当前位置:文档之家› 内积空间中的正交性

内积空间中的正交性

内积空间中的正交性
内积空间中的正交性

a1,a2,a3是规范正交向量组,

竭诚为您提供优质文档/双击可除a1,a2,a3是规范正交向量组, 篇一:第三讲向量组 第三讲向量组 --------------------------------------------------- 向量作为工具可以描述空间中的点、矩阵中的行或列、线性方程组中的方程等等。研究向量的线性运算[加法与数乘]、向量组线性相关性、向量组的秩[矩阵秩]与最大无关组、等价向量组等概念可以解决线性方程组的理论。 向量组是线性代数的重难点之一,概念多,内容抽象,推理逻辑性强,描述要求准确,与矩阵、方程组相互交织,可以相互转换。例如,向量组秩、最大无关组是线性方程组解的判定、结构定理的理论基础;向量组的秩和相应矩阵秩一致,是向量组与矩阵结合点,反映了向量组和矩阵的本质。 向量组主要分三大部分: ■线性表示与线性相关性:向量的线性组合和线性表示;向量组的线性表示与等价向量组;向量组的线性相关性; ■向量组的秩:向量组的最大无关组与秩的概念、性质

及求法,向量组秩与矩阵秩关系;秩与线性相关性的关系; ■向量空间:向量空间及其基、维数;向量在基下的坐标;两基间的过渡矩阵;基的规范正交化: 正交阵及其性质。 教材:第四,第五章第1节。 ----------------------------------------------------------------------------------------- 一、主要内容 1、向量及其线性运算 ----概念 ------------------------------------------ (1)n个数组成的有序数组称为n维向量;写成一行的称为行向量,写成一列的称为列向量;若干个同维行(列)向量的集合称为向量组; (2)设有向量a(a1,a2,,an),b(b1,b2,,bn),实数kR,则下列运算 ka(ka1,ka2,,kan),ab(a1b1,a2b2,,anbn), 称为向量的线性运算; (3)设有向量组a1,a2,,an和向量b,若存在常数 k1,k2,,kn,使得有 bk1a1k2a2knan,

《空间向量的正交分解及其坐标表示》教学设计

《空间向量的正交分解及其坐标表示》 教学设计 杨华 燕大附中

3.1.4空间向量的正交分解及其坐标表示教学设计 一、教学任务及对象 1、教学内容分析 《空间向量的正交分解及其坐标表示》是选修2-1第三章第一节的内容,前面学生已经把平面向量及其加减和数乘运算推广到空间,本节内容从空间向量的正交分解出发,学习空间最重要的基础定理——空间向量分解定理,这个定理是立体几何数量化的基础,有了这个定理,空间结构变得简单明了,整个空间被三个不共面的向量所确定,空间一个点或一个向量和实数组(x,y,z)建立起一一对应的关系。 2、教学对象分析 本节课授课的对象是高二年级的学生,他们已掌握了平面向量的基本原理,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但在把向量推广到空间中缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。 二、教学目标 依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下: 1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。 2、过程与方法:通过类比、推广等思想方法,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会类比、推广的思想方法,对向量加深理解。 3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断拓展创新的学习习惯和品质。 三、重、难点分析 重点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 难点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 四、教学策略 为了突出重点、突破难点,在教学中采取了以下策略: 1.教法分析 为了充分调动学生学习的积极性,采用“学、研、导、练”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣. 2.学法分析 本节课通过类比平面向量基本定理及坐标表示,推广到空间向量,让学生体会类比、推广思想,加深对向量的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.

3.1.4 空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示 课时目标 1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标. 1.空间向量基本定理 (1)设i 、j 、k 是空间三个两两垂直的向量,且有公共起点O ,那么,对于空间任一向量p ,存在一个______________,使得____________,我们称______,______,______为向量p 在i 、j 、k 上的分向量. (2)空间向量基本定理:如果三个向量a ,b ,c ________,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得________________. (3)如果三个向量a ,b ,c 不共面,那么所有空间向量组成的集合就是___________.这个集合可看作是由向量a ,b ,c 生成的,我们把{a ,b ,c }叫做空间的一个________,a ,b ,c 都叫做__________.空间中任何三个________的向量都可构成空间的一个基底. 2.空间向量的坐标表示 若e 1、e 2、e 3是有公共起点O 的三个两两垂直的单位向量,我们称它们为____________________,以e 1、e 2、e 3的公共起点O 为原点,分别以e 1、e 2、e 3的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系Oxyz ,那么,对于空间任意一个向量p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3,把x ,y ,z 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作____________. 一、选择题 1.在以下3个命题中,真命题的个数是( ) ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面; ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. A .0 B .1 C .2 D .3 2.已知O 、A 、B 、C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a 、b 不能构成空间基底的是( ) A. OA → B .OB → C.OC → D.OA →或OB → 3.以下四个命题中,正确的是( ) A.若OP =12OA →+13 OB →,则P 、A 、B 三点共线 B .设向量{a ,b ,c }是空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底 C .|(a·b )c |=|a|·|b|·|c | D. △ABC 是直角三角形的充要条件AB →·AC →=0 4.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3G ,G 1若OG =xOA →+yOB →+zOC →,则(x ,y ,z )为( ) A .(14,14,14) B .(34,34,34 ) C .(13,13,13) D .(23,23,23 ) 5.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则

高中数学 3.1.4空间向量的正交分解及其坐标表示教案 新人教A版选修2-1

3. 1.4 空间向量的正交分解及其坐标表示 教学目标 1.能用坐标表示空间向量,掌握空间向量的坐标运算。 2.会根据向量的坐标判断两个空间向量平行。 重、难点 1.空间向量的坐标表示及坐标运算法则。 2.坐标判断两个空间向量平行。 教学过程 1.情景创设: 平面向量可用坐标表示,空间向量能用空间直角坐标表示吗? 2.建构数学: 如图:在空间直角坐标系O xyz -中,分别取与x 轴、y 轴、z 轴方向相同的单位向量,,i j k 作为基向量,对于空间任一向量a ,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a xi y j zk =++;有序实数组(x ,y ,z )叫做向量a 的空间直角坐标系O xyz -中的坐标,记作a =(x ,y ,z )。 在空间直角坐标系O -xyz 中,对于空间任意一点A (x ,y ,z ),向量OA 是确定的,容易得到 OA =xi y j zk ++。 因此,向量OA 的坐标为OA =(x ,y ,z )。 这就是说,当空间向量a 的起点移至坐标原点时,其终点的坐标就是向量a 的坐标。 类似于平面向量的坐标运算,我们可以得到空间向量坐标运算的法则。 设a =(123,,a a a ),b =(123,,b b b ),则

a + b =(112233,,a b a b a b +++), a - b =(112233,,a b a b a b ---), λa =(123,,a a a λλλ)λ∈R 。 空间向量平行的坐标表示为 a ∥ b (a ≠0)112233,,()b a b a b a λλλλ?===∈R 。 例题分析: 例1:已知a =(1,-3,8),b =(3,10,-4),求a +b ,a -b ,3a 。 例2:已知空间四点A (-2,3,1),B (2,-5,3),C (10,0,10)和D (8,4,9),求证:四边形ABCD 是梯形。 例3:求点A (2,-3,-1)关于xOy 平面,zOx 平面及原点O 的对称点。 练习:见学案 小结: 作业:见作业纸

向量正交化

Gram-Schmidt 正交化方法 正射影 设欧式空间V 中向量s ααα ,,21线性无关,令 ;11αβ= 11 11 22,,ββββααβ-=; (1) 22 2231111333,,,,ββββ αββββααβ-- =; (11) 11 22221111,,,,,,--------=s s s s s s s s s ββββαββββαββββααβ . 则s βββ,,,21 均非零向量,且两两正交.再令,1 i i i ββγ= s i ,.2,1 = 则},,,{21s γγγ 为规范正交组. 将(1)重新写成i i i i i i t t βββα+++=--11,11, , s i ,,2,1 = 其中k k k i ik t βββα,,= ,,,,2,1s i = .1,,2,1-=i k {}, ,,2,1,s j i ∈? 有 ∑∑-=-=++= 1 1 1 1 ,,j k j k jk i k i k ik j i t t ββββαα()???? ? ?? ? ?? ??? ????????? ? ? =-001,000,000,0,,0,1,,,1112222111,21 j j j i i i i t t t t t t ββββββ 令??????? ? ? ?=---10 001001011,2,2,11,1,121 s s s s s s t t t t t t T

则 T T s s s s s s s s s s s s s s ??????? ? ??=????? ? ?? ? ?-----ββββββββααααααααααααααααααααααα,0 00 0,0000,0 000,,,,,,,,,,,,,1 12211/2 1 1211122 21 212111 上式左端的实方阵是s ααα,,,21 的格兰母矩阵,记为:()s G ααα,,,21 ,上式右端中 间 的 对 角 阵 是 s βββ,,,21 的Gram 矩阵.即 有:()()T G T G s s βββααα,,,,,,21/21 = 因此()()s s s s G G βββββββββααα,,,,,,det ,,,det 22112121 == 注意:对任意一个向量组,无论它是线性相关,还是线性无关,它总有Gram 矩阵(或者事先给出定义). 例1 设s ααα,,,21 欧式空间V 中向量,则 (1)()?≠0,,,det 21s G ααα s ααα,,,21 线性无关; (2)()?=0,,,det 21s G ααα s ααα,,,21 线性相关. 证明:只证(2) )?设s ααα,,,21 线性相关,则存在一个向量,不妨设为1α,可由其余向量线性 表示: s s k k ααα++= 221给s 阶的行列式()s G ααα,,,det 21 的第i 行乘数()i k -加到 第1行,s i ,,3,2 =得 ( )s s s s s s i s i i s s i i i s i i i s k k k G αααααααααααααααααααααααααα,,,,,,,,,,,,,,,det 21 22 21 22 12 2 212 1 1121 ∑∑∑===---= 0= )?法一:由上页证明推理过程立即得证。 法二:当()0,,,det 21=s G ααα 时,()s G ααα,,,21 的行向量组线性相关,因此存在不全为零的实数12,,,s k k k ,使

专题3-空间向量的正交分解与坐标表示

23,,e e 为有公共起点O 的三个两两

点O 重合,得到向量OA =a .由空间向量基本定理可知,存在有序实数组{,,}x y z ,使得 =a __________.我们把x ,y ,z 称作向量a 在单位正交基底123,,e e e 下的坐标,记作=a __________. 注:向量的坐标由起点、终点的坐标共同决定,并不受起点位置的影响. 5.单位正交基底之间的数量积运算 (1)因为单位正交基底123,,e e e 互相垂直,所以121323?=?=?=e e e e e e __________. (2)因为123,,e e e 为单位向量,所以1122331?=?=?=e e e e e e . 6.空间向量的坐标运算 空间向量的加法、减法、数乘及数量积运算的坐标表示都可以类似平面向量的坐标运算得到. 设123(,,)a a a =a ,123(,,)b b b =b ,则 (1)112233(,,)a b a b a b +=+++a b , 112233(,,)a b a b a b -=---a b , 123(,,)a a a λλλλ=a , 112233a b a b a b ?=++a b ; (2)112233,,a b a b a b λλλλ?=?===∥a b a b , 11223300a b a b a b ??=?++=⊥a b a b , =?=|a |a a __________, 112233 22222 2 123123cos ,a b a b a b a a a b b b ++= ++++<>a b ; (3)在空间直角坐标系中,已知点111()A x y z ,,,222()B x y z ,,,则A ,B 两点间的距离 ||d AB == 222121212()()()x x y y z z -+-+-. 注:进行向量运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算,一般按照右手系建系.

高中数学选修2-1精品教案1:3.1.4 空间向量的正交分解及其坐标表示教学设计

3.1.4 空间向量的正交分解及其坐标表示 教学目标: 掌握空间向量的正交分解及空间向量基本定理和坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直. 教学重点:空间向量基本定理、向量的坐标运算. 教学难点:理解空间向量基本定理. 教学过程: 一.复习引入 平面向量基本定理及应用 二.思考分析 在一次消防演习中,一消防官兵特别行动小组接到命令,由此往南500米,再往东400米处的某大厦5楼发生火灾.行动小组迅速赶到现场,经过1个多小时的奋战,终于将大火扑灭.火灾的发源地点是由消防官兵驻地“南500米”“东400米”“5楼”三个量确定.设e1是向南的单位向量,e2是向东的单位向量,e3是向上的单位向量. 问题1:这三个向量能作为该空间的一组基底吗? 提示:能. 问题2:若每层楼高3米,请把“发生火灾”的位置由向量p表示出来? 提示:p=500e1+400e2+15e3. 三.抽象概括 1.空间向量基本定理 定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量. 2.空间向量的正交分解及其坐标表示 (1)单位正交基底 三个有公共起点O的两两垂直的单位向量e1,e2,e3称为单位正交基底. (2)空间向量的坐标表示 以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴,y轴,z轴的正方向建立空间直角坐标系Oxyz. 对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP―→=p.由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3.把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z). (1)空间任意三个不共面的向量都可以作为空间向量的一个基底. (2)0与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着

线性代数第六章向量空间及向量的正交性讲义

一、n 维向量的定义及运算 一、n 维向量的定义及运算二、向量空间 二、向量空间第一节向量空间 第二节向量的正交性

一、向量空间及其维数和基 一、向量空间及其维数和基 二、向量在基下的坐标 二、向量在基下的坐标

例1 设V 是一些n 维实向量的组成的非空集合,如果V 关 于向量的加法与数乘封闭(线性运算封闭),即 (1) ?a , b ∈V , 有a +b ∈V . (2) ?a ∈V , k ∈R , 有k a ∈V . 则称V 是一个实向量空间. 一、向量空间及其维数和基 定义1全体n 维向量的集合{(x 1, x 2, …, x n )T | x i ∈R ,i=1, 2, …, n }是一个向量空间,记为R n . 特别的 n = 1 时全体实数R 是一个向量空间; n = 3 时全体三维向量{(x 1, x 2, x 3)T |x i ∈R ,i= 1, 2, 3 } 是一个向量 空间,记为R 3. n = 2 时全体平面中的向量{(x 1, x 2 )T | x i ∈R ,i=1, 2} 是一个向量空 间,记为R 2. 注:向量空间中必含有零向量。

例3 例2而W = {(a 1, a 2, …, a n )T |}01∑==n i i a 是一向量空间. }1|),,,{(1 21∑==…=n i i T n a a a a S 不是一向量空间, 因为它关于加法与数乘均不封闭,也不含零向量.仅含一个n 维零向量0=(0, 0, …, 0)T 的集合{0}构成一 个向量空间,称为零空间.除零空间之外的所有向量空间均称为非零空间。 设V 是一个向量空间,W V , W ≠?. 如果W 关于向量的加法与数乘也封闭,则称W 是V 的子空间. 定义2若W V ,并且V W , 则称两个向量空间相等,记为W=V. ???

施密特正交化)

施密特正交化 在中,如果上的一组向量能够张成一个,那么这一组向量就称为这个子空间的一个基。Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上的一个基得出子空间的一个,并可进一步求出对应的。 这种正交化方法以和命名,然而比他们更早的(Laplace)和(Cauchy)已经发现了这一方法。在李群分解中,这种方法被推广为()。 在数值计算中,Gram-Schmidt正交化是的,计算中累积的舍入误差会使最终结果的正交性变得很差。因此在实际应用中通常使用或进行正交化。 记法 ?:为n的内积空间 ?:中的元素,可以是向量、,等等 ?:与的 ?:、……张成的 ?:在上的 基本思想 图1v在V2上投影,构造V3上的正交基β Gram-Schmidt正交化的基本想法,是利用投影原理在已有正交基的基础上构造一个新的正交基。 设。V k是V n上的k维子空间,其标准正交基为,且v不在V k上。由投影原理知,v与其在V k上的投影之差 是正交于子空间V k的,亦即β正交于V k的正交基ηi。因此只要将β单位化,即 那么{η 1,...,η k+1 }就是V k在v上扩展的子空间span{v,η 1 ,...,η k }的标准正交 基。

根据上述分析,对于向量组{v 1,...,v m }张成的空间V n,只要从其中一个向量(不 妨设为v 1)所张成的一维子空间span{v 1 }开始(注意到{v 1 }就是span{v 1 }的正交 基),重复上述扩展构造正交基的过程,就能够得到V n的一组正交基。这就是Gram-Schmidt正交化。 算法 首先需要确定扩展正交基的顺序,不妨设为。Gram-Schmidt正交化的过程如下: 这样就得到上的一组正交基,以及相应的标准正交基。 例 考察如下R n中向量的,欧氏空间上内积的定义为=b T a: 下面作Gram-Schmidt正交化,以得到一组正交向量: 下面验证向量β1与β2的正交性: 将这些向量单位化: 于是{η1,η2}就是span{v1,v2}的一组标准正交基。 不同的形式 随着内积空间上内积的定义以及构成内积空间的元素的不同,Gram-Schmidt正交化也表现出不同的形式。 例如,在实向量空间上,内积定义为: 在复向量空间上,内积定义为:

第五节振型向量正交性

第五节振型向量正交性 对多自由度系统振动问题的分析与两自由度系统没有本质上的区别。只是由于自由度上的增多导致数学上计算变得复杂多了。因此,在研究多自由度系统振动问题时,应找出一种便于分析的方法,这就是模态分析法(振型叠加法)。为此,首先讨论有关耦合与解耦的方法。 一、耦合与解耦(教材6.7和6.8) 举例说明什么是耦合与解耦。 D y 如图所示是一刚性杆AD,用刚度分别为 1 k和 2 k的弹簧支承与A、D两端。

(1) 取质心C 点的垂直位移C y 和刚性杆绕C 点的转角θ为广义坐标。则刚性杆在振动中任一瞬时的受力如图所示。由几何关系,得 12112212D A C A C D C D A l y l y y y y l l l y y l y y l l θ θ θ+?=?=-+?? ?? ? =+-??=?+? 由牛顿运动定律,的系统的振动微分方程为 121122 C A D A D my k y k y J k y l k y l θ=--?? =-? (a ) 式中m 是刚性杆AD 的质量,J 是刚性杆AD 绕质心C 的转动惯量。整理式(a ),得 ()()()()12221122 221111220 C C C my k k y k l k l J k l k l y k l k l θθθ+++-=???+-++=?? (b ) 写成矩阵的形式 12221122221111220000C C y k k k l k l y m J k l k l k l k l θθ+-???????? ??+=??????????-+????? ????? (c ) 在上式中,质量矩阵是一个对角矩阵,反映在方程组中,就是两个微分方程的第一个方程仅包含一个广义坐标的二阶导数(加速度)C y ,第二个方程仅包含另一个广义坐标的二阶导数θ,这种加速度(惯性力)之间没有耦合的情况,称之为惯性解耦。 刚度矩阵是非对角矩阵,反映在

空间向量的标准正交分解与坐标表示

空间向量的标准正交分解与坐标表示 【学习目标】 理解空间向量的正交分解及坐标表示 【学习重点】 单位正交基底,空间直角坐标系的概念 【学习难点】 掌握空间向量的正交分解及坐标表示 【课前预习案】 一、复习 1.平面向量基本定理:对平面上的任意一个向量P,,a b是平面上两个向量,总是存在实数对(),x y,使得向量P可以用,a b来表示,表达式为,其中,a b叫做。若a b ⊥,则称向量P正交分解。 2.平面向量的坐标表示:平面直角坐标系中,分别取x轴和y轴上的向量 =+,,,i j作为基底,对平面上任意向量a,有且只有一对实数x,y,使得a xi y j 则称有序对(),x y为向量a的,即a=。 二、课本助读:认真阅读课本第33—34页的内容。 1.空间向量的标准正交分解与坐标表示 在给定的空间直角坐标系中,i,j,k分别为正方向上的向量,对于空间任意向量a,存在唯一一组三元有序实数,使得a=x i+y j+z k,我们把a=x i+y j+z k叫作a的,把i,j,k叫作。 (x,y,z)叫作空间向量a的,记作a=(x,y,z),a=(x,y,z)叫作向量a的。

2.我们把,,a i x a j y a k z ?=?=?=分别称为向量a 在x 轴,在y 轴,在z 轴正方向上的投影。 向量的坐标等于 。 一般地,若b 0为b 的单位向量,称 为 上的投影。 3.如下图所示,问: (1)向量OP 在x 轴上的投影; (2)向量OP 在y 轴上的投影; (3)向量OP 在z 轴上的投影; 【课堂探究案】 探究一:向量的坐标表示 例1(P34例1)如图在直角坐标系中有长方体''''ABCD A B C D -,且 2,3,'5AB BC AA === (1) 写出点'C 的坐标,给出'AC 关于,,i j k 的分解式 (2) 求'AD 的坐标 探究二:向量a 在向量b 上的投影 例2(P34例2)已知单位正方体''''ABCD A B C D -,求

第一讲正交向量组及施密特正交法

第一讲 Ⅰ 授课题目: §5.1 预备知识:向量的内积 Ⅱ 教学目的与要求: 1.了解向量的内积及正交向量组的概念; 1.了解把线性无关的向量组正交规范化的施密特(Smidt)方法; 2.了解正交矩阵概念及性质。 Ⅲ 教学重点与难点: 重点:正交向量组及正交矩阵 难点:施密特正交化方法 Ⅳ 讲授内容: 一、向量的内积 前面曾介绍过向量的线性运算,但在许多实际问题中,还需要考虑向量的长度等方面的度量性质.在此,作为解析几何中向量的数量积的推广,引进向量的内积运算. 定义1 设有n 维向量 ??????? ??=n x x x x 21,?????? ? ??=n y y y y 21, 令 []n x y x y x y x +++= 2211,, []y x ,称为向量x 与y 的内积. 内积是向量的一种运算,用矩阵记号表示,当x 与y 都是列向量时,有 []y x y x T =,. 内积具有下列性质(其中z y x ,,为n 维向量,λ为实数): ① [][]x y y x ,,=; ② [][]y x y x ,,λλ=; ③ [][][]z x y x z y x ,,,+=+.

例1 设有两个四维向量??????? ??-=5121α,???? ?? ? ??--=56 03β.求[]βα,及[]αα,. 解 []3425603,-=--+-=βα []3125141,=+++=αα n 维向量的内积是数量积的一种推广,但n 维向量没有3维向量那样直观的长度和夹 角的概念,因此只能按数量积的直角坐标计算公式来推广.并且反过来,利用内积来定义 n 维向量的长度和夹角: 定义2 令x = []2 2221,n x x x x x ++= ,则x 称为n 维向量x 的长度(或范数). 向量的长度具有下列性质: ① 非负性 当0≠x 时,0>x ,当0=x 时,0=x ; ② 齐次性 x x λλ=; ③ 三角不等式 y x y x +≤+. 向量的内积满足施瓦兹不等式 [][][]y y x x y x ,,,2 ?≤ 由此可得 [] 1 ,≤y x y x (当0y ≠x 时) 于是有下面的定义: 当0≠x ,0≠y 时, [] y ,arccos x y x =θ 称为n 维向量的夹角. 二、正交向量组 当[]0,=y x 时,称向量x 与y 正交.显然,若0=x ,则x 与任意向量都正交. 两两正交的非零向量组称为正交向量组. 定理 1 若n 维向量r ααα ,,21是一组两两正交的非零向量组,则r ααα ,,21线性无关. 证明 设有r λλλ ,,21使 02211=+++r r αλαλαλ ,

相关主题
文本预览
相关文档 最新文档