当前位置:文档之家› 人类是怎么知道地球是圆的

人类是怎么知道地球是圆的

人类是怎么知道地球是圆的
人类是怎么知道地球是圆的

人类是怎么知道地球是圆的

地球是个椭圆形的球体,这是连小学生都知道的常识。但是人类从什么时候又是怎样知道自己居住的星球的形状

的呢?

最早人类并不知道地球是圆形的。

2500多年前,我们的祖先在一本叫《周髀》的书中说:“天圆如张盖,地方如棋局。”这就是著名的“天圆地方”说。

古巴比伦人和古印度人的想象比较相近,都认为地球是座驮在海龟背上的山。所不同的是,大概印度人崇拜大象的缘故,在古印度人的想象中地球这座“山”不是直接由海龟驮着,而是由屹立在大海龟背上的三只神圣的巨象驮着的。

相比之下,古希腊人凭直觉所得的见解更实际些,他们断定大地是圆的。古希腊人之所以有这种先见之明,是因为作为人类几何学先躯的古希腊人认为,球体是几何图形中最完美的形状。公元前350年左右,古希腊哲学家亚里斯多德提出了最有说服力的论据,证明地球是圆的,而不是扁平的。他的理由是:驶入大海的船只,不论它朝什么方向行驶,总是船身先从观望者的视野中消失。另外,每当月食之际,不论月亮在什么位置,地球在月亮上的投影总是圆的。如果大地不是球形的话,这两种现象就无法解释。

公元1519年9月20日,葡萄牙贵族麦哲伦率领256人组成远航船队,从西班牙出发,一直向西航行。横渡了大西洋,

穿过了以他的名字命名的的麦哲伦海峡,又横渡了太平洋和印度洋,经过非洲南端的好望角,历时3年整,于1522年9月26日回西班牙,完成了人类历史上第一次环球航行。地圆论12也因此得到了证实。

100多年后,科学家牛顿在研究地球旋转中的离心力时计算出,两极的扁平度约为地球的1/230。也就是说,地球是个扁椭圆体,赤道部分向外鼓出,两极地区则呈扁状。地球的形状应该像个桔子,而不是个球。

随着历史的发展和科学的进步,尤其是宇宙技术的发展,人们从太空中看清了地球准确形状,证实了地球确确实实不是一个正圆球体,而是一个东西半径长、南北半径短的椭圆球体。

指南_地球化学勘查样品分析方法

地球化学勘查样品分析方法 24种主、次元素量的测定 波长色散X 射线荧光光谱法 1 范围 本方法规定了地球化学勘查试样中Al 2O 3、CaO 、Fe 2O 3、K 2O 、 MgO 、Na 2O 、SiO 2、Ce 、Cr 、Ga 、La 、Mn 、Nb 、P 、Pb 、Rb 、Sc 、Sr 、Th 、Ti 、V 、Y 、Zn 、Zr 等24种元素及氧化物的测定方法。 本方法适用于水系沉积物及土壤试样中以上各元素及氧化物量的测定。 本方法检出限:见表1。 表1 元素检出限 计量单位(μg/g ) 方法检出限按下式计算: L D = T I m 2 3B 式中: L D ——检出限; m ——1μg/g 元素含量的计数率; I B ——背景的计数率; T ——峰值和背景的总计数时间。 本方法测定范围:见表2。 表2 测定范围 计量单位 (%)

2 规范性引用文件 下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。 下列不注日期的引用文件,其最新版本适用于本方法。 GB/T 20001.4 标准编写规则第4部分:化学分析方法。 GB/T 14505 岩石和矿石化学分析方法总则及一般规定。 GB 6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。 GB/T 14496—93 地球化学勘查术语。 3 方法提要 样品经粉碎后,采用粉末压片法制样。用X射线荧光光谱仪直接进行测量。各分析元素采用经验系数法与散射线内标法校正元素间的基体效应。 4 试剂 4.1 微晶纤维素:在105℃烘2h~4h。 5 仪器及材料 5.1 压力机:压力不低于12.5MPa。 5.2 波长色散X射线荧光光谱仪:端窗铑靶X射线管(功率不低于3kW),仪器必须采用《波长色散X射线荧光光谱仪检定规程(JJG810—93)》检定合格。 5.3 氩甲烷(Ar/CH4)混合气体,混合比为9∶1。 5.4 低压聚乙烯塑料环,壁厚5 mm,环高 5 mm,内径φ30 mm, 外径φ40mm。 6 分析步骤 6.1 试料 6.1.1 试料粒径应小于0.074mm。 6.1.2 试料应在105℃烘6 h~8h,冷却后放入干燥器中备用。 6.2 试料片制备 称取试料(6.1)4g,均匀放入低压聚乙烯塑料环中(5.4),置于压力机(5.1)上,缓缓升压至10MPa,停留5s,减压取出。试料片表面应光滑,无裂纹。若试料不易成型,应用微晶纤维素(4.1)衬底,按上述步骤重新压制,直至达到要求为止,也可以使用微晶纤维素衬底和镶边的方法制备成试料片。

勘查地球化学习题集答案

地球化学找矿习题集 一、填空题 1.地球化学找矿具有对象的微观化,分析测试技术是基础,擅于寻找隐伏矿体和准确率高、速度快、成本低。的特点。 2.地球化学找矿的研究物质主要是岩石、土壤、水系沉积物、水、气体和生物。 3.地球化学找矿的研究对象是地球化学指标(或物质组成)。 4.应用地球化学解决地球表层系统物质与人类生存关系。 5.应用地球化学研究方法可以分为现场采样调查评价研究与实验研究。 6.元素在地壳的分布是不均匀的,不均匀性主要表现在空间和时间两方面。 7.克拉克值在0.1%以下的元素称为微量元素,其单位通常是ppm(或 10-6)。 8.微量元素的含量不影响地壳各部分基本物理、化学性质,但是在特定的条件下,可以富集而形成矿床。 9.戈尔德施密特根据元素的地球化学亲和性,将元素分为亲铁元素、亲硫(亲铜)元素、亲氧(亲石)元素、亲气元素和亲生物元素。 10.元素迁移的方式主要有化学-物理化学迁移、机械迁移和生物-生物化学迁移。 11.热液矿床成矿过程中,成晕元素主要呈液相迁移,迁移方式主要有渗透迁移和扩散迁移两种。 12.影响元素沉淀的原因主要有PH变化、Eh变化、胶体吸附、温度变化和压力变化。 13.地壳中天然矿物按阴离子分类,常见有含氧化合物、硫化物、卤化物和自然元素。 14.地球化学异常包括异常现象、异常范围、异常值三层含义。 15.地球化学省实质是以全球地壳为背景的规模巨大的一级地球化学异常。 16.地壳元素的丰度是指地壳中化学元素的平均含量,又称为克拉克值。 17.地壳中元素的非矿物赋存形式包括超显微非结构混入物、类质同象结构混入物、胶体或离子吸附和与有机质结合。 18.风化作用的类型包括化学风化、物理风化和生物风化。

地球化学知识汇总

中科院研究生院硕士研究生入学考试 《地球化学》考试大纲 本《地球化学》考试大纲适用于中国科学院研究生院地质学各专业的硕士研究生入学考试。地球化学是地质学的重要支柱学科之一,也是地质学各专业必备的基础理论课程。地球化学是个庞大的学科家族,不仅研究固体地球岩石圈,也研究地球表层的土壤、水系、有机体的地球化学演化规律。它从微观角度研究宏观问题,探索地球系统物质运动中物质的化学运动规律。研究目标集中于地球系统中元素及同位素组成、元素的共生组合及赋存形式、元素的迁移和循环、地球及其它行星形成历史及演化等四大科学问题。尤其是近年来,随着实验方法和分析手段的迅猛发展,地球化学理论发展更加迅速,研究方法更加先进,研究内容日益丰富,能解决的问题也更加宽广。本考试大纲限于无机地球化学范围,要求考生准确掌握无机地球化学的基本原理和研究方法,初步了解各项实验分析手段,并能客观地解释实验分析数据,具有从地球化学角度解决地质科学问题的基本能力。 一、考试内容 (一)化学元素的丰度与分布 1. 元素丰度的概念和表示方法 2. 地球的化学组成 3. 地壳的化学组成 4. 大气圈、水圈、生物圈的化学组成 (二)地球化学热力学基础 1. 热力学基本定律 2. 热力学状态函数 3. 自然过程的方向判据 4. 热力学平衡系统的表达 5. 矿物固体溶液的混合性质 (三)微量元素地球化学 1.微量元素的概念 2.能斯特分配定律 3.岩浆过程中的微量元素 4. 稀土元素地球化学 5. 微量元素地球化学示踪 (四)放射性同位素地球化学 1.自然界的放射性同位素 2.放射性衰变定律及地质年代学基本原理 3.各种放射性定年系统 4.同位素封闭温度及冷却年龄

区域地球化学样品分析方法第3部分:钡铍铋等15个元素量测定 方法验证报告

方法验证报告 检测项目:钡、铍、铋、铈、钴、铯、铜、镧、 锂、镍、铅、锑、钪、锶、钍 方法名称及编号: 《区域地球化学样品分析方法第3部分:钡、铍、铋等15个元素量的测定电感耦合等离子体质 谱法》DZ/T 0279.3-2016 二O二O年四月

一、方法依据: 根据DZ/T 0279.3-2016电感耦等离子体质谱法测定区域地球化学样品水系沉积物和土壤中钡、铍、铋等15个元素量的含量。 二、方法原理 试料用氢氟酸、硝酸、高氯酸分解,并赶尽高氯酸,用王水溶解后转移到聚四氟乙烯罐中,定容摇匀。分取澄清溶液,用硝酸(3+97)稀释至1000倍。将待测溶液以气动雾化方式引入射频等离子体,经过蒸发、原子化、电离后,根据待测元素的离子质荷比不同用四级杆电感耦合等离子体质谱仪进行分离并经过检测器检测,采用校准曲线法定量分析待测元素量。样品基体引起的仪器响应抑制或增强效应和仪器漂移可以使用内标补偿。 三、仪器、试剂及标准物质 3.1 仪器 电感耦合等离子体质谱仪--安捷伦7900 感量天平--赛多利斯科学仪器有限公司 3.2 试剂 3.3 标准物质

四、样品 4.1 样品采集和保存 按照HJ/T166的相关规定进行土壤样品的采样和保存,样品采集和保存应使用塑料或玻璃容器,采样量不少于500g,新鲜样品小于4℃时可保存180天。 4.2 样品的制备 将采集的土壤样品放置于风干盘中自然风干,适时压碎、翻动,检出砂砾、植物残体。 在研磨室将风干的样品倒在有机玻璃板上,用木锤敲打,压碎,过孔径2mm尼龙筛,过筛后的样品全部置于无色聚乙烯薄膜上,充分搅匀,用四分法取两份,一份留样保存,一份用作样品细磨。 用于细磨的样品混匀,再用四分法分成四份,取一份研磨到全部过孔径0.074mm筛,装袋待分析。 4.3 样品前处理 称取约0.10g(精确到0.0001g)样品,置于50ml聚四氟乙烯(PTFE)烧杯中,用少量水湿润,加10ml硝酸、10ml氢氟酸和2.0ml 高氯酸,将烧杯置于250℃的电热板上蒸发至高氯酸冒烟约3min,取

地球的周长进行测量

在人类历史上,第一个对地球的周长进行测量,是由公元前3世纪的古希腊数学家埃拉托斯芬完成的,并且他也是比较精确地测算出地球周长的第一人。他才智高超,多才多艺,在天文、地理、机械、历史和哲学等领域里,也都有很精湛的造诣,甚至还是一位不错的诗人和出色的运动员。 人们公认埃拉托斯芬是一个罕见的奇才,称赞他在当时所有的知识领域都有重要贡献,但又认为,他在任何一个领域里都不是最杰出的,总是排在第二位,于是送他一个外号'贝塔"。意思是第二号。能得到"贝塔"的外号是很不容易的,因为古代最伟大的天才阿基米德,与埃拉托斯芬就生活在同一个时代!他们两人是亲密的朋友,经常通信交流研究成果,切磋解题方法。大家知道,阿基米德曾解决了"砂粒问题",算出填满宇宙空间至少需要多少粒砂,使人们瞠目结舌。大概是受阿基米德的影响吧,埃拉托斯芬也回答了一个令人望而生畏的难题:地球有多大? 怎样确定地球的大小呢?埃拉托斯芬想出一个巧妙的主意:测算地球的周长。地球是一个大球体,怎么来测量地球的周长呢?这是当时确实是一件伤脑筋的事,许多人想尽了办法也没能解决这个问题。埃拉

托斯芬经过认真观察,苦思冥想,终于找出了一个巧妙地测算地球周长的方法。埃拉托斯芬生活在亚历山大城里,在这座城市正南785Km 处,另有一座城市叫做塞尼。塞尼城中有一个十分有趣的现象,每年夏至日这一天中午12点,阳光都能直射城中一口枯井的底部,这就是说,每到夏至日这天正午,太阳就正好悬挂在塞尼城的正上方,即太阳直射塞尼城。亚历山大城与塞尼城几乎同在一条子午线上,在同一时刻,亚历山大城却没有这样的景象,太阳稍微偏离直上的位置。由此埃拉托斯芬受到了启示。于是在一个夏至日的正午,他在城里竖起一根小木棍,动手测量直上的方向与太阳光之间的夹角(如图中的∟2),测得这个夹角为7.2度,它等于360度的五十分之一,由圆的知识知∟1叫做圆心角,根据圆心角度数等于它所对的弧的度数,因为∟1=∟2,所以它的度数也等于360度的五十分之一。故图中表示亚历山大城和塞尼城距离的那段圆弧的长度,应该等于圆的周长的五十分之一,也就是说亚历山大城和塞尼城的实际距离正好是地球周长的五十分之一。于是只要测出亚历山大城到塞尼城的实际距离,再乘50,就是地球的周长。埃拉托斯芬测量的结果为:地球周长等于39250K m。地球的形状如一个鸭蛋,近似于一个球体,半径取6370Km,可求得地球的周长为40003.6Km,与39250Km相差不多。可见当时埃拉托斯芬的测算是比较准确的 。古人怎樣測量地球的周長? 這是古老的難題。當然,今天有了精密的測量儀器,它已不成為什麼困難的問題了。公元前240年,古希臘的數學家Eratosthenes已經應用巧妙的方法測算出地球的周長。

土壤地球化学测量规范(附件)

附录A(规范性附录) 地球化学普查水系沉积物测量记录卡 图幅名称(或地区):采样日期:年月日 记录:采样:审核:第页 22

记录卡填写说明1 地球化学普查水系沉积物测量记录卡填写说明 A 主标识符:C2。规定:岩石为1;水系沉积物为2;土壤为4。 B 样品号:N7。图幅名拼音代码+采样大格编号+小格代码+小格样号,如:MP234B1。该样品号中:MP-茅坪幅代码;234-大格号;B-小格号;1,B小格第一个样号)。 C 原始样号:被重复采样的样品号 D 图幅代号:N10。1:50000地形图图幅号,如H49E007008 E 横坐标: N8。统一确定为高斯6度带,记录带号+横坐标精确到m。如20428303 F 纵坐标: N7。高斯6度带精确到m。如3395158 G海拔高程:N4。采样点高程坐标,以米为单位。从地形图等高线或通过GPS直接读取。 H 水系级别:C1。记录:1 、一级水系;2、二级水系;3、三级水系。 I 采样部位:C1。采样点位于水系的位置,用代码表示:1:河底;2:水线附近;3:河漫滩上;4:水塘入口处 J 样品组分:C3。记录3位数:分别代表样品中粗砂(第1位)、细砂(第2位)和淤泥及有机物(第3位)含量。此三项为样品的沉积物组分,以编码方式分级填写,分为:0:无;1:少量(<30%);2:中量(30~70%);3:大量(>70%),三者之和不能超过100%。K 样品颜色:C2。1、灰黑色;2、灰色;3、褐色;4、灰黄色;5、红色;6、砖红色;7、灰绿色。 L 地质时代:C4。记录所控汇水域内地质时代。记录地质时代符号。沉积地层按出露情况适当并层;侵入岩记录主要侵入期。 M 岩石类型:C4。填写该点所控制汇水面积内占优势的基岩类型,参见“区域地球化学勘查规范”附录B表B2。 N 矿化蚀变:C1。记录矿化蚀变程度。0、无;1、弱;2、中等;3、强烈。 O 地貌类型:C1。1、平原-准平原;2、低山-丘陵;3、山地-峡谷;4、高山-深谷;5、高原;6、高寒山地;7、盆地;8、沼泽洼地;9、岩溶石山。 P 植被:C1。0,无;1,稀疏,浅薄,覆盖度<1/3;2,中等,覆盖度在1/3~2/3间;3,茂密,浓厚,覆盖度>2/3。 Q 岩溶类型:C1。指在岩溶区采样位置的岩溶类型(非岩溶区不填)。编码为:1:峰丛峰林洼地;2:峰丛峰林谷地;3:岩溶平原;4:岩溶穹窿盆地;5:岩溶石山及丘陵。 R 污染:C1。指采样点上游汇水域存在的污染源:0,无;1,矿山采冶;2,工业生产;3,居民生活。 S GPS文件号:N6。指采样点某GPS坐标数据转存入计算机内的批次文件。要求以GPS 手持机编号后四位数+录入的第n批数(n为两位数)。每批坐标存点宜在500个以内。 T GPS ID号:N3。GPS手持机对采样点自动定点形成的顺序号码。该号码与采样号一一对应,不可更改。如采样点上重复自动定点,宜自行保存不得删除;或采样点被遗忘自动定点,亦不得手动添加补充,均待转录计算机后再据记录资料做删除或添加补充处理。U 标记位置:记录书写采样点标记的具体位置。标记须清楚明显。

地球化学

一.关于地球化学的定义: 地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。二.地球化学的基本问题 1、地球系统中元素的组成(质) 2、元素的共生组合和赋存形式(量) 3、元素的迁移和循环(动)4:地球的历史和演化(史)三.地球化学研究思路 在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。(一句话那就是“见微而知著”) 第一章地球和太阳系的化学组成 第一节地球的结构和组成 一.大陆地壳和大洋地壳的区别: 1.大洋地壳较薄,10-5公里,平均厚8公里;大陆地壳较厚,最厚可达70公里,平均厚33公里。(整个岩石圈也是大陆较厚,海洋较薄。海洋为50—60公里,大陆为100—200公里或更深。) 2.在元素的分配上,洋壳比陆壳贫硅和碱金属,但较富镁富铁。正是这种原因,大洋沉积物中富含Fe、Mn、Co、Ni等亲铁元素,它们是现代海洋中巨大的潜在资源。 二. 固体地球各圈层的化学成分特点 ○1地壳:O、Si、Al、Fe、Ca○2地幔:O、Mg、Si、Fe、Ca○3地核:Fe-Ni○4地球:Fe、O、Mg、Si、Ni 第二节元素和核素的地壳丰度 一.概念 1.地球化学体系:按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C,T,P等)并且有一定的时间联系。 2.丰度:表示元素在某地质体中(如地球,地壳,宇宙星体及某岩类,岩体等)的含量。 3.克拉克值:元素在地壳中的平均含量 4.质量克拉克值:若计算元素在地壳中的平均含量时以质量计算,则称为质量克拉克值。 5.原子克拉克值:以原子数之比表示的元素相对含量(即指某元素在某地质体中全部元素的原子总数中所含原子个数的百分数) 任意元素的原子克拉克值=某元素在某地质体中的相对原子数(用N表示)/所有元素相对原子数之和(用 N表示) 6.浓度克拉克值:某元素在某地质体中的平均含量/元素克拉克值 二.克拉克值的变化规律: ①递减:元素的克拉克值大体上随原子序数的增加而减少(但锂,铍,硼以及惰性气体的含量并不符合上述规律,丰度值很低)②偶数规则:周期表中原子序数为偶数的元素总分布量(86%)大于奇数元素的总分布量(14%)。相邻元素之间偶数序数的元素分布量一般大于奇数元素分布量,稀土特别明显。③四倍规则:4q型占87%,4q+3占13%,剩下的只占千分之几。 三“元素克拉克值”研究意义 1.是地球化学研究重要的基础数据。 2.确定地壳中各种地球化学作用过程的总背景。 3.是衡量元素集中、分散及其程度的标尺。 4.是影响元素地球化学行为的重要因素。四.区域元素丰度的研究的意义: 1.它是决定区域地壳(岩石圈)体系的物源、物理化学特征的重要基础数据; 2.为研究各类地质、地球化学作用、分析区域构造演化历史及区域成矿规律提供重要的基础资料; 3.为研究区域生态环境,为工业、农业、畜牧业、医疗保健等事业提供重要信息。 第四节水圈、大气圈和生物圈的成分二.自然水的主要阳离子和阴离子成分海水:钠离子>镁离子>钙离子、氯离子>硫酸根>碳酸氢根、淡水:钙离子>钠离子>镁离子、碳酸氢根>硫酸根>氯离子。 第六节元素的地球化学分类 一.元素的地球化学分类(戈氏分类法)以及各类元素的主要分布趋势 (1)亲石元素:主要分布于岩石圈(2)亲铜元素:主要分布于地幔(3)亲铁元素:主要分布于地核(4)亲气元素:主要集中于大气圈。此外,戈氏还划分出"亲生物元素" 第七节太阳系化学 一.太阳系化学组成的基本特点 1) 在所有元素中H, He占绝对优势, H占90%, He占8% 。 2)递减规则:太阳系元素的丰度随着原子序数(Z)的增大而减少,曲线开始下降很陡,以后逐渐变缓。在原子序数大于45的重元素范围内,丰度曲线近于水平,丰度值几乎不变。 3)奇-偶规则:偶数原子的丰度大于奇数原子 第二章微量元素地球化学 一.微量元素的概念 人们常常相对于地壳中的主量元素而言,人为地把地球化学体系中,其克拉克值低于0.1%的元素,通称为微量元素。 二.微量元素的基本性质 ①微量元素的概念到目前为止尚缺少一个严格的定义;②自然界“微量”元素的概念是相对的;③低浓度(活度)是公认的特征,因此往往不能形成自己的独立矿物(相)。四.能斯特定律 能斯特定律描述了微量元素在平衡共存两相间的分配关系。当一种矿物(α相)与一种溶液(β相)共存时,微量元素i(溶质)将在两相间进行分配,当分配达到平衡时(有:μi α=μ i β ),其两相浓度比为一常数。此常数称为能斯特分配系数。 五.由能斯特定律引出的分配系数 ①简单分配系数(即能斯特分配系数)a α i /aβi=K D(T、P)。在一定温度压力条 件下,在恒温恒压下,微量元素i在两 相间的浓度比为一常数,它适用于稀溶 液中微量元素的分配。K D即为能斯特分 配系数,也称简单分配系数。 ②复合分配系数:既考虑微量元素在两相 中的比例,也考虑与微量元素置换的常 量元素在两相中的浓度比例,能较真实 地反映两者之间类质同象交换对微量元 素分配的影响。 D tr/cr=[C s tr/C s cr]/[C l tr/C l cr]=(C tr/C cr)s/(C tr/C c r )l。 ③总体分配系数(岩石分配系数):实际上 是矿物的简单分配系数和岩石矿物的百 分含量乘积的代数和。代表式:D i=∑(上 n下j=i)K i D,j W j。第j种矿物对微量元 素i的简单分配系数、D i为岩石的分配 系数,n为含微量元素i的矿物数,W j 为第j种矿物的质量百分数。 五.影响分配系数的因素 体系成分、温度、压力、氧逸度 六.由分配系数引出的微量元素的分类 相容元素(D>1):按地球化学作用过程中,当固相(结晶相)和液相(熔体相,流体相)共存时,若微量元素易进入固相,称为相容元素 不相容元素(D小于1):按地球化学作用过程中,当固相(结晶相)和液相(熔体相,流体相)共存时,若微量元素易进入液相,称为不相容元素. 亲岩浆元素(D<<1):亲岩浆元素总体分配系数相对于1来说可忽略不计。 超亲岩浆元素(D<<0.2):超亲岩浆元素的总体分配系数相对于0.2到0.5可忽略不计第四节稀土元素地球化学 一.稀土元素组成

地球半径巧测量

地球半径巧测量 两千多年前,哲学家们找到了测量地球半径的方法,只需量一下影子的长度就可以计算出地球的半径。不知读者朋友们能否在一间邻海的房子里只借助一只表和一把皮尺测量地球半径呢? 假如你正在海边度假,住在一家临海旅馆四层的一个房间里,房间视野很开阔。有一个人悬赏说,明天天亮以前,谁要能想出一个相当准确的方法来测量地球半径,将获得一笔奖金,条件是除了借助一只表和一把皮尺外,不能使用特别的仪器。你能做到吗? 先别急着往下看,也不要看图,你先仔细想一想。你就想像你在旅馆里,房间的位置如上所述,免得你走弯路。 答案 你可以测一下房间的窗台离地面有多高,当然也可以问旅馆老板:我们假设为10米。黄昏时分,你趴在旅馆前的海滩上,请你的朋友坐在你房间里把下巴倚在窗台上。为了不使问题过于复杂化,我们可以这样设想,趴着时你的眼睛处在地平面上。当太阳的上边或者说最后一个亮点消失在海平面上时,你按下秒表开始记时。此时,从你朋友那里看,太阳还有一点仍处在海平面上,当太阳消失的一瞬间,让你的朋友喊声“停!”,你就让秒表停下。你可能会觉得奇怪,不过这中间确实要经过24秒多(准确的结果应该是24.366秒)。 现在,你需要一点三角函数知识来推导出地球半径。如图1所示。对于趴在海滩上的人来说,太阳的上边没入海平面时,太阳发出的光线与地球相切于他趴着的地方,如图上线段AB所示。处于高处的人看到太阳落山时的最后一缕光线,与地球相切的那条线是线段CE。设高处的观察者所在的高度为h,地球的半径为R。三角形ODE是直角三角形。根据余弦定理,直边OD=R与斜边OE=R+h的关系式为R=(R+h)cosθ,其中cosθ是θ角的余弦。另外,我们知道,地球转过这个θ角需要24.366秒(如果不出偏差);因为转一周要用24小时,这样可以得出:θ/360=24.366/(24×3600),结果θ=0.101525º。用一个小计算器可以算出θ的余弦等于0.99999843;代入上面的三角公式,其中h=10米,这样得出R≈6370公里,正好是地球半径。不用三角函数知识,也可以计算出同样的结果,只不过需要比较复杂的几何推理。 站直了和趴下 当然,事情不可能像描述得那么理想,会有各种误差。比如,你的眼睛不可能恰好处在地面上,而且你找的人头脑反应快慢的问题等等,这样得到的数据可能会有5%左右的偏差。如果你的房间在11层,或者最好你的朋友在海边一个巨大的峭壁上,而你在峭壁的底部,通过手机接收他发出的停止指令,这样偏差就会小些。在意大利的拉齐奥(Lazio)就有一个好去处:在海边有一座高600米的山,从高处到水平面大约有3分钟的延迟,偏差几乎为零。如果没有人帮忙,你可以自己试一下,沿着台阶跑上去,但愿时间来得及。你还可以通过测量你趴在地上和站直身体时看到太阳落山的时间间隔进行计算。既然上面用到的几何关系式表明间隔与两个观察点的高度差成正比,那么如果你站直身体时眼睛的高度为1.70米,时间间隔就应该是10秒,不同的是高度差太小,时间太短而已(图2)。令人感到意外的是,虽然古人知道地球是圆的,而且早在公元前,毕达哥拉斯和亚里士多德就明确地指出了这一点,但据我们所知,古人从来没有用过这么简单的方法来估算地球的半径。这其中的原因也许是那个时代人们很难准确地测量时间。 井中的太阳 公元前3世纪,他看到太阳光直射入一口井里,并计算骆驼的脚程,最终埃拉托斯特尼测量出地球半径 历史上第一个做此种尝试的是希腊天文学家埃拉托斯特尼(Eratosthenes,公元前280~前190年),他的试验比较复杂。埃拉托斯特尼认为,在赛伊尼(Syene),即位于今天的亚历山大以南的阿斯旺(Assuan),在夏至日的正午,太阳差不多经过天顶:他知道窄窄的井底被照亮。而在亚历山大,情况就不一样了,影

土壤地球化学测量标准

uz中华人民共和国地质矿产行业标准nZ/T 0145一 94 土壤地球化学测量规范 1995一01一27发布 1995一12一01实施 中华人民共和国地质矿产部发布 中华人民共和国地质矿产行业标准 1 主题内容与适用范围 1.1 本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则. 1.2 本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 UB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺 1:50 000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤Nii量),是以土壤为采样对象所进行的地球化学勘查工作。 3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区. 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法.其主要技术要求,按化探

区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测觉应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,一般应收集和分析以下资料 : a. 测区的地理和交通、生活情况以及测地资料; b. 测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c. 测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d. 测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型植被特征,人工污染情况等 有关资料; e. 表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a. 检查核对所搜集资料的可靠程度; b. 确定试验地点和测区的有效范围; c. 实地考察工区的交通、生活及工作条件。

SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法 用于U-Pb年龄测定的样品(号码)用常规的重选和磁选技术分选出锆石。将锆石样品颗粒和锆石标样Plésovice (Sláma et al., 2008) (或TEMORA, Black et al., 2004)和Qinghu (Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构、帮助选择适宜的测试点位。样品靶在真空下镀金以备分析。 U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Li et al. (2009)。锆石标样与锆石样品以1:3比例交替测定。U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008(或TEMORA (417Ma, Black et al., 2004))校正获得,U含量采用标准锆石91500 (81 ppm, Wiedenbeck et al., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD = 1.5%, Li et al., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu (159.5 Ma, Li et al., 2009) 作为未知样监测数据的精确度。普通Pb校正采用实测204Pb值。由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。同位素比值及年龄误差均为1σ。数据结果处理采用ISOPLOT软件(文献)。 参考文献 Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S., Foudoulis, Chris., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol., 205: 115-140. Ji?í Sláma, Jan Ko?ler, Daniel J. Condon, James L. Crowley, Axel Gerdes, John M. Hanchar, Matthew S.A. Horstwood, George A. Morris, Lutz Nasdala, Nicholas Norberg, Urs Schaltegger, Blair Schoene, Michael N. Tubrett , Martin J. Whitehouse, 2008. Ple?ovice z ircon —A new natural reference material for U

地球化学勘查(专升本)阶段性作业

地球化学勘查(专升本)阶段性作业1 总分:100分得分:0分 一、单选题 1. 勘查地球化学最初起源于_____(5分) (A) 美国 (B) 德国、 (C) 中国 (D) 前苏联 参考答案:D 2. 勘查地球化学研究元素在天然介质中的分布特征,其主要目的是_____(5分) (A) 发现地球化异常 (B) 找到矿产资源 (C) 元素的分布规律 (D) 治理污染 参考答案:B 3. 影响元素在矿物中分配形式的主要因素是_____(5分) (A) 元素的地球化学性质 (B) 元素的含量、 (C) 同位素组成 (D) 其它元素 参考答案:B 4. 贵金属的含量单位常用_____(5分) (A) % (B) ‰ (C) g/t (D) 10-6 参考答案:C 5. 从元素的戈尔特施密特分类来看,Au属于_____(5分) (A) 亲硫元素 (B) 亲铁元素 (C) 亲生物元素 (D) 亲气元素 参考答案:B 二、多选题 1. 影响元素表生地球化学行为的主要因素有_____(5分) (A) 元素本身的地球化学性质 (B) 元素的含量、 (C) 降雨 (D) 生物作用 参考答案:A,C,D 2. 影响物理风化的主要因素是_____(5分) (A) 植物根系 (B) 气候、 (C) 地形 (D) 温度 参考答案:B,C,D

(A) Si (B) Al、 (C) Zn (D) Cu 参考答案:C,D 4. 灰岩风化后原地留下的土壤剖面发育哪些层_____(5分) (A) A层 (B) B层、 (C) C层 (D) D层 参考答案:A,B,D 5. 灰岩风化后原地留下的土壤剖面发育哪些层_____(5分) (A) A层 (B) B层、 (C) C层 (D) D层 参考答案:A,B,D 三、判断题 1. 降水是影响元素表生地球化学行为的主要因素之一(5分)正确错误 参考答案:正确 解题思路: 2. 松散堆积物就是残坡积物_____(5分) 正确错误 参考答案:错误 解题思路: 3. 高异常区下面就能找到矿_____(4分) 正确错误 参考答案:错误 解题思路: 4. 土壤测量是化探中适用性最好的方法_____(4分) 正确错误 参考答案:错误 解题思路: 5. Mg在岩石中通常是微量元素_____(4分) 正确错误 参考答案:错误 解题思路: 6. 稀土元素是亲硫元素_____(4分) 正确错误 参考答案:错误 解题思路: 7. LILE是亲石元素(4分) 正确错误 参考答案:正确 解题思路:

成矿流体活动的地球化学示踪研究综述

第14卷第4期1999年8月 地球科学进展 ADVAN CE I N EA R TH SC IEN CES V o l.14 N o.4 A ug.,1999 成矿流体活动的地球化学示踪研究综述Ξ 倪师军,滕彦国,张成江,吴香尧 (成都理工学院,四川 成都 610059) 摘 要:成矿流体活动的地球化学示踪是近年来流体地球化学研究的一个新趋势。通过流体来源示踪、运移示踪和定位示踪可以追溯流体活动的全过程,对恢复流体活动历史、演化历程具有积极意义。对成矿流体活动的地球化学示踪方法进行了一定的总结,对人们常用的地球化学示踪方法——同位素地球化学示踪、元素地球化学示踪、包裹体地球化学示踪及气体地球化学示踪的研究现状进行了综述。 关 键 词:成矿流体;流体地球化学;地球化学示踪 中图分类号:P595 文献标识码:A 文章编号:100128166(1999)0420346207 地球化学示踪研究是查明元素、矿物等在地质地球化学作用过程中的来源、演化及其最终发展状态,是揭示地球化学作用机理和过程的重要途径和有效手段。成矿流体地球化学是当前国际地学界研究的前沿和热点之一,成矿流体活动的地球化学示踪研究已成为一个新的趋势,通过流体来源示踪、运移示踪和定位可以追溯流体活动的全过程,对恢复流体活动的历史、演化历程具有积极意义。 1 同位素地球化学示踪 由于同一元素不同同位素的原子质量不同,其热力学性质有微小的差异。正是这种差异导致同位素组成在物理、化学作用过程中发生变化,引起同位素分馏,包括热力学平衡分馏和动力学分馏2种类型〔1〕。 经过长期的分异、分馏、衰变演化,地球不同层圈、不同地质单元具有明显不同的同位素组成特征。因此可以根据同位素具有基本相同的化学性质示踪成岩、成矿物质的来源、推断源区的地球化学特征。另外还可以根据同位素分馏规律和矿物的同位素组成,示踪矿物形成时的物化条件和演化过程〔1〕。用稳定同位素数据来定量地说明成矿介质水和其他物质的来源,开始于60年代初期〔2〕,作为独特的示踪剂和形成条件的指标,稳定同位素组成已广泛地应用于陨石、月岩、地球火成岩、沉积岩、变质岩、大气、生物、海洋、河流、湖泊、地下水、地热水及各种矿床的研究,成为解决许多重大地质地球化学问题的强大武器〔3〕。在应用稳定同位素研究成矿流体的演化过程(源、运、储)的同时,人们也不断地应用放射性同位素来定量、半定量地研究地质地球化学作用过程,即应用放射性同位素研究地球化学示踪和地球化学作用发生的年代问题。同位素分析新方法新技术的不断发展,如R e2O s、L u2H f、L a2B a2Ce等方法的建立〔4〕,使同位素示踪技术也得到了丰富和发展。111 氢、氧同位素示踪 利用氢、氧同位素示踪成矿溶液的来源,是同位素示踪技术在地质研究中取得的最重要成果之一〔1〕。由于不同来源的流体具有不同特征的氢氧同位素组成,因此成矿流体的氢氧同位素组成成为判断成矿流体来源的重要依据,如卢武长①、魏菊英〔5〕 Ξ国家自然科学基金项目“成矿流体定位的地球化学界面及地学核技术追踪方法研究”(编号:49873020)、国家科技攻关项目“矿床(体)快速追踪的地球化学新方法、新技术”(编号:962914203202)和国土资源部百名跨世纪优秀人才培养计划基金资助。 第一作者简介:倪师军,男,1957年4月出生,教授,主要从事地球化学的教学与研究。 收稿日期:1998208210;修改稿:1999204213。 ①卢武长1稳定同位素地球化学1成都地质学院内部出版,19861116~1451

人类如何测量地球半径

人类如何测量地球半径 This model paper was revised by the Standardization Office on December 10, 2020

人类是如何测量地球半径的 地球半径是指从地球中心到其表面(平均海平面)的距离。地球不是一个规则的物体。首先,它不是正球体,而是椭球体,准确地说是一个两极稍扁,赤道略鼓的扁球体;其次,地球的南极、北极也不对称,就海平面来说,北极稍凸,南极略凹;第三,地球的外部地形起伏多变(这对测量地球半径是没有影响的)。平均大约3959英里千米) 公元前三世纪时希腊天文学家厄拉多塞内斯(Eratosthenes,公元前276—194)首次测出了地球的半径。他发现夏至这一天,当太阳直射到赛伊城(今埃及阿斯旺城)的水井S时,在亚历山大城的一点A的天顶与太阳的夹角为°(天顶就是铅垂线向上无限延长与天空“天球”相交的一点)。他认为这两地在同一条子午线上,从而这两地间的弧所对的圆心角SOA就是°(如图一)。又知商队旅行时测得A、S间的距离约为5000古希腊里,他按照弧长与圆心角的关系,算出了地球的半径约为40000古希腊里。一般认为1古希腊里约为米,那么他测得地球的半径约为6340公里。 近代测量地球的半径,还用弧度测量的方法,只是在求相 距很远的两地间的距离时,采用了布设三角网的方法。比如 求M、N两地的距离时,可以像图2那样布设三角点,用经纬 仪测量出△AMB,△ABC,△BCD,△CDE,△EDN的各个内角的 度数,再量出M点附近的那条基线MA的长,最后即可算出MN的长度了。 而在现代,测量地球半径的方法越来越多,方法也很简单了,有时用一秒表和尺子就可以成功。 比如:你站在海边,太阳光穿过地平线到达你的眼睛,此时你的位置是在A点,高出地球的那段距离就是你的身高;趴到地上后,由于高度变低,所以你看不到太阳了,当地球

1 5万土壤地球化学测量规范

中华人民共和国地质矿产行业标准 土壤地球化学测量规范 DZ/T 0145-94 1 主题内容与适用范围 1.1本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则。 1.2本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 GB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺1:50000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤测量),是以上壤为采样对象所进行的地球化学勘查工作。3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区。 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法,其主要技术要求,按化探区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测量应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,—般应收集和分析以下资料: a.测区的地理和交通、生活情况以及测地资料; b.测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c.测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d.测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型,植被特征,人工污染情况等有关资料; e.表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a.检查核对所搜集资料的可靠程度; b.确定试验地点和测区的有效范围; c.实地考察工区的交通、生活及工作条件。 4.2.2 设计前的技术试验 4.2.2.1 有前人工作过的测区或邻区,设计时其主要技术指标和方案可参照前人的工作成果。如果认为资料不足,可补作部分技术试验。

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。 土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。

土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。 水资源世界上一切水体,包括海洋、河流、湖泊、沼泽、冰川、土壤水、地下水及大气中的水分,都是人类宝贵的财富,即水资源。(广义)在一定时期内,能被人类直接或间接开发利用的那一部分动态水体。(狭义) 水矿化度天然水中各种元素的离子、分子与化合物(不包括游离状态的气体)的总量。 水硬度水中钙和镁含量。 化学需氧量(COD)水样在一定条件下,氧化1L水样中还原性物质所消耗的氧化剂的量,以氧的mg/L表示。 高锰酸钾指数法(COD Mn)在一定条件下,以高锰酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 重铬酸钾指数法(COD Cr)在一定条件下,以重铬酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 生化需氧量(BOD)在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。 水体污染进入水体中的污染物含量超过了水体的自净能力,就会导致水体的物理、化学及生物特性的改变和水质的恶化,从而影响水的有效利用,危害人类健康的现象。 水体自净污染物质进入天然水体后,通过一系列物理、化学和生物因素的共同作用,使水中污染物质的浓度降低的现象。 水环境质量评价按照评价目标,选择相应的水质参数、水质标准和评价方法,对水体的质量利用价值及水的处理要求作出评定。 第四章大气圈环境地球化学(1/11) 大气圈包围在地球最外面的圈层,是由气体和气溶胶颗粒物组成的复杂的流体系统。 同温层从对流层顶以上到25km以下气温不变或微有上升的圈层。 逆温层从25km以上到50-55km,温度随高度升高而升高的圈层。 臭氧层地球上空10-50km臭氧比较集中的大气层, 其最高浓度在20-25km处。

相关主题
文本预览
相关文档 最新文档