们的学习产生了近乎革命性的影响。 为何学习以及学习心态。如果抛弃“学以致用”、高投资回报率与实用主义的世俗信条而单纯以科学探索的长远眼光看待数学,那么数学史便是一部大师发现创造的历史,人类社会百年以至更长时间的文明积淀凝结成书,今天这份同样饱含了前人智慧思想的《复变函数与积分变换》便是往圣先贤无数次苦思冥想无数次灵光闪现后经历时代检验的文明成果。学习它,就是回溯人类文明的足迹,与大师对话,重走发现之旅;与大师交流,以获得创造并改变世界的数学工具。千百年,大师归去,然而优秀的数学思想却薪尽火传,我们得以承接人类文明的接力棒,不亦乐乎?尽管我们可能只是庞大社会机器上的一枚螺丝钉,但仍然有必要去了解整个机器的构造,以虔诚、敬重、学习的心态对待前人的发现创造,以便更好地掌握“一角冰山”,学好《复变函数与积分变换》这门课程。 如何学习以及学习方法。将前人百年来的思想成果用有限的几十个学时全部接受甚至融会贯通似乎是不现实的。学会查阅,以较短的时间找到所需的知识的能力是大学说要传授我们的“渔”。正如老师所说,有些知识可能要等到工作实践

时才能恍然大悟,而有些知识甚至可能我们永远都理解不了。查找知识的能力适用于其他任何学科。一个人不可能掌握所有的知识,但他必须学会如何学习,正所谓学习能力比学习本身更重要。查阅之后反复使用才能转化为自己的东西,而工程数学给我们实践所学更多的机会,使之更接近一门技术。 学习数学史有助于我们理解定理定律出现的前因后果,对数学世界充满兴趣的同时有可能获得启迪,“站在巨人的肩膀上”也给后人一副“肩膀”。本课程中出现过的欧拉、柯西、Fourier、Dirichlet等数学泰斗多生于英法等欧洲国家,由此可见,大的学术环境往往成为科学家诞生的摇篮,而数学世家、数学家辈出的大学又说明了好的后天教育的重要性。当今世界的数学中心移居美国,是否说明其学术环境的某种优势,这一点姑且不论。 工程数学有着更紧密的理论与实践的联系,因此近似、条件弱化等经验能让我们洞见理论实践转化升华的契机。本课程的学习让我领会了为什么学、怎么学和学习方法心态上的诸多新思路,获益匪浅。数学史使我对“枯燥的数学”有了不枯燥的兴趣。工程数学魅力无穷,若没能接触她,岂能发现这又是一片"豁然开朗的崭新的世界"? 2011年11月

积分变换习题解答2-2

2-2 1.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2 132!1232132m m m t s s s s s t t +????==++=++???? 及有L L L . 2)()1e t f t t =-. 解 :[]() () 11 11 ,e e t t t t t s s s s --????= ==- ????2 2 2+1-1L L ,L 1-. 3)()()2 1e t f t t =-. 解: ()22-1e e 2e e t t t t t t t ????=-+???? L L () () () 2 3 2 3 2 2 145 .-1-1-1s s s s s s -+= - + = -1 5)()cos f t t at =. 解: 由微分性质有: [][]() 2 2 2 222 2 d d cos cos d d s s a t at at s s s a s a -?? =-=-= ? +?? +L L 6) ()5sin 23cos 2f t t t =- 解:已知[][]2 2 2 2 sin ,cos s t t s s ω ωωω ω= = ++L L ,则 []52 2 222103sin 23cos 25 34 4 4 s t t s s s --=-= +++L 8)()4e cos 4t f t t -=. 解: 由[]2 cos 416 t s +s = L 及位移性质有 42cos 4416 e t s t s -??=??++4(+)L . 3.若()()f t F s ??=??L ,证明(象函数的微分性质):

积分变换中非常有用的公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

浅谈复变函数与积分变换在电气工程及其自动化专业学习中的应用

复变函数论文 专业名称: 电子信息工程 班 级: 0934091-75 姓 名: 郑 亚 浅谈复变函数与积分变换在电子信息工程专业学习中的应用

摘要:“复变函数与积分变换”既是一门理论性较强的课程,又是解决实际问 题的强有力的工具复变函数起源于分析、力学、数学物理等理论与实际问题,具有鲜明的物理背景。“复变函数与积分变换”课程是电气工程及其自动化专业必修的专业基础课,是学习“电路理论”、“电机学”、“信号与系统”等多门后继专业课的基础,学习这门课程对于培养学生的专业能力、创新精神以及未来的业务素质都是非常重要的。建立在复变函数理论之上的积分变换方法,通过特定形式的积分建立函数之间的对应关系,既能简化计算,又具有明确的物理意义,在电力工程、通信和控制领域、信号分析和图像处理、语音识别与合成等领域中有着广泛的应用。 关键词:复变函数;积分变换;电工程及其自动化;应用 《复变函数与积分变换》这门课程主要是两大部分的内容, 一是复变函数的相关知识, 二是傅里叶变换与拉普拉斯变换这两个主要的积分变换。在电气工程及其自动化专业中, 对信号处理时的传递函数理论分析、各类信号处理中的时- 频域理论分析等内容要应用复变函数中的方法与拉普拉斯变换进行处理; 对线性系统的理论分析要应用拉普拉斯变换进行。因此《复变函数与积分变换》这门课程对该专业的学习起着重要作用,下面仅就几个简单问题进行分析。 一、拉普拉斯变换在互感电路分析中的应用 互感在工程中应用极其广泛,因此对互感电路进行分析非常必要. 常见的基本分析方法有时域分析法、频域分析法、复频域分析法. 由于互感电路本身的复杂性,采用时域或频域进行分析都很繁琐. 本文从复频域角度,首先对互感元件进行s域变换,然后对互感电路进行复频域分析. (1)拉普拉斯变换 对于具有多个动态元件的复杂电路,用直接求解微分方程的方法比较困难. 例如对于一个n阶方程,直接求解时需要知道变量及其各阶导数在t = 0 +时刻的值,而电路中给定的初始状态是各电感电流和电容电压在t = 0 +时刻的值,从这些值求初始条件的工作量很大. 拉普拉斯变换和傅立叶变换都是积分变换,但它比傅立叶变换有更广泛的适应性,是求解高阶复杂动态电路的有效而重要的方法之一[1 - 4 ]. 在傅立叶变换中, 引入衰减因子e-σt (σ为实常数) ,根据不同信号的特征,适当选取σ的值, 使乘积信号f ( t) e-σt当t→〒∞时信号幅度趋近于0,从而使f ( t) e-σt的定义式积分收敛. ∞ - ∞∫f ( t) e-σt e- jωt d t = f ( t) e- (σ+jω) t d t (1) 其积分结果为s ( s =σ+ωj )的函数,则F ( s) = f ( t) e- st d t

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

相关主题
文本预览
相关文档 最新文档