当前位置:文档之家› 锂离子动力电池设计步骤及要求

锂离子动力电池设计步骤及要求

锂离子动力电池设计步骤及要求
锂离子动力电池设计步骤及要求

锂离子动力电池安全性及解决方法(2021)

Safety issues are often overlooked and replaced by fluke, so you need to learn safety knowledge frequently to remind yourself of safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锂离子动力电池安全性及解决方 法(2021)

锂离子动力电池安全性及解决方法(2021)导语:不安全事件带来的危害,人人都懂,但在日常生活或者工作中却往往被忽视,被麻痹,侥幸心理代替,往往要等到确实发生了事故,造成了损失,才会回过头来警醒,所以需要经常学习安全知识来提醒自己注意安全。 在新能源汽车发展过程中,除价格高、续驶里程短和充换电基础设施不足外,动力安全性是消费者和专业人士关注的重点。这个问题也影响到了动力电池比能量的提升。 “发展防短路、防过充、防热失控、防燃烧及不燃性电解液是应对动力电池安全性的关键。”武汉大学艾新平教授在上海举行的第14届中国国际工业博览会新能源汽车产业发展高峰论坛上强调。 锂离子动力电池不安全行为的发生机制 艾新平分析指出,锂离子动力电池除了正常的充放电反应外,还存在很多潜在的放热副反应。当电池温度或充电电压过高时,很容易引发这些放热副反应。 主要的过热副反应包括:1.SEI膜在温度高于130℃时分解,使电解液在裸露的高活性碳负极表面大量还原分解放热,导致电池温度升高。这是引发电池热失控的根本原因。 2.充电态正极的热分解放热,及进一步由活性氧引发的电解液分

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

动力电池系统设计讲解

深入浅出史上最易懂的动力电池系统 设计讲解 2 [摘要]动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 动力电池系统指用来给电动汽车的驱动提供能量的一种能量储存装置,由一个或多个电池包以及电池管理(控制)系统组成。动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 比如整车厂会针对要设计的整车,在考虑安全设计、线束连接线设计、接插件设计等相关要求后,形成一个有限的动力电池系统空间大小。然后在有限的空间约束下,进行电池模组、电池管理系统、热管理系统、高压系统等布置,保证电池单体及模块均匀散热,保证电池的一致性,提高电池系统的寿命与安全。设计时要考虑到的一些整体和通用性原则包括安全性好、高比能量、高比功率、温度适应性强、使用寿命长、安装维护性强、综合成本低等。

一种典型的动力电池系统 由于不同种类电动汽车的结构和工作模式的不同,导致对动力电池的性能要求也不一样。纯电动汽车行驶完全依赖于动力电池系统的能量,电池系统容量越大,可以续航里程越长,但所需电池系统的体积和重量也越大。虽然混合动力汽车对动力电池系统的容量要求比纯电动汽车要低,但要能够在某些时候提供较大的瞬时功率。而串联式和并联式混合动力汽车对电池系统的要求又有所区别。 因此动力电池系统的设计流程一般如下:(1)先确定整车的设计要求;(2)然后确定车辆的功率及能量要求(3)选择所能匹配合适的电芯(4)确定电池模块的组合结构形式(5)确定电池管理系统设计及热管理系统设计要求(6)仿真模拟及具体试验验证。

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计 1.1 额定电压及电压应用范围 对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。 动力电池系统的额定电压及电压范围必须与整车所选用的 电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量 整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。动力电池系统容量主要基于总能量和额定电压来进行计算。 1.3 功率和工作电流 整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。 1.4 可用SOC范围 在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

锂离子动力电池的安全性问题分析Word版

锂离子动力电池的安全性问题分析 () 摘要:本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。 关键词:锂离子电池;安全性能;热稳定性;影响因素 Power type lithium ion battery safety problem analysis (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract:This article from the lithium ion battery materials and production process analysis of two aspects of influence of lithium ion battery safety performance factors, and further analysis of lithium ion battery safety problems. Key words:Lithium ion battery; Safety performance; Thermal stability; Influence factors. 0 引言 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池是最晚研究而商品化进程最快的一种高性能电池。锂离子电池以其独特的优势目前以成为各个领域广泛应用的新能源。锂离子电池具有电压高、比能量高、循环性能好等特点,越来越广泛应用发的3C市场领域、电动车(EV)和混合型电动车(HEV)市场领域、军事用途及空间技术领域。虽然,锂离子二次电池的安全性相对于金属锂二次电池有了很大的提高,但仍存在着许多隐患,比如:由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。根据Ph.Biensan等的研究证明:锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。因此对锂离子电池的研制和生产来说,电池的安全性不仅是指在各种测试条件下不出现冒烟、着火、爆炸等现象,最为重要的确保人员在电池滥用的条件下不受伤害。 1 锂离子电池的几代变革 第一代锂离子电池:负极:锂金属,工作电压高达3.7。由于直接以极其活跃的金属锂作为负极,安全隐患太大已经被淘汰。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电动汽车用动力电池系统安全性设计-0901..

电动汽车用动力锂离子电池系统 安全性设计 拟稿:张建华 2014、7、31

目录 1、序言 2、锂离子电芯安全特性 3、几种锂离子电芯安全特性分析 4、由锂离子电芯组成的电池PACK的安全性特性分析 5、锂离子电池PACK安全性设计 6、结论

一、序言 1、特斯拉电动汽车六次碰触起火事件 7月4日,在一起离奇的盗窃事件中,特斯拉意外成为了主角。一名身份未明的男子7月4日早间盗窃ModelS汽车后,引发警方的高速追逐。该男子随后在西好莱坞撞上多辆汽车,并在撞击路灯后解体成两半,引发电池着火。7月7日,特斯拉表示,该公司将调查在高速追逐中因碰撞而解体成两半,并着火的ModelS汽车残骸。 从2013年下半年开始,特斯拉已经发生了六起起火事件。其中两起是行驶中车辆自燃,两起是碰撞起火,原因是车主驶过路面上的残骸致使电池箱被刺穿后起火,有一起在充电时发生,还有一起原因不明。 1)11月6日,据海外网站报道,一辆特斯拉Model S电动车在美国田纳西州纳什维尔附近再度遭遇起火事故,车头几乎全部烧毁。 2)10月1日,一辆Model S撞上了路中的金属残片引发事故着火燃烧,车辆前部的一块电池包起火。 3)10月18日中旬,在墨西哥,一辆高速行驶特斯拉Model S撞到了一堵混凝土墙,紧接着又撞上了一棵大树,随后起火燃烧。 结论:汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

2、比亚迪e6着火事件 2012年5月26日凌晨3时08分,深圳滨海大道西行侨城东路段发生的一起重大交通事故,让电动汽车的安全问题成为了全世界关注的焦点。当时,一男子载三女驾驶一辆红色日产GT-R跑车,高速撞上两辆同方向行驶的出租车。其中一辆比亚迪E6电动出租车起火燃烧,一名男性出租车司机连同两名女性乘客被困火中当场死亡。 涉及各领域的13名知名专家,包括电动汽车整车及动力系统、部件安全、结构安全、汽车碰撞、电子电气安全、动力电池、汽车交通事故鉴定、火灾调查、材料燃烧特性等专业领域。专家分别来自中国汽车技术研究中心、交通运输部、科学研究院、公安部天津消防研究所、广东省消防总队、北方车辆研究所、S MG等,进行为期70天的调查。 专家组得到的结论是:电池没爆炸,着火起因是e6受到两次严重碰撞,车身后部及电池托盘严重变形、动力电池组和高压配电箱受到严重挤压,导致部分动力电池破损短路、高压配电箱内的高压线路与车体之间形成短路,产生电弧,引燃内饰材料及部分动力电池等可燃物质。e6的动力电池系统在整车上的安装布局、绝缘防护及高压系统等方面设计合理,“整车安全未见设计缺陷”。 结论: 汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

锂离子动力电池安全性问题影响因素

锂离子动力电池安全性问题影响因素... 影响动力电池安全性能的因素贯穿了一个动力电池从电芯选材到使用终结的生命周期的始终,因此原因复杂多样层次丰富。电芯材料本身,电芯的制造过程,电池集成中关于BMS(电池管理系统)和安全性方面的设计和使用工况都是锂离子电池安全性表现的影响因素。 在这些环节中,出现制造误差和滥用工况是无论如何也难以避免的,所以在这个现实条件下,对电池发生热失控的预案设计就显得尤其重要。本文通过对锂离子动力电池安全性能影响因素的梳理总结,以期为其在高能量/高功率领域的应用和研究提供可靠的依据。 1前言 锂离子电池因为其具备高能量密度,高功率密度和长使用寿命的特点,在化学储能器件中脱颖而出,现在在便携式电子产品领域已经技术成熟广泛应用了,如今在国家的政策支持下,在电动车领域和大规模储能领域的需求量也呈爆发式的增长。 锂离子电池在通常情况下是安全的,但是,时有安全性事故的报道呈现在公众面前。比较著名的有近几年的波音公司737 和B787飞机电池着火,比亚迪电动车起火,特斯拉MODEL S起火…这些锂离子电池安全性事故进入公众视野的最早时间可以追溯到4、5年以前。发展到现在,安全性仍然是制约锂离子电池在高能量/高功率领域应用的关键性因素。热失控不仅是发生安全性问题的本质原因,也是制约锂离子电池性能表现的短板之一。

锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期待BMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生, 但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面临的所有安全状况,所以,对其引发原因的分析和研究对一个安全可靠的锂离子电池来说仍然是必要的。 2电芯材料的选择 锂离子电池的内部组成主要为正极|电解质|隔膜|电解质|负极,在此基础上再进行极耳的焊接,外包装的包裹等步骤最终形成一只完整的电芯。电芯再经过初始的充放电,化成分容排气等步骤以后,就可以出厂使用了。这个过程的第一步,是材料的选择。影响材料的安全性因素主要是其本征的轨道能量、晶体结构和材料的性状。 正极材料 正极活性材料在电池中的主要作用是贡献比容量和比能量,其本征电极电势对安全性有一定的影响。例如,近年来,中国已经将低电压材料LiFePO4(磷酸铁锂)作为动力电池的正极材料广泛应用于交通工具(例如混合式动力车HEV,电动车EV)和储能设备(例如不间断电源UPS)中,但是LiFePO4在众多材料中所展现出来的安全性优势实际是以牺牲能量密度为代价的,也就是说会制约其使用者(如EV,UPS)的续航能力。而像NMC (LiNixMnyCo1-x-yO2)等三元材料虽然在能量密度上表现优异,但是作为动力电池的理想正极材料,安全性问题一直得不到完善

动力电池系统设计输入地要求

纯电动大巴车用动力电池系统设计输入要求 一.设计输入--项目可行性报告 1、车辆技术参数: 车辆尺寸(车辆三维模型) 总质量 kg 轴荷分配 kg 主传动比 最大车速 km/h 常规车速 km/h 爬坡车速 km/h 最大爬坡度 % 迎风面积 m2 风阻系数 车轮的滚动半径 m 2、车辆性能: 车速、加速性、行驶距离、车速变化曲线 3、使用环境: 路面、全年早晚温度变化与负荷变化关系曲线、全年雨量分布、湿度范围、 4、运行工况:

负荷变化曲线、每天运行时间 实际路测数据输入: 1)行驶里程(平路里程和坡道里程)按满备质量计算 2)运行的最高车速 3)运行的平均车速 4)爬坡车速 5)满载质量波动 5、驱动电机参数: 电机结构、工作电压范围、工作温度范围 电动机的额定功率、扭矩、转速、尺寸、重量等基本参数 电动机的瞬时最大功率、扭矩、转速等参数 变速箱的主减速比、传动比等基本参数 电机制动参数 6、控制器参数 7、充电机参数 二.根据需求输入及汽车改装的实际情况,编制技术协议--项目设计任务书,需要提供的参数: 1.提出电池箱最大包络; 2.确定电池箱体固定安装方式、固定点及定位销位置(三维模型);

3.明确接插件及管脚定义; 4.提出电性能指标(电压等级﹑能量密度﹑功率密度﹑寿命等)及试验工况要求; 5.提出环境适应性能指标(防腐等级﹑冲击振动﹑高低温等);6.提出安全性能指标(过充﹑过放﹑短路﹑挤压﹑针刺﹑跌落等; 高压安全,碰撞与高压安全,绝缘安全,防水安全等); 7.提出上下电及相关逻辑; 8.确定通信协议(和VCU﹑CHARGER); 9.确定故障定义及故障分类,并设置合理的阀值; 10.对售后服务提出一定的要求。 三.动力电池组设计输入要求 纯电动电池pack性能

动力电池智能制造技术【全面解析】

动力电池智能制造技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1新能源汽车动力电池的智能制造 我国已成为名副其实的全球最大的新能源汽车市场。动力电池作为最为核心的 关键零部件,它的相关技术必须与电动汽车的发展相适应。新能源汽车能走多远, 最终取决于动力电池能走多远。综合各类电池的技术优势及发展趋势,锂离子电池 在混合动力汽车、插电式混合动力汽车和纯电动汽车领域,将会有越来越广泛的应 用。该类电池技术对新能源汽车产业发展的意义重大。 当前国内生产动力电池的企业约有上百家,但由于自动化程度低,不少企业呈 现出生产效率低、产品良品率低和运营信息互联互通效率低的“三低”特点。这使 得动力电池在技术以及一致性问题上一直很难有实质性突破,严重影响了动力电池 的整体性能,也制约了我国新能源汽车产业的发展。 基于此,动力电池的智能制造应运而生。什么是动力电池的智能制造?它是指, 动力电池生产智能工厂综合运用ERP系统、MES系统等软件,并实现全周期生产的 可视化、自动化、智能化。未来,包括动力电池在内的新能源汽车制造,未来必然 走向大规模和智能化,呈现高精度、高速度和高可靠性的“三高”特点。而以无人 化、可视化和信息化为代表的“三化”是实现“三高”的利器,亦是智能制造的范 畴。 2动力电池工艺装备智能制造技术的发展水平

作为动力电池制造环节必需的工具,动力电池生产工艺装备对动力电池规模化生产条件下的技术发展起着极为关键的作用,近年来动力电池装备产业发展势头迅猛。结合动力电池生产工艺流程,我们将从动力电池电芯生产的前、中、后各段工序以及电池组模组及系统装配工序对动力电池装备产业的智能制造技术发展现状进行分析。 1.动力电池电芯生产前段工序的技术水平 作为动力电池整条产线最为关键的环节,生产前段工序对动力电池产品品质一致性和性能稳定性产生直接影响。动力电池电芯生产前段工序是指实现锂离子动力电池从原材料输送到模切的极片加工成型的过程。自动加料系统、搅拌机、涂布机、辊压机和模切机等是动力电池制造过程的核心工艺装备。 由于前段工艺装备对动力电池性能影响较大,各项技术指标要求高,且设备技术复杂程度高,前几年国产装备技术相对较为落后,在效率、精度、稳定性等方面与国外还存在一定差距,尤其是涂布机。近年来随着行业技术日趋成熟,国内装备行业快速发展,自动加料系统、大容积自动搅拌机、高速涂布机、高速模切机等高端设备逐步实现国产化,并在实际应用中产生了较好效果。 表1. 国内电池电芯前段工序设备情况 2.动力电池电芯生产中段工序的技术水平 传统工艺主要以手工作业和单机自动化为主,近年来随着大规模生产对生产效率和过程控制的要求,动力电池生产中段装配工序已逐步实现整线自动化控制。通过对自动化工作站、上下料机构、自动传输机构、多轴机器人等部件的连接整合,采用高精度传感器技术实现对过程数据数据的自动采集、监控和反馈,并结合设备MES系统的应用,实现动力电池中段工序智能化生产。

锂电池的结构介绍

锂电池的结构介绍 锂电池通常有两种外型:圆柱型和方型。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等) 方形电池结构 圆形电池结构 及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件(部分圆柱式使用),以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.7V(磷酸亚铁锂正极的为3.2V),电池容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。 锂电池的应用 随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池随之进入了大规模的实用阶段。 最早得以应用的是锂亚原电池,用于心脏起搏器中。由于锂亚电池的自放电率极低,放电电压十分平缓。使得起搏器植入人体长期使用成为可能。 锂锰电池一般有高于3.0伏的标称电压,更适合作集成电路电源,广泛用于计算机、计算器、手表中。 现在,锂离子电池大量应用在手机、笔记本电脑、电动工具、电动车、路灯备用电源、航灯、家用小电器上,可以说是最大的应用群体。 研究与发展前景 为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制 阿联酋锂电池公交车(荷兰制造) 造出前所未有的产品。比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂电池的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行了聚合物薄膜电池的研究。 锂电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,邮电通讯的不间断电源,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在 侧面 人造卫星、航空航天和储能方面得到应用。随着能源的紧缺和世界的环保方面的压力。锂电现在被广泛应用于电动车行业,特别是磷酸铁锂材料电池的出现,更推动了锂电池产业的发展和应用。 参考资料:https://www.doczj.com/doc/8c57654.html,

锂电池的设计

2.1 常用充电器简单介绍 2.1.1 方案一一款极简单的锂电池充电器 该装置的电路工作原理如图2-1所示: 图2-1 简易锂电池充电器 工作原理:此电路采用恒定电压给电池充电,确保不会过充。输入直流电压高于所充电池电压3伏即可。R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED 为充电指示电路。随着被充电电池电压的上升,充电电流将逐渐减小,待电池充满后,R4上的压降将降低,从而使Q3截止,LED将熄灭。 本电路的优点是:制作简单,元器件易购买,充电安全,显示直观,并且不会损坏电池。通过改变W1可以对多节串联锂电池充电,改变W2可以对充电电流进行大范围调节。 缺点是:无过放电控制电路。 1.2 方案二实用锂电池充电器 该装置的电路工作原理如图2-2所示: 此充电器工作原理:由VT2、R4、R6、LED1组成恒流充电,VT1、IC、R1~R3、RP1等组成恒压充电,VT3、RP2等组成电池电压检测。待充电电池放入充电器接通电源后、电池即进入恒流充电,充电电流约为300mA,同时LED1点亮。当电池电压达到4.1V时VT3导通,继电器J 吸合,继电器接点转换成恒压充电(常闭接点1断开,常开接点2闭合),此时充电电流约为50mA左右,同时LED1熄灭,LED2点亮。 优点:本电路专为业余制作而设计,因此电路简单、元件易购、制作容易、安全可靠。

图2-2 实用锂电池充电器 2.1.3 方案三简单的2节锂电池充电器 该装置的电路图如下所示: 图2-3 简单的2节锂电池充电器 工作原理:该充电器中采用了锂离子电池充电控制器LM3420-8.4。可对2节串联的锂离子电池组充电。当电池组电压低于8.4V时,LM3420输出端(OUT)无输出电流,晶体管Q2截止,因此,可调稳压管LM317输出恒定电流,其值为 1.25/Rn。LM317额定输出电流为 1.5A,若需要更大的充电电流,可选用LM350或LM338。充电过程中,电池电压不断上升,并被LM3420的输入端(1N)检测。当电池电压升到8.4V时,LM3420输出电流,使Q2开始控制LM317的输出电压,充电器转入恒压充电过程,电池电压稳定在8.4V。此后充电电流开始减小,充足电后,电流下降到涓流充电电流。当输入电压中断后,晶体管Q1截止,电池

锂离子动力电池安全性及解决方法通用范本

内部编号:AN-QP-HT391 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 锂离子动力电池安全性及解决方法通 用范本

锂离子动力电池安全性及解决方法通用 范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 在新能源汽车发展过程中,除价格高、续驶里程短和充换电基础设施不足外,动力安全性是消费者和专业人士关注的重点。这个问题也影响到了动力电池比能量的提升。 “发展防短路、防过充、防热失控、防燃烧及不燃性电解液是应对动力电池安全性的关键。”武汉大学艾新平教授在上海举行的第14届中国国际工业博览会新能源汽车产业发展高峰论坛上强调。 锂离子动力电池不安全行为的发生机制 艾新平分析指出,锂离子动力电池除了正

电动汽车动力电池系统五大国标最详解读

电动汽车动力电池系统五大国标最详解读 [导读]国标针对动力电池系统,建立了常规性能和功能要求,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 关键词:电池系统电动汽车 国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

动力电池系统方案书

管理编号: 项目编号:EVPS(JS)ZZYF150609 项目名称:PL151V220电池系统文档版本:V0.01 技术部 2013年 8 月 1 日

版本履历

目录 一、前言 (4) 二、概述 (4) 三、系统部件清单 (5) 四、电池组性能指标 (5) 五、电池系统结构规格 (6) 六、蓄电池控制单元技术要求 (7) 6.1 蓄电池控制单元基本功能 (7) 6.2 电池管理系统技术指标 (7) 6.3蓄电池控制单元策略及动作参数 (8) 6.4 控制方式 (9) 6.5 充电方式 (10) 七、国家标准 (10)

一、前言 本方案采用的主要技术符号和术语: C1:1小时率额定容量(Ah); I1:1小时率放电电流,其数值等于C1(A); Cn1:1小时率实际放电容量(Ah); In1:1小时率实际放电电流,其数值等于Cn1(A); BCU(BMS):蓄电池控制单元,控制、管理、检测或计算蓄电池电和热相关参数,并提供蓄电池系统和其他车辆控制器通讯的电子装置; 单体蓄电池:直接将化学能转换为电能的基本单元装置,包括电极、隔膜、电解质、外壳和端子,并被设计成可充电; 蓄电池包:通常包括蓄电池组,蓄电池管理模块(不含BCU),蓄电池箱及相应附件,具有从外部获得电能并可对外输出电能的单元, 亦称之为电池包; 蓄电池系统:一个或一个以上蓄电池包及相应附件(管理系统、高压电路、低压电路、热管理设备以及机械总成等)构成的能量存储装置; 高压盒:用来集中放置高压接触器、继电器、汇流排、保险丝、BMS等部件,实现蓄电池系统电能集中管理和分配的部件; 二、概述 本方案约定的电池系统(以下可简称本系统或系统)名称为PL151V220锂离子电池系统,型号为:PL151V220,额定电压为151.2V,额定容量为 220 Ah,额定能量33.2度。电池系统由100并42串,合计4200只规格为 18650 的单体蓄电池成组,在部件上包含1个蓄电池包以及配套的高、低压线束线缆。

车用动力电池系统设计与开发

All Value In Creation CALB 车用动力电池系统设计与开发 谢秋 2017年3月31日

目录 CONTENTS 第一部分:车用动力电池系统概述 第二部分:结构技术 第三部分:电池管理系统 第四部分:系统开发的工具和方法 第五部分:车用动力电池系统开发模式

第一部分:车用动力电池系统概述

● 2014年,公司金属壳电池、软包电池生产线建成并投入使用,公司产品实现转型升级与技术跨越。 ● 2015年,中航工业与江苏省政府签署战略合作协议,建设中航绿色电源科技园。 ● 2009年,中航工业集团做出大力发展动力电池产业的决定,分三期完成36亿投资规模。 ● 2011年,中航锂电洛阳产业园新建1.2亿安时自动化生产线投产。 ● 2016年,中航锂电洛阳三期、江苏一期建成投产,公司迎来跨越式发展新阶段。 车辆类型: -EV 用 -HEV 用: -弱混(12V\48V ) -中混、强混(144V\~288V) -PHEV 用 安装结构形式: -吊挂式 -盛放式 布置方式 -集中式:系统由一个电池包组成 -分步式:系统由多个电池包组成 车用动力电池系统定义: 一种为车辆提供双向能量转换和能量存储功能的装置。即向外界提供功率和能量,也可以从外界吸收功率和能量。

车用动力电池系统构成

电芯结构路线 方形铝壳软包圆柱 优势: 单体容量大,成组简单,尺寸控 制容易 弱势: 壳体成本 优势: 散热好,成本低,质量能量密度高 弱势: 尺寸控制复杂,日历寿命有待验证 优势: 标准化程度高,成本低,生产效率 高 弱势: 成组复杂

电动车锂电池组设计方案

基于单片机控制的电动车锂电池组设计方案 摘要:针对目前电动车锂电池组所用的保护电路大多都由分立原件构成,存在控制精度不够高、技术指标低、不能有效保护锂电池组等特点,提出一种基于单片机的电动车36 V锂电池组保护电路设计方案。利用高性能、低功耗的ATmega16L 单片机作为检测和控制核心,用由MC34063构成的DC /DC变换控制电路为整个保护电路提供稳压电源,辅以LM60测温、MOS管IRF530N作充放电控制开关,实现对整个电池组和单个电池的状态监控和保护功能,达到延长电池使用寿命的目的。 随着电动自行车的逐渐普及,电动自行车的主要能源---锂电池也成为众人关心的焦点。锂电池与镍镉、镍氢电池不太一样,因其能量密度高,对充放电要求很高。当过充、过放、过流及短路保护等情况发生时,锂电池内的压力与热量大量增加,容易产生爆炸,因此通常都会在电池包内加保护电路,用以提高锂电池的使用寿命。针对目前电动车锂电池组所用的保护电路大多都由分立原件构成,存在控制精度不够高、技术指标低、不能有效保护锂电池组等特点,本文中提出一种基于单片机的电动车36 V锂电池组(由10节3. 6 V锂电池串联而成)保护电路设计方案,利用高性能、低功耗的ATmega16L 单片机作为检测和控制核心,用由 MC34063构成的DC /DC变换控制电路为整个保护电路提供稳压电源,辅以LM60 测温、MOS管IRF530N作充放电控制开关,实现对整个电池组和单个电池的状态监控和保护功能,达到延长电池使用寿命的目的。 1 保护电路硬件设计 本系统以单片机为数据处理和控制的核心,将任务设计分解为电压测量、电流测量、温度测量、开关控制、电源、均衡充电等功能模块。系统的总体框图如图1所示。

相关主题
文本预览
相关文档 最新文档