当前位置:文档之家› 电磁感应与电磁场的知识点总结

电磁感应与电磁场的知识点总结

电磁感应与电磁场的知识点总结电磁感应是电磁学中的一个重要概念,指的是导体中的电流会受到

磁场的影响而产生感应电动势。而电磁场则是由电荷和电流所产生的

物理现象,可以用来描述电磁力的作用。本文将对电磁感应与电磁场

的相关知识点进行总结,帮助读者更好地理解这一领域。

一、电磁感应

1. 法拉第电磁感应定律

法拉第电磁感应定律是电磁感应研究的基础,它表明当导体中的磁

场发生变化时,会产生感应电动势。具体表达式为:感应电动势等于

磁通量变化率的负值乘以线圈的匝数。这个定律解释了电磁感应现象

的产生原理。

2. 楞次定律

楞次定律是法拉第电磁感应定律的补充,它描述了感应电流的方向。根据楞次定律,感应电流的产生会产生磁场,其磁场的方向使得感应

电流所产生的磁场与引发感应电流变化的磁场方向相反。换言之,楞

次定律说明了感应电流的方向与磁场变化的关系。

3. 磁通量与磁感应强度

磁通量描述的是磁场通过某一平面的程度,与磁场的面积和磁感应

强度有关。磁感应强度表示单位面积上的磁通量,它的方向垂直于磁

场线。通过改变磁通量和磁感应强度,可以实现对电磁感应的控制。

二、电磁场

1. 静电场与静电力

静电场是由电荷所产生的一种场,它可以通过电场线来表示。静电

力是静电场作用在电荷上的力,根据库仑定律,静电力与电荷之间的

距离和大小成反比。

2. 磁场与磁力

磁场是由电流所产生的一种场,它可以通过磁感线来表示。磁力是

磁场对电荷和电流所产生的力,它的方向垂直于磁场线和电荷或电流

的方向。

3. 电磁场和电磁力

电磁场是由电荷和电流共同产生的场,它是电场和磁场的综合体现。电磁力是电场和磁场对电荷和电流所产生的综合力,它同时包含了静

电力和磁力的作用。

4. 麦克斯韦方程组

麦克斯韦方程组是描述电磁场性质的基本方程,它由四个方程组成。其中包括了法拉第电磁感应定律、库仑定律以及电磁场的高斯定律和

安培环路定律。麦克斯韦方程组的推导和理解有助于深入学习电磁场

的原理和性质。

总结:

电磁感应和电磁场是电磁学中的两个核心概念,通过磁场对导体产生感应电动势,我们可以利用电磁感应现象实现电磁能量的转换和传输。电磁场的概念则帮助我们理解电磁力的作用和控制。对于电磁学的学习和应用,掌握这些知识点是非常重要的。

以上就是电磁感应与电磁场的知识点总结,希望能为读者提供一些参考和帮助。通过深入学习和理解这些知识,可以更好地应用到实际问题中,为科学和技术的发展做出贡献。

三分钟带你了解电磁感应、电磁场与电磁波

三分钟带你了解电磁感应、电磁场与电磁波 我们通过观察可以发现,在一个固定的正电荷的附近放一个负电荷,则负电荷会被正电荷吸引。同样的,正电荷也会被固定的负电荷吸引。此时我们说正电荷或负电荷周围有电场,电场就会让置于其中的电荷产生某个方向上的力。通过观察又可以发现,在一个变化的磁场中导线会产生电流。电流的本质也是电荷的移动,所以我们也可以说变化的磁场激发了一个电场,这是电磁感应中的磁生电。 同样是通过观察发现,在一个固定的N极磁体附近放一个P极磁体,则P极会被N极吸引。同样的,N极也会被固定的P极吸引。此时我们说N极或P极周围有磁场,磁场会让置于其中的磁体产生某个方向上的力。通过观察又可以发现,在一个不断变化电流方向的导线周围放置一个磁体,此磁体也会被施加某个方向的力,而不断变化电流方向的导线可以描述为导线处于不断变换的电场中。所以我们说变化的电场激发了一个磁场,这是电磁感应中的电生磁。

通过前面两段的拗口描述,我们得出一个结论: 变化的电场激发磁场,变化的磁场激发电场。也即是将电磁感应这个物理现象总结为统一的电磁场理论。 由于这种互激发的特性,电场与磁场可以传导至很远的距离,我们将这种传导现象称为电磁波(但是刚才又想到,电场传导过程并没有产生电流,没有电流又是如何感生磁场的呢?)。 研究发现,电磁波频率越高则其波长越短,则传导距离越近。电磁波频率越低则其波长越长,则传导距离越远。所以需要远距离传播,如无线电台中的FM调频(传播到整个城市)一般在100MHz左右,而仅用作近距离传播的手机3G信号(仅几公里),如CDMA就在2000MHz左右。但是,由于频率低无线电台能承载的信号密度就低,3G信号由于频率较高所以能承载的信号密度就高。这也就导致了我们从2G信号升级为3G信号乃至未来的5G信号,运营商的基站密度需要不断的增加(信号传输距离变短)。

电磁场与电磁感应的关系

电磁场与电磁感应的关系 电磁场和电磁感应是电磁学的两个重要概念,它们之间存在紧密的 关系。电磁场是指由电荷或电流所产生的物理场,而电磁感应则是指 当一个导体磁通量发生变化时,在导体中会产生感应电动势。本文将 详细探讨电磁场和电磁感应之间的关系,并介绍它们在现实生活和科 技应用中的重要性。 一、电磁场的基本原理 电荷和电流都是产生电磁场的重要因素。根据库仑定律,电荷之间 的相互作用力与它们之间的距离成平方反比。这意味着电荷会在周围 形成一个电场,电场中的电荷会受到电场力的作用。同样地,电流也 会产生磁场,磁场中的磁感应强度会影响磁场中的电流。 二、电磁感应的原理 电磁感应是指当导体中的磁通量发生变化时,在导体中会产生感应 电动势。磁通量是磁场线穿过某个面积的数量,用符号Φ表示。根据 法拉第电磁感应定律,当磁通量Φ发生变化时,感应电动势E的大小 与磁通量的变化率成正比。 三、电磁场与电磁感应的关系 电磁场和电磁感应之间存在着紧密的关系。首先,电磁场的存在是 电磁感应的基础。只有当存在磁场时,导体才会感应出电动势。其次,电磁感应也会产生磁场。根据安培环路定律,当导体中有电流通过时,会形成闭合的磁场线。这个磁场又会影响到其他导体中的电流。

在实际应用中,电磁感应的原理被广泛应用于发电机、变压器等设备中。发电机通过旋转的磁场线穿过线圈,感应出电动势,从而转化为电能。变压器利用电磁感应的原理来调整电压的大小。另外,电磁场和电磁感应也在电磁波的传播中起着重要作用。电磁波是一种由振荡的电场和磁场组成的波动现象,广泛应用于通信、无线电等领域。 总结起来,电磁场和电磁感应是相辅相成的概念。电磁场的存在为电磁感应提供了基础,而电磁感应又反过来影响着电磁场的分布。它们之间的关系不仅仅是理论上的联系,更在现实生活和科技应用中发挥着重要作用。理解和掌握电磁场与电磁感应的关系,对于深入理解电磁学的原理和应用具有重要意义。

大学物理电磁学知识点总结

大学物理电磁学总结 一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。 uuu r q q ur F21 = k 1 2 2 er r ur u r 高斯定理:a) 静电场:Φ e = E d S = ∫ s ∑q i i ε0 (真空中) b) 稳恒磁场:Φ m = u u r r Bd S = 0 ∫ s 环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁 ∫ L ur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中) L 电磁学 静电场 稳恒磁场稳恒磁场 电场强度:E 磁感应强度:B 定义:B = ur ur F 定义:E = (N/C) q0 基本计算方法:1、点电荷电场强度:E =

ur r u r dF (d F = Idl × B )(T) Idl sin θ 方向:沿该点处静止小磁针的N 极指向。基本计算方法: ur q ur er 4πε 0 r 2 1 r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r 2、连续分布的电流元的磁场强度: 2、电场强度叠加原理: ur n ur 1 E = ∑ Ei = 4πε 0 i =1 r qi uu eri ∑ r2 i =1 i n r ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 2 3、安培环路定理(后面介绍) 4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度: ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 0 4、高斯定理(后面介绍) 5、通过电势解得(后面介绍) 几种常见的带电体的电场强度公式: 几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B = ur 1、点电荷:E = q ur er 4πε 0 r 2 1 0 I 2R 0 I 2π r 2、均匀带电圆环轴线上一点: ur E=

电磁感应与电磁场的知识点总结

电磁感应与电磁场的知识点总结电磁感应是电磁学中的一个重要概念,指的是导体中的电流会受到 磁场的影响而产生感应电动势。而电磁场则是由电荷和电流所产生的 物理现象,可以用来描述电磁力的作用。本文将对电磁感应与电磁场 的相关知识点进行总结,帮助读者更好地理解这一领域。 一、电磁感应 1. 法拉第电磁感应定律 法拉第电磁感应定律是电磁感应研究的基础,它表明当导体中的磁 场发生变化时,会产生感应电动势。具体表达式为:感应电动势等于 磁通量变化率的负值乘以线圈的匝数。这个定律解释了电磁感应现象 的产生原理。 2. 楞次定律 楞次定律是法拉第电磁感应定律的补充,它描述了感应电流的方向。根据楞次定律,感应电流的产生会产生磁场,其磁场的方向使得感应 电流所产生的磁场与引发感应电流变化的磁场方向相反。换言之,楞 次定律说明了感应电流的方向与磁场变化的关系。 3. 磁通量与磁感应强度 磁通量描述的是磁场通过某一平面的程度,与磁场的面积和磁感应 强度有关。磁感应强度表示单位面积上的磁通量,它的方向垂直于磁 场线。通过改变磁通量和磁感应强度,可以实现对电磁感应的控制。

二、电磁场 1. 静电场与静电力 静电场是由电荷所产生的一种场,它可以通过电场线来表示。静电 力是静电场作用在电荷上的力,根据库仑定律,静电力与电荷之间的 距离和大小成反比。 2. 磁场与磁力 磁场是由电流所产生的一种场,它可以通过磁感线来表示。磁力是 磁场对电荷和电流所产生的力,它的方向垂直于磁场线和电荷或电流 的方向。 3. 电磁场和电磁力 电磁场是由电荷和电流共同产生的场,它是电场和磁场的综合体现。电磁力是电场和磁场对电荷和电流所产生的综合力,它同时包含了静 电力和磁力的作用。 4. 麦克斯韦方程组 麦克斯韦方程组是描述电磁场性质的基本方程,它由四个方程组成。其中包括了法拉第电磁感应定律、库仑定律以及电磁场的高斯定律和 安培环路定律。麦克斯韦方程组的推导和理解有助于深入学习电磁场 的原理和性质。 总结:

(完整版)高二物理电场磁场总结(超全)

电磁场总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。 基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表

达式为F K Q Q r =122,其中比例常数K 叫静电力常量,K =?90109.N m C 22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。

高三电磁场知识点总结详细

高三电磁场知识点总结详细 电磁场是物理学中的一个重要概念,对于高三学生来说,电磁 场是必修课程中的一个重点内容。本文将详细总结高三电磁场的 知识点,帮助学生们复习和理解相关知识。 第一部分:电磁场基础知识 1. 电磁场的概念 - 电磁场是由电荷体系形成的以电场和磁场为基本特征的力场。 2. 静电场与静磁场 - 静电场:由静止的电荷所产生的电场。 - 静磁场:由静止的电荷所产生的磁场。 3. 电磁感应定律 - 法拉第电磁感应定律:导体中的磁通量变化会产生感应电动势。 - 感应电动势的大小与导体中磁通量变化率成正比。

第二部分:电磁场的基本定律 1. 库仑定律 - 库仑定律描述了两个点电荷间相互作用力的大小与距离的关系。 - 库仑定律公式:F = k * (q1 * q2) / r^2 2. 电场的叠加原理 - 多个电荷同时存在时,它们产生的电场可以通过叠加原理求和得到。 3. 磁场的基本性质 - 磁场是由带电粒子运动或者电流产生的。 - 磁场具有方向性,用磁力线表示。 第三部分:电场与电势 1. 电势能

- 电荷在电场中具有电势能,电势能与电荷的大小、电势差和电场强度有关。 - 电势能的计算公式:Ep = q * V 2. 电位 - 电位是指某一点的电势能与单位正电荷之比。 - 电位的计算公式:V = U / q 3. 静电平衡 - 静电平衡要求电场内的电势能相等,即电荷处于平衡状态。 第四部分:电流与磁场 1. 安培环路定理 - 安培环路定理描述了电流通过闭合回路所产生的磁场的性质。 - 安培环路定理公式:∮B·dl = μ0 * I 2. 磁场的磁感应强度

电磁感应知识点总结

电磁感应知识点总结 电磁感应是电磁学中的重要概念,揭示了电流和磁场之间的相互作 用关系。在日常生活和科学研究中,电磁感应的应用十分广泛。现在,本文将对电磁感应的基本原理和应用进行总结。 一、电磁感应基本原理 1. 法拉第电磁感应定律 法拉第电磁感应定律是电磁感应的基本原理之一。它指出,当磁场 变化时,磁场线与导线相交,将在导线中产生感应电动势。这个电动 势的大小与磁场变化速率成正比,与导线长度成正比,与导线的角度 有关。 2. 楞次定律 楞次定律是电磁感应的另一个重要原理。它规定,在感应电动势产 生时,感应电流的方向使其引起的磁场阻碍磁场变化。这个定律可以 用右手定则来判断感应电流的方向。 3. 磁通量 磁通量是一个描述磁场穿过某个特定表面的物理量。它与磁感应强 度和表面的夹角有关。如果磁通量发生变化,就会在导线中产生感应 电动势。 二、电磁感应的应用 1. 发电机和电动机

电磁感应的最重要应用之一是在发电机和电动机中。发电机通过旋转的磁场和线圈之间的相对运动来产生电流,将机械能转化为电能。而电动机则是通过通电的导线在磁场中产生力矩,将电能转化为机械能。 2. 变压器 变压器是电力系统中常见的设备,它利用电磁感应原理进行能量传递和电压变换。当交流电通过一对线圈时,由于磁通量的变化,感应电动势在另一组线圈中产生,从而实现电能的传输和变压。 3. 感应炉 感应炉是利用电磁感应原理实现材料加热的装置。在感应炉中,通过涡流效应在导体中产生感应电流,使导体表面产生热量。感应炉广泛应用于金属加热、熔炼和热处理过程中。 4. 磁悬浮列车 磁悬浮列车是一种基于电磁感应原理的交通工具。它利用线圈产生的磁场与轨道上的磁场相互作用,产生浮力使列车悬浮在轨道上。磁悬浮列车具有高速、平稳的特点,是未来交通运输的重要发展方向之一。 5. 无线充电 电磁感应也被应用在无线充电技术中。通过在发射装置中产生交变电流,产生变化的磁场,接收装置中的线圈通过感应电动势将电能转化为电流,实现电能的传输和充电。

电磁场知识点总结

高考物理知识归纳(磁场、电磁感应) 磁场 基本特性,来源, 成闭 方向(小磁针静止时极的指向,磁感线的切线方向,外部(N →S)内部(S →N)组合曲线 要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健) 脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图 能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图) 安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验 安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量 F 安=B I L ⇒ 推导 f 洛=q B v 建立电流的微观图景(物理模型) 从安培力F=ILBsin θ和I=neSv 推出f=qvBsin θ。 典型的比值定义 (E=q F E=k 2r Q ) (B=L I F B=k 2 r I ) (u=q w b a →q W 0 A A →=ϕ) ( R=I u R=S L ρ ) (C=u Q C=d k 4s πε) 磁感强度B :由这些公式写出B 单位,单位⇔公式 B= L I F ; B=S φ ; E=BLv ⇒ B=Lv E ; B=k 2r I (直导体) ;B=μNI (螺线管) qBv = m R v 2 ⇒ R =qB mv ⇒ B =qR mv ; v v v d u E B qE qBv d u === ⇒= 电学中的三个力:F 电 =q E =q d u F 安=B I L f 洛= q B v 注意:①、B ⊥L 时,f 洛最大,f 洛= q B v (f 、B 、v 三者方向两两垂直且力f 方向时刻与速度v 垂直)⇒导致粒子做匀速圆周运动。 ②、B || v 时,f 洛=0 ⇒做匀速直线运动。 ③、B 与v 成夹角时,(带电粒子沿一般方向射入磁场), 可把v 分解为(垂直B 分量v ⊥,此方向匀速圆周运动;平行B 分量v || ,此方向匀速直线运动。) ⇒合运动为等距螺旋线运动。 带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。 规律:qB mv R R v m qBv 2 =⇒= (不能直接用) qB m 2v R 2T ππ= = 1、 找圆心:①(圆心的确定)因f 洛一定指向圆心,f 洛⊥v 任意两个f 洛方向的指向交点为圆心; ②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。 2、 求半径(两个方面):①物理规律qB mv R R v m qBv 2 = ⇒= ②由轨迹图得出几何关系方程 ( 解题时应突出这两条方程 ) 几何关系:速度的偏向角ϕ=偏转圆弧所对应的圆心角(回旋角)α=2倍的弦切角θ 相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。 3、求粒子的运动时间:偏向角(圆心角、回旋角)α=2倍的弦切角θ,即α=2θ ) 360(2)(0 t 或回旋角圆心角π= ×T 4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条 件 a 、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。 b 、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。 注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。 电磁感应:. 1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。 内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 2.[感应电动势的大小计算公式] 1) E =BLV (垂直平动切割)

九年级物理电磁的知识点

九年级物理电磁的知识点 在九年级物理学习中,电磁是一个重要的知识点。它涉及到电 和磁的相互作用,从而解释了许多日常生活中的现象。本文将着 重介绍电磁的基本概念、电磁感应、电磁波等知识点。 一、电磁的基本概念 电磁是由电场和磁场相互作用而形成的一种物理现象。电场是 带电粒子周围所产生的力场,磁场是由运动带电粒子所产生的力场。电磁现象表现为电荷之间的相互作用以及磁物质对电流的影响。 电场和磁场都具有方向和大小。电荷所处的电场力会使得其他 带电物体受到电力的作用,而电流所产生的磁场会引起其他电流 受到磁力的影响。 二、电磁感应 电磁感应是指磁场对电流产生的影响或电流对磁场产生的影响。电磁感应可以分为静电感应和动电感应。

静电感应是指磁场对于静止的电荷所产生的力,并使电荷发生 位移。这就是我们日常生活中常见的静电现象,比如摩擦充电。 动电感应是指磁场对于运动中的导体所产生的感应电动势。当 导体与磁场相对运动时,会产生感应电流。这一概念可由法拉第 电磁感应定律描述,即感应电动势的大小与磁场的变化率成正比。 三、电磁波 电磁波是由电场和磁场相互耦合而形成的一种波动现象。它们 在真空中以光速传播,并具有波长、频率和振幅等特性。 电磁波根据波长和频率的不同被分为不同的类型,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。 电磁波具有许多应用。无线电波被广泛应用于通信技术中,如 无线电、电视和手机信号传输。微波被用于加热食物和卫星通信。可见光使我们能够看到世界,而紫外线则有杀菌和紫外灯的应用。

四、电磁能的转化 电磁能可以在不同形式之间相互转化。例如,光能可以通过光伏电池转化为电能,电能可以通过电动机转化为光能。这些能量转化过程是基于电场和磁场的相互作用。 电磁能的转化与能量守恒定律密切相关。能量守恒定律指出,在封闭系统中,能量的总量保持不变。因此,当电能转化为光能或其他形式的能量时,总能量保持不变。 在电磁能的转化过程中,还要考虑到效率的问题。效率是指能量转化过程中实际转化的能量与输入能量之间的比值。提高能量转化的效率是人们在能源利用中的一个重要目标。 总结起来,九年级物理学习中的电磁知识点主要包括电磁的基本概念、电磁感应、电磁波以及电磁能的转化。通过深入了解电磁的特性和应用,我们可以更好地理解日常生活中的现象,并为未来的技术发展做出贡献。

电磁感应与电磁场的变化知识点总结

电磁感应与电磁场的变化知识点总结电磁感应是指在磁场的作用下,导体内产生电流现象的过程。电磁感应是电磁场的一种变化形式,了解电磁感应和与之相关的电磁场变化知识是理解电磁现象的重要基础。本文将对电磁感应与电磁场变化的相关知识进行总结。 1. 法拉第电磁感应定律 法拉第电磁感应定律是描述电磁感应现象的基本规律。根据该定律,当导体被磁场穿过并发生变化时,导体两端将产生感应电动势,从而产生电流。法拉第电磁感应定律可以用公式表示为:Ε = -dΦ/dt,其中Ε表示感应电动势,Φ表示磁通量,t表示时间。 2. 洛伦兹力与电磁感应的关系 洛伦兹力是运动电荷在磁场中受到的力,与电磁感应有着密切的关系。当电导体中的电子受到洛伦兹力作用时,电子将发生运动,导致电流的产生。这种现象称为洛伦兹力的电磁感应。洛伦兹力可以用公式表示为:F = qvB,其中F表示洛伦兹力,q表示电荷量,v表示电子运动速度,B表示磁感应强度。 3. 电磁感应的应用 电磁感应的应用十分广泛,其中最重要的应用之一是发电机的原理。发电机通过旋转导体和磁场之间的相互作用来产生电动势,从而转化为电能。电磁感应也被用于变压器、感应加热等电器设备中。

4. 电磁场的变化 电磁感应是电磁场的一种变化形式。电磁场是指由电荷和电流产 生的物理场。当电流通过导线或线圈时,将形成一个磁场,这个磁场 的强弱与电流大小相关。而当磁场与导体相互作用时,又会产生感应 电动势和感应电流,形成电磁感应。 5. 磁感应强度的变化 磁感应强度是描述磁场强弱的物理量。磁感应强度的变化对电磁 感应产生重要影响。当导体中的电流变化或磁场的磁感应强度变化时,感应电动势的大小也会发生相应的变化。 总结起来,电磁感应与电磁场的变化密不可分。电磁感应是指在磁 场作用下,导体内产生电流的现象,而电磁场的变化产生了电磁感应。了解电磁感应与电磁场的变化规律对于理解电磁现象以及应用电磁技 术具有重要意义。通过深入研究电磁感应与电磁场变化的知识,我们 可以更好地理解和应用电磁学原理。

物理电场磁场电磁感应知识点

电场知识点 一、电荷、电荷守恒定律 1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。 2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。 荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷 3、起电方式有三种 ①摩擦起电, ②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 ③感应起电——切割B,或磁通量发生变化。 4、电荷守恒定律: 电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的. 二、库仑定律 1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。方向由电性决定(同性相斥、异性相吸) 2.公式:k=9.0×109N·m2/C2 极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。 3.适用条件:(1)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。点电荷很相似于我们力学中的质点. 注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

高考物理电磁感应及电磁场(波)知识点总结

高考物理电磁感应及电磁场(波)知 识点总结_ 高中物理电磁场和电磁波知识点总结。你要清楚地知道你到底是谁,要去哪里。要成为一个什么样的人,很多人浑浑噩噩,得过且过。你能清楚地意识到,或者梦想去到达彼岸,有时候,人生境遇就是如此,轻而易举滴到达你的彼岸。下面是为同学们精心整理的高考物理知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.

2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f 的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.0010 8 m/s. 下面为大家介绍的是2021年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,

电磁感应、电磁场电磁波的知识点总结

高二物理电磁感应、电磁场电磁波的知识点总结 2012.6 一、产生感应电流的条件: 1.磁通量发生变化(产生感应电动势的条件) 2.闭合回路 *引起磁通量变化的常见情况: (1)线圈中磁感应强度发生变化 (2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动) (3)线圈在磁场中转动 二、感应电流的方向判定: 1.楞次定律:(适用磁通量发生变化) 感应电流的磁场总是阻碍引起感应电流的磁通量的变化。 关于“阻碍”的理解: (1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化; (3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线) 伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内, 让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。其中四指指向还可以理解为:感应电动势高电势处。 *应用楞次定律判断感应电流方向的具体步骤 ①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。 ②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。 ③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。 ④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。*楞次定律的拓展 1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。(增反减同) 2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。 3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。 三、感应电动势的大小: 1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电 动势的大小,跟穿过这一电路的磁通量的变化率成正比。

电场 磁场知识点总结

电场磁场知识点总结 电场的概念和特点 电场是指电荷所产生的力场。当一个电荷在某个空间中存在时,它会在周围产生电场,这个电场会影响到周围的其他电荷。电场力是电荷之间相互作用的一种表现,它会导致电荷之间产生相互吸引或者排斥的力。电场是一个矢量场,可以用矢量来描述其大小和方向。 电场的特点包括: 1. 电场是相对于电荷而言的,只有在有电荷的存在时,电场才会产生。 2. 电场遵循库仑定律,即两个电荷之间的电场力与它们之间的距离和电荷大小有关。 3. 电场可以通过电场线来描述,电场线的密集程度表示该区域电场的强度。 4. 电场的方向是从正电荷指向负电荷的方向,而在正电荷附近的电场方向是由正电荷指向负电荷。 电场的测量和计算 电场的大小可以通过电场力来进行测量,电场力的大小与电荷大小和电场强度有关。电场的强度可以用电场强度来表示,电场强度是单位正电荷所受的电场力。电场强度的单位是N/C(牛顿/库仑),其大小可以用库仑定律来进行计算。 库仑定律表示两个电荷之间的电场力与它们之间的距离的平方成反比,与它们的电荷量的乘积成正比。可以用以下公式来表示: F=k*|q1*q2|/r^2 其中F表示电场力的大小,k为比例常数(通常取9*10^9 N*m^2/C^2),q1和q2分别表示两个电荷的大小,r表示它们之间的距离。 电场的叠加原理 当多个电荷同时存在时,它们分别会产生不同的电场,这些电场会叠加在一起,形成一个合成的电场。这种现象被称为叠加原理。根据叠加原理,总的电场可以通过各个电荷产生的电场叠加得到,这对于复杂的电场场景有着很大的帮助。 电场中的能量 电场中的电荷具有潜在能量,这种能量可以通过电势能来描述。电势能是电荷在电场中的一种能量形式,它是电场对电荷做的功。电势能与电荷和电场的关系可以用以下公式来表示: U=q*V

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

大学物理电磁学知识点总结

大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。 uuu r q q ur F21 = k 1 2 2 er r ur u r 高斯定理:a) 静电场:Φ e = E d S = ∫ s ∑q i i ε0(真空中) b) 稳恒磁场:Φ m = u u r r Bd S = 0 ∫ s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁 ∫ L ur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中) L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B = ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E = ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。基本计算方法: ur q ur er 4πε 0 r 2 1 r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r 2、连续分布的电流元的磁场强度: 2、电场强度叠加原理: ur n ur 1 E = ∑ Ei = 4πε 0 i =1 r qi uu eri ∑ r2 i =1 i n r ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 2 3、安培环路定理(后面介绍) 4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度: ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur urλ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 0 4、高斯定理(后面介绍) 5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B = ur 1、点电荷:E = q ur er 4πε 0 r 2 1 0 I 2R 0 I 2π r 2、均匀带电圆环轴线上一点: ur E= r qx i 2 2 32 4πε 0 ( R + x )

电磁感应 电磁场和电磁波(附问题详解)

一 填空题 1. 把一个面积为S ,总电阻为R 的圆形金属环平放在水平面上,磁感应强度为B 的匀强磁场竖直向下,当把环翻转︒180的过程中,流过环某一横截面的电量为。 答:R BS 2。 2. 一半径为m 10.0=r 的闭合圆形线圈,其电阻Ω=10R ,均匀磁场B 垂直于线圈平面。欲使线圈中有一稳定的感应电流A 01.0=i ,B 的变化率应为多少1s T -⋅。 答:1s T 18.3-⋅。 3. 如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系是1ε2ε 答:>。(也可填“大于”) 4. 如图所示,有一磁感强度T 1.0=B 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑。已知ab 长 m 1.0,质量为kg 001.0,电阻为Ω1.0,框架电阻不计,取2s m 10⋅=g ,导体ab 下落的最大速度1s m -⋅。 答:1s m 10-⋅。

5. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。已知BC AB =m 2.0=,当金属杆在图中标明的速度方向运动时,测得C A ,两点间的电势差是V 0.3,则可知B A ,两点间的电势差ab V V。 答:V 0.2。 6. 半径为r 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流 t I I ωcos 0=,则围在管外的同轴圆形回路(半径为R )上的感生电动势为。 答:t nI r ωωμsin π002。 7. 铁路的两条铁轨相距L ,火车以v 的速度前进,火车所在地处地磁场强度在竖直方向上的分量为B 。两条铁轨除与车轮接通外,彼此是绝缘的。两条铁轨的间的电势差U 为。 答:BLv 。 8. 图中,半圆形线圈感应电动势的方向为(填:顺时针方向或逆时针方向)。 答:逆时针方向。 9. 在一横截面积为0.2m 2的100匝圆形闭合线圈,电阻为0.2Ω。线圈处在匀强磁场中,磁场方向垂直线圈截面,其磁感应强度B 随时间t 的变化规律如图所示。线圈中感应电流的大小是A 。 答:2A 。

相关主题
文本预览
相关文档 最新文档