当前位置:文档之家› 苯加氢催化剂预硫化技术探讨

苯加氢催化剂预硫化技术探讨

苯加氢催化剂预硫化技术探讨
苯加氢催化剂预硫化技术探讨

苯加氢制环己烷

苯加氢制环己烷 四、苯加氢制环己烷 环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。 用作尼龙原料的高纯度的环己烷主要由苯加氢制得。 工业上苯加氢生产环己烷有气相法和液相法两种。虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。 1.反应原理 (1)化学反应在反应条件下,苯与氢可能发生下面各种反应 : +nH2→C+CH4 (4) 反应(1)若为气相法固定床,用还原Ni作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力 2.7MPa左右,环己烷收率在99%以上。反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和 (4)有明显促进作用。因此,选择非酸性载体可以避免这种加氢裂解作用。反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。在镍催化剂上,250℃时才开始产生甲基环戊烷。 (2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。在127℃时的平衡常 数为7×10,在227℃时为1.86×10。氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18。由图3-2-18可见,低温和高压对反应是有利的。相反,反应(2)和(4)则受到抑制;环己烷异构化反应是一个等摩尔反应,压力对反应影响不大。温度对反应(3)平衡的影响示于图3-2-19。由图3-2-19可知,甲基环己烷的平衡浓度随温度的提高而上升。为抑制

加氢催化剂硫化方案

内蒙庆华20万吨/年甲醇装置 JT-8焦炉气加氢催化剂予硫化方案 一、催化剂装填前准备 1.检查反应器内清洁无水无杂质; 2.准备好内件、填料及催化剂,其中有: ①2mm不锈钢丝网16张左右(直径与反应器直径相同); ②瓷球约数吨左右; ③催化剂;JT-8 装填数量:87M3其中:予加氢反应器D61201A、B各14.5 M3 一级加氢反应器D61202:29.06 M3;二级加氢反应器D61205:29 M3 ④φ300、6.5-10.5米长帆布筒子2根、剪刀2把; ⑤装料漏斗(需预制); ⑥500×700轻质木板2块; ⑦葫芦2只或吊车。 ⑧在设备内的工作人员以及所需的人孔值班人员在装填作业开始前必须具备具有认可的安全培训,所有时候进入设备内工作都须持有进入许可证以及反应器内气体测试报告。 ⑨装填前要对设备进行检验以确保所需的内件都已正确的安装好,特别是温度计导管和取样管,还要检验所有的施工材料是否都已拆掉并且反应器壁已清除氧化物和铁屑。钢丝网除锈,用白布擦净,检查各测温热电偶管,取样管的安装及连接管口方位是否符合图纸要求,特别注意固定筛网支架。 二、装填作业 1、检查反应器内清洁无水无杂质; 2、底部格栅安装牢固; 3、画出催化剂装填上下界限标记及中间分段标记; 4、底部格栅上面平铺1层不锈钢丝网; 5、装入填料(瓷球)至标志线铺平;瓷球上面平铺2层不锈钢丝网 6关闭下部人孔; 7装催化剂 装填催化剂时应避免阴天,下雨,以防催化剂受潮而影响其使用活性。催化剂装填之前

应先筛去粉尘。催化剂装填时,从上人孔放入加料帆布筒10.0米左右和漏斗连接;催化剂装填时视装填设备及人员情况,可进行一台或多台反应器的装填作业。 ①漏斗内倒入催化剂0.5-1.0吨;可根据具体情况确定。并用吊车吊至反应器人 孔上方,漏斗与帆布筒相连,放入催化剂。 ②视吊装催化剂的量,取出漏斗和帆布筒由软梯进入反应器,用木板刮平催化剂; ③刮平后,根据具体装填高度,帆布筒剪掉约1米,继续装催化剂,装量根据第 一次实际装填情况可调节。在整个装填过程中,要求均匀平整,防止粉碎变潮, 勿在催化剂上直接踩踏。 ④装入催化剂至分段标记高度后,均匀平整,然后继续装入催化剂。 ⑤装入催化剂至额定高度后,扒平后铺2层不锈钢丝网,再装瓷球; ⑥瓷球装到预定高度,扒平后铺一层不锈钢丝网; 7、安装并固定填料压实格栅; 8、安装上人孔。各加氢反应器催化剂的装填方法基本相同。 三、JT-8型焦炉气加氢催化剂的硫化 催化剂在正常使用之前,为获得较高的加氢转化活性,应对其进行硫化。 采用H2S为硫化剂时,发生如下反应: MoO3+2H2S+H2→MoS2+3H2O 系统在试压、试漏结束后,以氮气或其它惰性气体吹净置换后,开始催化剂的升温。升温时,可用氮气或氢氮气。 在对处理有机硫含量较高,硫形态较复杂的焦炉气原料时,为了获得较高的加氢转化活性,催化剂首次使用时,应进行预硫化,预硫化结束时,催化剂吸硫量约为本身重量的4-5%左右。 预硫化条件推荐如下: 气源:氢氮气或含氢的焦炉气中配入CS2 催化剂床层温度升至180℃以上时可在硫化用气中配入CS2。 空速:200~500h-1,压力:常压或低压(≤0.5MPa) 气体中含硫量:0.5~1.5%(体积)氧含量<0.2% 边升温边预硫化(升温速度20℃/小时),260℃、300℃分别恒温2小时,最终升温至正常的操作温度,再恒温,按催化剂理论吸硫量将CS2加完为止,可认为预硫化结束,然后系统逐步升压到正常操作压力,转入正常操作。

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

10万吨苯加氢项目催化剂装填、硫化和再生方案

100kt/a苯精制项目 催化剂的装填、硫化和再生方案 本方案编写人: 方案编写日期: 本方案审核人: 本方案批准人: 方案批准日期: 20**年*月*日

100kt/a苯精制项目 催化剂的装填、硫化和再生方案 1. 总则 1.1 方案制定的原则 为保证催化剂的正确装填,为提高催化剂活性,正确掌握催化剂的硫化和再生的方法,特制定本方案。 1.2 装填、硫化和再生组织机构和职责 1.2.1 组织机构 安装公司: 建设单位:公司各专业及各部门:工艺专业、工程部门、安全专业、仪表专业、化验专业和各相关车间主任。 要求上述各专业、各部门及承建单位共同参与本方案制定的吹扫工作。 1.2.2 职责 工艺专业:统筹管理催化剂的装填、硫化和再生的指挥工作,协调并督促本方案的落实情况;负责编制催化剂的装填、硫化和再生方案;负责监督本方案的执行情况。 十二化建:负责对催化剂的装填提供人力资源,需要加装临时性盲板的要及时安装,提前备好;负责组织装填人员并及时到位;负责提供对催化剂的筛选、瓷球过磅等所需人力。 工程部门:负责联系相应的安装公司进行消除缺陷工作。 安全专业:负责落实本方案所涉及到的安全工作;负责登高作业票、安全作业票、进塔入罐作业票及其他与安全有关事项的审批及检查等工作;负责监督安全措施落实情况;负责准备呼吸面具或自给式空气呼吸器等安全防护用品。 各车间主任:负责准备催化剂装填工具;负责所需临时性的阀门、法兰、盲板等备品备件及其他各种应急物资的准备工作;负责组织催化剂装填过程中所需人力物力调配事项;负责组织人员对催化剂进行检查、分析,检查催化剂内是否有杂质、油污和催化剂受潮湿浸蚀情况、机械强度是否符合要求等事项;负责组织人员填写催化剂的装填记录,对检查出的缺陷做出标记;负责催化剂硫化和再生全过程中各相关阀门的开启和关闭等指挥工作;负责协调取样化验分析等具体事宜。 仪表专业:负责组织调校DCS系统,使压力、流量、温度、液位等指示准确、操作可靠;负责对DCS系统出现的紧急故障进行维护工作。

苯加氢项目

粗苯经脱重组分后由高压泵提压加入预反应器,进行加氢反应,在此容易聚合的物质,如双烯烃、苯烯烃、二硫化碳在有活性的Ni-Mo催化剂作用下液相加氢变为单烯烃。由于加氢反应温度低,有效的抑制双烯烃的聚合。加氢原料可以是粗苯也可以是轻苯,原料适应性强。预反应物经高温循环氢汽化后经加热炉加热到主反应温度后进入主反应器,在高选择性Co-Mo催化剂作用下进行气相加氢反应,单烯烃经加氢生成相应的饱和烃。硫化物主要是噻吩,氮化物及氧化物被加氢转化成烃类、硫化氢、水及氨,同时抑制芳烃的转化,芳烃损失率应〈0.5%。反应产物经一系列换热后经分离,液相组分经稳定塔将H2S、NH3等气体除去,塔底得到含噻吩〈0.5mg/kg的加氢油。由于预反应温度低,且为液相加氢,预反应产物靠热氢汽化,需要高温循环氢量大,循环氢压缩机相对大,且要一台高温循环氢加热炉。 工艺流程简图如下: ??加氢条件;加氢为液相,反应温度800C,压力3.0~4.4MPa。主反加氢为气相加氢,反应温度300~ 3800C,压力 3.0~4.0MPa。由于液相加氢温度较低,加氢可以是粗苯加氢也可以是轻苯,对原料适应性强,经过预反后的原料需由循环氢汽化,循环氢量大,经预反应器和主反应器加氢后得到加氢油在高分器中分离出循环气循环使用,分离出的加氢油在稳定塔排出尾气后进入预分馏塔,塔底的C8馏分去二甲苯塔生产混合二甲苯,塔顶分离出的苯、甲苯馏分进入萃取蒸馏塔分离出非芳烃后经汽提塔和纯苯塔得到高纯苯和高纯甲苯产品。预反应器加氢采用的新氢是用PSA法制得的氢气。

来自制氢工序的1.0~1.2MPa(G)新鲜氢气首先进入氢气缓冲罐,分离掉其中的游离水和机械杂质,然后经氢气压缩机加压至3.5MPa(G)送入加氢系统;加氢来的循环氢气进入循环氢压机分液罐,分离掉其中的游离水和机械杂质,最后进入循环氢压机,加压至3.5MPa(G),送到加氢工序。 加氢工序 经过预处理后的轻苯由加氢原料油泵从罐区打入原料油换热器与加氢反应气换热后与加热后的循环氢同时进入蒸发器的底部进行混合汽化。经循环氢压机加压后的循环氢气先进入氢气换热器与加氢反应气换热后与经预热后的轻苯油混合后进入蒸发器下部,使轻苯汽化。从蒸发器底部排出含有聚合物的蒸发残油,经蒸发残油过滤器除渣后,去重质苯油水分离器。将顶部排出苯类蒸汽和氢气的混合气体,由顶部进入预反应器,在NiMo 催化剂的作用下不饱和化合物加氢饱和,反应后的油气与氢的混合物,从预反应器底部出来进入油气换热器,升温后进入主反应器加热炉,加热后进入两个串联的主反应器,在CoMo系催化剂的作用下,进行脱硫、脱碳、脱氧、脱烷基和非芳烃裂解反应。为控制反应器内的温升,在两个串联的主反应器之间加入新氢。 从主反应器出来的加氢混合气体,经过一系列换热器、降温后进入油气冷却器冷却到25~30℃,气液两相全部进入高压分离器进行气、液分离。分离出的气相循环使用。分离出来的加氢油去进行精馏提纯。 为了抑制苯的聚合,从阻聚剂高位槽将阻聚剂计量后加入输送轻质苯油的管道中,用泵将阻聚剂送入阻聚剂高位槽。二硫化碳贮槽和二硫化碳计量泵是加氢催化剂活化过程中用来预硫化催化剂用的,二硫化碳计量泵将二硫化碳贮槽中的CS2液按计量打入系统,以达到预硫化催化剂的目的。软水贮槽中的软水,用软水加压泵将软水打入软水高位槽,再经过计量后加入加氢产物中可溶解和洗去部分杂质;为了使循环氢反应所需要的氢气浓度需连续排放一部分循环氢气至煤气管道,同时由压缩机向系统补充一部分新鲜氢气以维持系统平衡。 预精馏工序 由高压分离器来的加氢油进入稳定塔。稳定塔塔底用蒸汽加热的稳定塔再沸器连续加热,加氢油在塔内蒸馏,C5以下的烃类和溶解在加氢油中的H2S等酸性气体被蒸出由塔顶排出。塔顶馏出物经稳定塔冷凝器冷冷凝却后进入稳定塔油水分离器,经分离后的冷凝液一部分用稳定塔回流泵送到塔顶打回流,另一部分送至罐区贮存,稳定塔油水分离器排出的不凝性气体排入驰放气管道。稳定塔塔底排出BTX馏分。 BTX馏分进入预蒸馏塔中部精馏,环己烷等烃类与苯和甲苯物由塔顶排出,经冷凝器冷凝冷却后进入油水分离器,经分离后的冷凝液一部分用回流泵送到塔顶打回流,另一部分送至罐区待进一步精制(即BT组分)。塔底釜液送至罐区待进一步精制。 精馏工序 来自罐区的BT组分进入萃取塔中部。萃取塔塔底用萃取塔再沸器连续加热,甲酰吗啉为萃取剂。碳四、碳五以及碳六碳七的饱和烃由塔顶排出。塔顶馏出物经冷凝器冷凝后一部分用萃取塔回流泵送到塔顶打回流,另一部分为非芳烃送至罐区贮存。 来自萃取塔塔底的富溶剂进入中部回收溶剂。溶剂再生塔塔底用一个以蒸汽加热的溶剂塔再沸器连续加热,苯

预加氢催化剂预硫化方法

精心整理 中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕, (2)绘出催化剂干燥脱水升、恒温曲线。 (3) 2、干燥示意流程 ↓N2 ↑↓ ↓放水 3 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2催化剂干燥温度要求 反应器入口温度 ℃ 床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15

250~280 ≮200- 至干燥结束 250→<150≯15020~25 4~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力1.5MPa/h的升 温速度将反应器入口温度升至250℃, 不到200 (2)在干燥过程中,每2 (3) (4) <150 (如DMDS)分解生成H2S,H2S使 H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。 1、预硫化前的准备工作 (1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。

(2)绘出预硫化过程的升、恒温曲线。 (3)注硫系统吹扫干净,并将硫化剂装入硫化罐内。 (4)准备好不同规格的H 2S 检测管。硫化过程中每1小时测一次循环氢中的H 2S 浓度。 2、催化剂硫化示意流程 硫化油↓DMDS ↑ ↑分液罐→循环压缩机↓ ↑ ←高分←水冷←空冷←换热器 3、催化剂硫化条件 反应压力:操作压力 (CS 2)。 则需按照CS 2硫化剂含硫量的不同进行硫化温度及循环氢中H 2S 含量控制要求见表3。 表3催化剂硫化阶段温度要求 反应器入温度 ℃ 升温速度 ℃/h 升、恒温参考时间 h 循环氢H 2S 控制 v% 常温→150 15~20

预加氢催化剂预硫化方案

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h

常温→250-10~1515 250~280≮200-至干燥结束 250→<150≯15020~254~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

催化剂预硫化

黑龙江安瑞佳石油化工有限公司 学习资料 (催化剂预硫化方法) 气分车间 2013年4月 催化剂的预硫化

催化剂的预硫化有两种方法:一是干法预硫化,亦称气相预硫化,即在循环氢或氢氮混合气或氢气与丙烷或氢气与丁烷混合气存在下注入硫化剂进行硫化;二是湿法预硫化,亦称液相预硫化,即在循环氢存在下以轻油等为硫化油携带硫化剂注入反应系统进行硫化。 催化剂硫化的基本原理 催化剂硫化是基于硫化剂(CS2或二甲基二硫DMDS )临氢分解生成的H2S, 将催化剂活性金属氧化态转化为相应的硫化态的反应。 干法硫化反应:用氢气作载体,硫化氢为硫化剂。 M O O3 + 2H2S + H2 ----------- ? M0S2 + 3H2O 9CoO + 8H2S + H2 --------- ? C09S8 + 9H2O 3NiO + 2H2S + H2 ________ . M3S2 + 3出0 湿法硫化反应:用氢气作载体,CS2为硫化剂。 CS2 + 4H2 ----------- ? 2H2S + CH4 M O O3 + CS2 + 5H2 --------------- k M0S2 + 3H20 + CH4 M O O3 + CS2 + 3H2 ---------------- ? M0S2 + 3H2O + C 9C O O + 4CS2 + 17H2 -------------- 09S8 + 9H20 + CH4 9C O O + 4CS? + 9H2 ----------- k C09S8 + 9H2O + 4C 3Ni0 + 2CS2 + 5H2 ------------ ? M3S2 + 3出0 + CH4 基于上述硫化反应式和加氢催化剂的装量及相关金属含量可估算出催化剂硫化剂的理论需要量。其硫化剂的备用量(采购量)一般按催化剂硫化理论需硫量的1.25倍考虑即可。

预加氢催化剂预硫化方案审批稿

预加氢催化剂预硫化方 案 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案 中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月

一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15 250~280 ≮200 - 至干燥结束250→<150≯150 20~25 4~5 4、干燥结束标准

高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

苯加氢工艺原理

第一章工艺设计说明书 1.1概述 苯加氢项目包括生产设施和生产辅助设施,主要为:制氢、加氢、预蒸馏、萃取、油库、装卸台等。生产高纯苯、硝化级甲苯、二甲苯、非芳烃、溶剂油等。苯、甲苯、二甲苯(简称BTX)等同属于芳香烃,是重要的基本有机化工原料,由芳烃衍生的下游产品,广泛用于三大合成材料(合成塑料、合成纤维和合成橡胶)和有机原料及各种中间体的制造。纯苯是重要的化工原料,大量用于生产精细化工中间体和有机原料,如合成树脂、合成纤维、合成橡胶、染料、医药、农药。它还是重要的有机溶剂。我国纯苯的消费领域主要在化学工业,以苯为原料的化工产品主要有苯乙烯、苯酚、己内酰胺、尼龙66盐、氯化苯、硝基苯、烷基苯和顺酐等。在炼油行业中也会用作提高汽油辛烷值的掺和剂。甲苯是一种无色有芳香味的液体,除用于歧化生产苯和二甲苯外,其化工利用主要是生产甲苯二异氰酸脂、有机原料和少量中间体,此外作为溶剂还用于涂料、粘合剂、油墨和农药与大众息息相关的行业等方面。国际上其主要用途是提高汽油辛烷值或用于生产苯以及二甲苯,而在我国其主要用途是化工合成和溶剂,其下游主要产品是硝基甲苯、苯甲酸、间甲酚、甲苯二异氰酸酯等,还可生产很多农药和医药中间体。另外,甲苯具有优异的有机物溶解性能,是一种有广泛用途的有机溶剂。二甲苯在化工方面的应用主要是生产对苯二甲酸和苯酐,作为溶剂的消费量也很大。间二甲苯主要用于生产对苯二甲酸和间苯二腈。焦化粗苯主要含苯、甲苯、二甲苯等芳香烃,另外还有一些不饱和化合物、含硫化合物、含氧化合物及氮化合物等杂质。粗苯精制就是以粗苯为原料,经化学和物理等方法将上述杂质去除,以便得到可作原料使用的高纯度苯。近年来,国内许多钢铁企业的焦化项目纷纷上马,焦化粗苯的产量迅速增加,为粗苯加氢精制提供了丰富的原料。 1.1.1项目的来源 随着我国化工行业的快速发展,近年来苯下游产品产能增长较快,尤其是苯乙烯、苯酚、苯胺、环己酮等生产装置的大量建设,对苯、甲苯、二甲苯等重要的有机化工原料需求大增,而国内苯系列产品生产能力增长缓慢,不能满足市

加氢催化剂的硫化_翟京宋

2011 年第 1 期 2011 年 1 月
化学工程与装备 Chemical Engineering & Equipment
59
生产实践
摘 前言 1 催化剂的硫化原理 应。硫化的反应方程式如下: (CH3)2S2 +3H2 = 2H2S + 2CH4 MoO3+2H2S+H2 = MoS2+3H2O 9CoO+8H2S+H2 = Co9O8+9H2O 3NiO+2H2S+H2 = Ni3S2+3H2O WO3+2H2S+H2 = WS2+3H2O 2 硫化方法和硫化剂的选择 硫化。
加氢催化剂的硫化
翟京宋
(广西石化公司,广西 钦州 535008)
要:加氢催化剂的硫化是提高催化剂活性、优化加氢催化剂操作,确保装置安全、平稳、高效运行。
本文从生产实践中介绍了加氢催化剂硫化的原理、方法、硫化剂的选择,以及催化剂器内硫化通用操作步 骤,并介绍了硫化过程中的事故处理、主要注意事项。 关键词:催化剂硫化;事故处理;注意事项
CS2、二甲基二硫化物等)进行硫化;另一种是依靠硫化油 自身的硫进行硫化。 干法硫化是在氢气存在下, 直接用含有 一定浓度的硫化氢或直接向循环氢中注入有机硫化物进行 硫化。 在开工硫化阶段需要使用硫化剂, 而硫化剂的选择应考 虑以下因素: (1)硫化剂在临氢和催化剂存在的条件下,能在较低 反应温度下分解生成H2S,有利于催化剂硫化的顺利进行, 提高硫化效果。 (2) 硫化剂的硫含量应较高, 以减少硫化剂的使用量, 避免其他元素对硫化过程的不利影响。 (3)硫化剂价格便宜、毒性小,使用安全可靠。 3 催化剂器内硫化 催化剂的湿法硫化可分为原料油自身的含硫化物的湿 法硫化和外加硫化剂湿法硫化两种。 虽然原料油的自身湿法 硫化方法简单、省事,但由于原料油本身所含硫化物低,难 以分解、分解温度高,容易使催化剂被还原的危险,一旦形 成低价态的金属氧化物, 就很难再与硫化氢反应, 则无法在 理想的时间内完成硫化,因此催化剂硫化效果较差。 在湿法硫化中,使用馏分油作为催化剂湿法硫化用油, 其馏分范围一般应接近或略轻于加氢原料油, 通常以直馏柴 油馏分应用较多, 不含烯烃且氮含量应低于200ppm, 其总硫 含量要求低于2% wt(包括加入的有机含硫化合物) 。烯烃加 氢反应会增加放热并导致催化剂上焦炭沉积, 为取得好的硫 化效果,所选用的硫化油的干点不宜过高(一般不大于 370oC) 。 因为在硫化温度下可能发生饱和反应对正常的硫化 操作造成干扰,导致催化剂床层温度不稳定,氢耗过高,同 时裂化原料中含有转化难度很高的含氮化合物, 具有较强的 吸附能力和较高结焦倾向。 3.1 催化剂的湿法硫化
新鲜的催化剂或再生后的催化剂, 其所含的活性金属组 分(Mo、Ni、Co、W)都是以氧化态的形式存在。经过研究 和工业化运用实践证明,当催化剂以硫化态的形态存在时, 催化剂具有较高的活性、稳定性和选择性,抗毒性强,寿命 长,才能够最大限度地发挥加氢催化剂的作用。 催化剂的硫化是在一定的温度和氢气分压下, 通过加氢 催化剂中的氧化态活性组分(氧化镍、氧化钼等)和硫化剂 化学作用变为活性较高的硫化态金属组分, 达到催化剂长周 期稳定运行的目的。 催化剂硫化是基于硫化剂临氢分解生产 的 H2S 将催化剂活性金属氧化态转化为相应金属硫化态的反
硫化技术的分类方法根据硫化反应进行的场所来确定, 加氢催化剂硫化可分为器内硫化和器外硫化。 而催化剂的器 内预硫化可以分为气相(干法)预硫化和液相(湿法)预硫 化两大类。 目前, 国内工业加氢装置大都实行器内预硫化方 法, 除对于择形裂解活性, 弱加氢活性的临氢活性的降凝催 化剂、 分子筛加氢裂化催化剂的预硫化大多采用干法硫化以 外, 其他的加氢精制、 加氢处理装置的催化剂普遍采用湿法 湿法硫化是在氢气存在下, 采用含有硫化物的烃类或馏 分油在液相或半液相状态下硫化。 湿法硫化又分为两种, 一 种是催化剂硫化过程所需要的硫由外部加入的硫化物(如

预加氢催化剂预硫化方法

预加氢催化剂预硫化方 法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案 中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力:1.5MPa 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h

常温→250-10~1515 250~280≮200-至干燥结束 250→<150≯15020~254~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力1.5MPa下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至 <150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。 1、预硫化前的准备工作 (1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。 (2)绘出预硫化过程的升、恒温曲线。

催化剂预硫化

黑龙江安瑞佳石油化工有限公司 学习资料(催化剂预硫化方法) 气分车间 2013年4月

催化剂的预硫化 催化剂的预硫化有两种方法:一是干法预硫化,亦称气相预硫化,即在循环氢或氢氮混合气或氢气与丙烷或氢气与丁烷混合气存在下注入硫化剂进行硫化;二是湿法预硫化,亦称液相预硫化,即在循环氢存在下以轻油等为硫化油携带硫化剂注入反应系统进行硫化。 催化剂硫化的基本原理 催化剂硫化是基于硫化剂(CS2或二甲基二硫DMDS)临氢分解生成的H2S,将催化剂活性金属氧化态转化为相应的硫化态的反应。 干法硫化反应:用氢气作载体,硫化氢为硫化剂。 MoO3 + 2H2S + H2MoS2 + 3H2O 9CoO + 8H2S + H2Co9S8 + 9H2O 3NiO + 2H2S + H2Ni3S2 + 3H2O 湿法硫化反应:用氢气作载体,CS2为硫化剂。 CS2 + 4H22H2S + CH4 MoO3 + CS2 + 5H2MoS2 + 3H2O + CH4 MoO3 + CS2 + 3H2 MoS2 + 3H2O + C 9CoO + 4CS2 + 17H2Co9S8 + 9H2O + CH4 9CoO + 4CS2 + 9H2Co9S8 + 9H2O + 4C 3NiO + 2CS2 + 5H2Ni3S2 + 3H2O + CH4 基于上述硫化反应式和加氢催化剂的装量及相关金属含量可估算出催化剂硫化剂的理论需要量。其硫化剂的备用量(采购量)一般按催化剂硫化理论需硫量的1.25倍考虑即可。 硫化剂和硫化油的选择 实际上催化剂硫化时是H2S在起作用,所以所选用的硫化剂在临氢和催化剂存在的条件下,能在较低反应温度下分解生成H2S,以有利于催化剂硫化的顺利进行,提高硫化效果,同时硫化剂中的硫含量应较高,以减少硫化剂的用量,

催化加氢过程中催化剂的选择

催化加氢过程中催化剂的选择 从事催化的各位虫友,经常会面临催化剂种类的选择,先将我用过的催化剂的优缺点和大家分享,有不足的和错误的,请大家补充和指正。 催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。 从用途上分,可以分成加氢催化剂、氧化催化剂和异构化催化剂等。加氢镍催化剂又分为:1.骨架镍催化剂(镍-铝合金粉);2.负载碳酸镍与碳酸铜催化剂;3.负载型镍催化剂。 我们常用到的催化剂有钯碳、雷尼镍、德国6504K、C207(铜类)催化剂、KT-02镍催化剂等。先将各催化剂的优缺点陈列如下,给各位从事催化加氢的虫友做个参考。 (1)从价格上分析:钯碳最贵,价格为450万元/吨左右;雷尼镍价格为20万元/吨左右;6504K催化剂为30万元/吨;C207催化剂价格不详,但因其主要催化成份为铜,估计是这里面最便宜的;KT-02型镍催化剂价格在35万元左右。 (2)从活性上分析:钯碳>KT-02>雷尼镍>6504K>C207。 (3)从催化反应温度分析:钯碳反应温度很低,在常温下也可以催化反应;KT-02镍催化剂在40左右就可以进行催化;雷尼镍催化反应温度稍高,60度左右;6504K催化反应温度在80度左右;C207催化反应温度一般不低于150度。 (4)从使用安全按角度分析:KT-02型镍催化剂150摄氏度下空气中不自燃;6504K 也可以在空气中120摄氏度下保存;钯碳常温下暴露在空气中容易自燃;雷尼镍暴露在空气中容易着火。 (5)从催化反应的选择性上分析:钯碳活性太高,在多基团的时候选择性低,生成副产物;KT-02型镍催化剂选择性很好;雷尼镍加氢选择性比钯碳要好,但是比KT-02稍差;C207选择性很好。 (6)从转化率分析:钯碳>KT-02>雷尼镍>6504K>C207。 (7)从使用方便角度分析:KT-02和6504K在使用前都不需要活化,直接投入反应体系即可进行催化;钯碳不需要催化,但是必须密封隔绝空气保存;雷尼镍和C207使用前必须先进行活化,用碱处理溶去铝方可投入反应进行催化,而且雷尼镍在保存时也必须隔绝空气。 (8)从与产物进行分离来分析:催化加氢完毕后,必须将产物与催化剂进行分离,从分离难易程度来看:KT-02>雷尼镍>6504K>钯碳,C207一般用于固定床加氢,分离不存在太大的问题。 (9)从重复使用次数来看:KT-02>雷尼镍>6504K>钯碳>C207。这里综合考虑反应过程中的失活及后分离过程中的损失。KT-02重复使用次数不少于100次;雷尼镍重复使用次数在70次左右;6504K重复使用次数为30-35次;C207在固定床上使用;一般用一段时间后重新换新催化剂;具体使用次数不好估计,钯碳一般在使用后需要进行活化。 (10)催化剂形式:钯碳、KT-02、6504K、C207为负载型催化剂,雷尼镍为镍铝合金。 以上主要是对各催化剂的特性进行比较,如有不合适的地方,请多指点。各位虫友可以根据自己所要加氢的原料及产物特点,选择合适的催化剂。

重整预加氢催化剂干燥 硫化方案

中国石油宁夏石化公司 60万吨/年连续 重整装置预加氢催化剂预硫化方案 宁夏石化公司二联合车间 2011年11月10日

一、组织机构 二联合车间60万吨/年重整装置预加氢催化剂硫化由二联合车间主任直接指挥,下设副组长及成员,为预加氢催化剂硫化工作提供人力、物力、技术及安全保障。 二联合车间60万吨/年重整装置预加氢催化剂硫化领导小组: 组长:谭斌 副组长:吴建军 成员:王春江李进、各班值班长、副值班长、运行工程师 职责: 1.认真贯彻公司总体试车安排,直接指挥重整装置预加氢催化剂硫化工作。 2.制定重整装置预加氢催化剂硫化的方案和进度。 3.协调解决预加氢催化剂硫化过程中出现的问题,与施工方积极沟通。 4.负责编制预加氢催化剂硫化方案,及时上报审批,并组织岗位人员讨论学习。 5.负责落实前期人员的培训考核工作和上岗取证工作,确保上岗人员达到“三个百分百”上岗条件 6.全力组织、实施预加氢催化剂硫化工作。 二、准备工作 1.通知生产调度,要求供排水、电站、空分、油品等单位确保 水、电、气、风正常供应,联系化验、仪表、电气、钳工等单位配合 开工。 2.全部设备处于完好备用状态。 3.全部仪表检验完毕,处于备用状态。 4.氮气来源应满足用气要求,氮气纯度要求>99.5v %、氧含量 <0.5v%、氢+烃含量<0.5v%。 5.工艺流程经三级检查准确无误,加好系统气密隔离盲板。 6.准备好气密用的肥皂水、刷子及检修用工具。 三、系统置换吹扫

(1)从循环压缩机的出口,用氮气缓慢将反应系统压力升到0.5MPa(表压),启机-101A,全量循环10分钟,将机负荷为零,然后打开高分(D-101)放空阀,将系统的压力降到0.02MPa。 (2)反复进行上述步骤(1)2 次以上,直到反应系统中氧含量<0.5v 四、系统气密 1.系统气密的目的是保证装置在开工过程中不会出现严重泄漏。但装置达到正常操作温度时,由于管线和设备膨胀,也会导致泄漏,因此操作人员在开工和运转初期也应关注漏点的出现。 2.确定气密流程,用合适的盲板将不同压力等级的部分隔开。 3.气密要求:参照装置的操作手册的要求进行。 气密阶段及标准测压点:D-102 气密介质气密压力/MPa 压降(MPa/h)氢压机状态气密时间/h 氮气0.5 0.02 停 2 1.7 0.005 停 4 2.2 0.005 停 4 4.按升压速度,系统压力达到要求后,对装置进行全面检查,在确认无泄漏、静态允许压降合格后,将系统压力降至1.0MPa,准备催化剂干燥。 4.4 催化剂干燥 干燥流程: K-101A→E-101A/B→F-101→R-101→R-102→A-101→E-102→D-101→D-102→k-101入口 1. 将系统压力提高到1.0MPa 2.并确认该系统无存油,制定好方案。 3.确定切水点在高分D101和压缩机分液罐D102,催化剂干燥前将切水点的水排净。 4.准备好计量水的工具(如磅称、水桶等)。 5.联系好氮气来源,并事先分析氮气纯度,要求氮气中水含量<300μg/g,氢+烃<0.5%,氧<0.5v%。

加氢催化剂预硫化技术

加氢催化剂预硫化技术 化工学院化学工程颜志祥 201015081421 随着原油重质化、劣质化的日趋严重,以及环保和市场对石油产品质量要求的日益提高,加氢过程成为炼油工业中非常重要的环节。它对于合理利用石油资源,改善产品质量,提高轻质油收率,深度脱除油品中的硫、氮、氧杂原子及金属杂质,以及烯烃饱和、芳烃加氢、提高油品安定性等都具有重要意义。 工业上常用的加氢催化剂大多数采用Mo,Co,Ni,W等金属元素作活性组分,并以氧化态分散在多孔的载体上。这种形态的催化剂加氢活性低,稳定性差,若催化剂以这种形态投人使用,那么在几周内催化剂就会失活到运转末期的状态。将催化剂进行预硫化处理,使金属氧化物转化为金属硫化物,才能表现出较高的加氢活性,较好的稳定性,较佳的选择性和抗毒性,延长使用寿命。且催化剂的硫化度越高,其活性越大。因此,加氢催化剂在使用前必须进行预硫化。 一、催化剂预硫化的方法及原理 1.1预硫化方法 预硫化技术是加氢催化剂开发应用的关键步骤之一,先进的预硫化技术能够使加氢催化剂保持最佳的活性和稳定性,提高选择性,延长使用寿命,在国内外受到广泛的关注。因此,深人研究加氢催化剂的预硫化方法对开发高活性的催化剂有重要意义。目前,工业上使用的加氢催化剂常用的硫化方法有很多种.从介质相态上可分为干法硫化和湿法硫化两类,从介质来源上可分为强化硫化和非强化硫化两种情况.从预硫化的位置又可分为器内预硫化和器外预硫化两种工艺。 1.1.1 干法硫化与湿法硫化 干法硫化是指催化剂在氢气存在下,直接与一定浓度的硫化氢或其他有机硫化物接触而进行的气相硫化。湿法硫化是指含有硫化物的硫化油在氢气存在下直接与催化剂进行的硫化过程。湿法硫化可以防止催化剂床层中“干区”的存在,防止活性金属氧化物被氢气还原。并且避免水分对催化剂的影响。但是与干法硫化相比,湿法硫化容易造成催化剂积炭,反应放热比较剧烈,不易控制温升。因此有研究在低温区使用干法,在高温区使用湿法的干法+湿法技术。 1.1.2 强化硫化与非强化硫化

苯加氢说明

10万t苯加氢技术说明 中冶焦耐工程技术有限公司 2011-5-24

1原料、辅助原料及产品 1.1原料规格 1.1.1粗苯 装置设计能力为年处理粗苯100,000t,原料可处理粗苯或轻苯。原料的质量应符合YB/T5022-93国家标准,其标准如下: 1.1.2氢气 本装置年消耗氢气量约3680×103 Nm3,以焦炉煤气为制氢原料,由PSA变压吸附装置制得,氢气质量指标要求如下: 纯度≥99.9%(V/V) 含甲烷量≤0.1%(V/V) 含氮量<10PPM 总硫≤2.0ppm(wt.) CO+CO2≤10.0 ppm(wt.) H2O ≤30.0 ppm(wt.) 含氧量≤10.0 ppm(wt.) 操作压力: 1.6 MPa (g) 操作温度:常温

焦炉煤气中约含58%的氢气,其质量大致如下: 温度:常温 提取氢气后,排放的的弛放气送煤气净化系统。 1.2原料、辅助原料及产品量表

辅助原材料是指苯加氢装置在开工和正常生产时所需要的各种催化剂和化学试剂等。 1.3产品质量指标 主要产品质量指标如下: a) 纯苯 b)甲苯

c)二甲苯 d)非芳烃 2建设规模及装置组成 2.1确定原则 本工程依据下列原则确定: a) 自产或外购的原料总量; b) 满足国内外一致公认的最小经济规模; c) 达到高起点、高水准、高附加值、深加工所必需的规模; d) 综合利用、降低能耗、提高环保水平所需的规模装配水平。 2.2生产规模及单元组成 2.2.1生产规模 本项目苯精制装置的建设规模为年处理粗苯10万t。 年操作时间:8000小时。操作制度:四班三运转。装置的操作弹性为设计

相关主题
文本预览
相关文档 最新文档