当前位置:文档之家› 浅谈垃圾锅炉积灰及对策

浅谈垃圾锅炉积灰及对策

浅谈垃圾锅炉积灰及对策
浅谈垃圾锅炉积灰及对策

浅谈垃圾焚烧炉受热面积灰及对策

-----陈高飞

关键词:垃圾炉受热面过热器积灰预防措施

1、引言

常州绿色动力环保热电有限公司垃圾锅炉为绿色动力环境工程

有限公司自主研发的三驱动机械炉排炉,日处理1050t/d,配套三套余热锅炉WGZ27.8-400℃/4MPa,一期工程于2006年动工建设,于2008年4月份进入商业运行;二期工程于2009年动工建设,2010年投入正常运行。余热锅炉采用四烟道立式布置,对流受热面积灰表现明显,最初受热面积灰被迫停炉次数较多,严重困扰了锅炉的正常运行调整和连续运行时间,大大增加了运行费用和设备因启停造成的损耗。运行时间最初为1个月左右,经过多方面的改造、控制和调整,现在已得到了有效控制,连续运行时间可以保证3个月以上,余热锅炉利用效率大为提高,单炉日垃圾处理350t以上,负荷率为105%,吨位垃圾产汽达到 1.8以上。下面,就针对常州绿色动力积灰浅谈自

己的见解。

2、改造前积灰部位分析

图一对流管束运行一个月后积灰图二高温过热器运行50天后积灰

图一:对流管束入口积灰情况:

①对流管束结构:对流管束布置于三烟道内,Ⅲ级过热器的前面。

蒸发管束的管子成倾斜状,以避免产生汽水分层。蒸发管束与第二隔墙、后墙水冷壁组成水循环回路。共分上下两级,各50组,共100组,每组4根组成。管道规格为:¢42*4.5,每组之间的管壁距离为

70.5mm,节距为114mm,其中布置有24根吊挂管。

②锅炉连续运行20天左右,锅炉负荷维持在23~32T/H,对流管束入口烟温从450℃升至720℃,且三烟道入出口负压测点压差不断增大,烟气通流面积减少,被迫降低锅炉负荷,以至难以维持正常运行

被迫停炉。

③停炉后检查积灰部位:三烟道对流管束入口处管子与管子之间间隙

几乎被全部堵死,锅炉运行后期因积灰换热效果较差,烟温偏高,至

积灰成熔融状且较硬的灰块,受烟气冲刷的影响表面管子挂有成(钟乳岩)状的挂焦。

图二:高温过热器出口与中温过热器接口部位积灰:

①由于管组中间部位脉冲吹灰器难以形成有效的冲击,加上管束节

距偏小,首先在高温段中部堵塞,形成一个堆积平台。

②上部挂灰到一定程度时受重力影响落在管组表面逐渐堆积,其次,

吹灰器只是吹扫管束表面。吹下来后也层层叠加,在接口部位堆

积成山丘模样,更加重了烟气通流面积的减少。

3、积灰对垃圾炉的危害

①使炉内传热变差,加剧了结渣过程。受热面结渣后,由于灰渣层导

热系数小,表面温度急剧上升,高温烟气贴近灰渣层表面时不能充分冷却,进一步加剧了结渣过程。严重时会造成管壁温度过高使管壁超温,缩短管子的使用寿命,甚至失效爆管。烟道水冷壁积灰、结渣严

重时,因换热效果差,还会使蒸发量减少。

②炉膛内结渣或积灰时,炉膛出口烟温将升高,引起蒸汽温度偏高或热偏差增大。

③对流换热面积灰、结渣较多时,多数并发高温腐蚀。发生高温腐蚀

的内在原因是垃圾中的含硫量和含氯量,而外部原因是由于水冷壁管处于高温烟气的环境中,壁面邻近的区域中形成还原性气氛,使灰熔融性温度降低,加剧结渣过程,并使管子表面产生高温腐蚀。不但积

灰粘附管壁造成腐蚀,垃圾燃烧后的高温烟气也会给管束造成腐蚀,

一般在燃烧区域较高段腐蚀较为严重。

④锅炉效率降低。受热面积灰、结渣后,各段受热面出烟温相应提高,使排烟损失增大。炉内水冷壁结渣时。还有可能引起炉膛出口处的受热面结渣,致使锅炉不能满负荷运行,甚至被迫停炉。

⑤结渣严重时,大块渣落下可能会砸坏炉底水冷壁或阻塞排渣口。

⑥在传热减弱的情况下,为维持锅炉出力需消耗更多燃料,使引、送

风机负荷增加,引起电耗增加。并且由于通风设备的容量有限,加之

结渣时易发生烟气通道阻塞,可能会造成引风量不足,燃烧不完全,

co浓度大,一些可燃物被带到对流受热面,在烟道角落堆积起来继续燃烧,即发生所谓“烟道再燃烧”现象。其后果极具破坏性。

⑦烟道对流换热面积灰严重时,通风阻力增大,在管束区域形成烟气走廊,局部烟气流速过快,对管束造成冲刷和磨损,严重时引起爆管事故,增加对设备的危害和检修运行成本。总之,锅炉尾部受热面的

积灰会引起很多问题,主要有经济性和安全性两个方面,积灰可以降低炉内受热面传热能力,增加传热阻力,降低锅炉经济性;在高温烟气作用下,积灰会与管壁发生复杂的化学反应,形成高温腐蚀;使锅炉连续运行周期缩短;积灰清除困难,增加工人劳动强度。

3、垃圾锅炉积灰的因素

炉管壁面的积灰、结渣是一种普遍现象,在炉膛内火焰中心处的温度高,燃料中的灰分大多呈熔化状态,而在炉管壁附近的烟温则较低,一般在接触受热面时已凝固,沉积在壁面上成疏松状,就形成积灰:

如果烟气中的灰粒在接触壁面时仍呈熔化状态或粘性状态,则粘附在炉管壁上形成紧密的灰渣层,就形成了结渣。结渣主要由烟气中夹带的熔化或部分熔化的颗粒碰撞在炉墙、水冷墙或熔融的沉淀物形式出现在辐射受热面上。积灰主要因素有:

①烟气携带灰份:城乡接合统筹收集的垃圾中水分、灰分较大,其中水分为25%~50%,灰分为15%~30%,同时还富含有大量生物质,生

物质中碱金属含量较高,此外有塑料、橡胶等有机制品。这给垃圾焚

烧带来了极大的困难。焚烧炉一次风量越大、一次风压越高、炉膛负

压越大,那么烟气携带飞灰就越多。负荷越高,烟气量也就越大,所

携带的灰分也就越多。炉排翻动频率越高,烟气扬析所带的灰分也就越大。高温炉渣落入水冷出渣机中的瞬间会产生大量的水蒸气,这时炉内会产生极大的正压,为保持炉内负压,引风机就会开大,烟气所

携带的灰分也就变大。给推料器平台与干燥炉排之间的落差,各级炉排相互间的落差,垃圾中的细灰在燃烧过程中,经过这两个“落差”时,都会被风烟带走,设计的落差越大,带走飞灰的可能性越大。

②焚烧锅炉积灰结渣由许多复杂的因素引起,如炉内空气动力场、炉型、燃烧器布置方式及结构特性,垃圾的尺寸等都将影响炉内结焦状况。保证空气和燃料的良好混合,避免在水冷壁附近形成还原性气氛,合理而良好的炉内空气动力工况是防止锅炉内结渣的前提。一般来

说,过热器管道的节距一般需大于150mm,运行过程当中二次风需长期保证运行,减少扬析损失和在烟道灰粒沉积。锅炉对流换热面结构一般立式布置于卧式烟道中等等能减少烟道积灰的程度。

5、积灰成分分析

图三:管壁下部积灰块图四:管束积灰块

垃圾烟气飞灰中的碱金属元素比较高。而水溶性的碱金属化合物

在高温区中会发生气化,气化的碱金属化合物与挥发性氯结合形成了

碱金属氯化物。当烟气中有足够的硫存在时,大部分碱金属氯化物会和硫化物发生反应生成硫酸盐。对于炉内高温受热面的积灰来说,硫酸钠与硫酸钙或钠,钙与硫酸盐的共晶体是形成粘性灰沉积的基本物(图四)。硫酸钠的熔点(888oC)低于硫酸钾(1027oC),因此在碱金属化合物型积灰的形成过程中,起主要作用的是Na2SO4,它常构成灰沉积物中的液相成分。凝结后的Na2SO4吸收烟气中的SO3,并与受热面上及沉积物中的Fe2O3进一步反应,生成碱金属复合硫酸盐(图三),如Na3Fe(SO4)3。其熔点很低,只有600oC左右,而高温对流受热面的壁温可达650oC~700oC左右,因此生成的碱金属复合硫酸盐可处于熔

融态,并作为一种粘性基覆盖在管道表面上。这是管道表面上形成的积灰的初始原因。形成后的表面具有粘性,能进一步捕捉飞灰。气化

的碱金属成分在凝结过程中,颗粒间的接触面积增大,有时候伴随着液相的存在,从而也为飞灰间的快速烧结提供了条件。同时由于尾部烟道受热面管束设计间隙较小,管束阻力会不断地迅速增长,直到烟

道完全堵塞,被迫停炉。

6、积灰的形成机理

积灰过程主要是灰分在燃烧过程中形态变化和输送作用的结果。

灰粒沉积于管壁上,逐渐粘结,熔融硬化。初始阶段主要是沉积为主,尤其是管壁粗糙沉积速度更快。影响灰粒沉积的因素主要有四个方面:热迁移、惯性撞击、凝结、化学反应。这也可以分为与固体颗粒有关

的因素(热迁移和惯性撞击)以及与气体有关的因素(凝结和化学反应) 。

灰粒在管壁上沉积可以分为两个不同的过程。一个为初始沉积层

的形成过程。初始沉积层由挥发性灰组分在受热面的壁面上冷凝和微

小颗粒的热迁移沉积共同作用而形成。初始沉积层中的碱金属类和碱

土金属类硫酸盐含量较高,并与管壁金属反应生成低熔点化合物,强化了微小颗粒与壁面的粘接。另一个是较大灰粒在惯性力作用下撞击

到管壁的初始沉积层上,被具有粘性的初始沉积层捕获,并使积灰层

厚度迅速增加的过程。

灰粒沉积于管壁后,受高温烟气冲刷和反应,烟气中的灰粒越来

越多的粘附于积灰表面,因为垃圾中的灰份熔点较低,烟气达到600℃以上时就会在软化粘结,随着表面越粘越多,积灰也会越来越严重,

就像滚雪球一样。只要积灰沉积扩大,锅炉运行周期也就会很快缩短。

7、预防积灰及延时积灰的措施

垃圾焚烧炉积灰一直是我国垃圾电厂的通病,要完全杜绝是无法

实现的,只有采取有效措施抑制积灰的形成,针对我公司的结构特点,

采取了以下措施:

①因我公司对流管束布置较多,管距偏小,2008年进行了对流管束

改造,取消部分对流管束,改造后对流管束管间距由70.5mm增加至184.5mm。烟气流速明显增大,通风阻力大为减少,对流管束进口烟气压力与省煤器进口烟气压力差由原来100pa左右降至50pa左右。锅炉出口负压由原来的-1000多帕降至现在的-400~-500帕,低于设计值,确保了焚烧炉正常的炉膛负压。

②加强炉温控制在850-1000℃范围内,炉内温度是影响积灰最重要

的因素。降低温度是防止积灰最有效的手段,但是,炉内温度降

低势必影响炉内稳定燃烧,在这里重要的是要找出一个温度平衡

点,在这个温度及其分布下,炉内燃烧稳定,而又不发生严重积

灰。控制好炉内温度水平。

③加强燃烧调整,合理控制一二次风量与垃圾量配比,减少烟气飞

灰带出。主要对干燥段一次风电气变频控制在30Hz以内,燃烧段一次风电气变频控制在40Hz以内,降低烟气流速。根据送风的恒定及时调整推料速度及炉排速度,并控制好料层厚度,确保床

体平整、无生料、炉温稳定。对流管束进口烟温控制在600℃范围以内。

④通过的运行来看,锅炉在运行了一个月后,水平烟道受热面上就

开始有了积灰,吹灰器不容易吹下来,这时打开尾部烟道人孔,

伸入一根长的钢管,利用压缩空气可以有效地吹掉管壁上的积灰。

而且将在线清灰做为定期工作,由专人监督每隔两天或者三天进

行一次。在没有人工清灰前,我们锅炉的运行周期是50天左右,而增加了捣灰平台进行人工清灰,现在运行周期可到70天,最长的时候到了80天。

⑤加强激波吹灰:吹灰由原来的每班一次增加至每班两次。对重点

过热器及对流管束区域每班吹灰五次。

⑥通过以上措施还没用彻底解决公司积灰的根本状况,于2009年初

对高温过热器段进行了蒸汽吹灰技改,

技改如图所示:

⑴在过热器烟道对流管束出

口和高

过入口处拆除原设计安装的

1、2两台脉冲(激波)吹灰

器。

⑵在原安装孔处安装两台

长伸缩式旋转蒸汽吹灰器,

吹灰半径如图示。

⑶对原有的清灰平台加长至

8米,并加固平台。

⑷管道系统的

现场安装。

⑸蒸汽管道的保温材料的铺设。

⑹电缆(包括吹灰器、阀门的电源电缆和控制电缆)的供货和敷设,

校对线等。

⑺蒸汽来源于主蒸汽母管,减压后进入吹灰器,疏水至疏水箱,现

场和DCS远控布置有流量计和压力表及调节器。

通过安装调试完成后,规定每天或两天一次的吹灰,锅炉连续运行时间上升了一大步,正常运可以运行100天,最长运行时间135天,满足了我公司生产所需。

⑦垃圾搭配、投料均匀,必要时用播煤器在垃圾中掺入少量的烟煤,

从而保证垃圾热值,稳定炉膛温度,避免炉温低于800℃,防止挥发份在烟道再燃烧。同时,燃烧较好时,控制锅炉负荷不超额定

15%,绝不超参数运行。

⑧技改炉膛喷涂料,炉膛出口三周保温喷涂料打掉与费斯顿管下部

平齐(现已技改为耐火捣打料),降低炉膛出口烟气温度。同时,每一次停炉对一二烟道的水冷壁积渣清理干净,增加炉膛和一烟

道的换热,降低对流管束处的烟温。从而也降低烟气中夹带飞灰

的熔点温度,减少积灰的形成。

⑨其次,垃圾电厂积灰还可以通过在焚烧炉内加入适宜的添加剂脱除

碱金属,对于解决垃圾焚烧过程中碱金属积灰,是便捷有效的办

法。研究表明铝硅类矿物质可以脱除烟气中的碱金属,对防止碱

金属积灰有一定的效果。其中高岭土效果较为明显,高岭土不仅

可以和碱金属化合物反应生成高熔点的铝硅酸盐,而且可以减轻

沉积物中氯元素的富集。因此,可以作为垃圾焚烧炉内碱金属脱

除剂使用。炉内喷入添加剂,目的是脱除碱金属,提高熔点,减

轻结渣,一般常用的方法如下:

(1)气态碱金属通过化学反应生成固态形式(炉内添加高岭土);

(2)通过物理吸附固化下来(利用活性矾土);

(3)使用除渣剂(矾土、碳化硅、氧化硅),提高灰熔点,降低结渣。

8、结论

对于三驱动炉排焚烧炉在我公司是从电脑理论走入成功实践的典

范工程,我们已经运行了四年多的时间,积累了很多运行经验和检修经验,大小技改本人主持过多项,因我们三驱动垃圾炉是国内首创,

积灰问题一直是我们的主要问题,其他垃圾炉或许比我们更严重。经历几年来的技改和摸索,通过以上措施抑制锅炉积灰,现基本走出了每月每台炉积灰停炉的困扰,锅炉连续运行水平、带负荷能力和灰渣热灼减率都到达了设计要求,公司经济效益蒸蒸日上。但是垃圾焚烧对设备的腐蚀和环保要求的不断提高,我们需要不断的学习和改进,

最大限度的提高锅炉吨位垃圾产汽量和延长设备的运行能力。在实践中不断摸索,及时反馈和分析,将理论和实际相结合,延长焚烧炉的运行周期和运行水平。

9、参考文献

①《垃圾焚烧炉尾部受热面积灰及其抑制方法分析》孙巍,马增益,严建华,许明磊,王勤文章编号: 1004 - 3950 (2006) 01 - 0046 –

04

②《炉排式垃圾焚烧炉炉内结渣特性研究》王桂英20090301

③《垃圾焚烧炉受热面结渣实验研究》张衍国,王亮,蒙爱红,李清海

(陈高飞)浅谈垃圾锅炉积灰及对策

浅谈垃圾焚烧炉受热面积灰及对策 -----高飞 关键词:垃圾炉受热面过热器积灰预防措施 1、引言 绿色动力环保热电垃圾锅炉为绿色动力环境工程自主研发的三驱动机械炉排炉,日处理1050t/d,配套三套余热锅炉WGZ27.8-400℃/4MPa,一期工程于2006年动工建设,于2008年4月份进入商业运行;二期工程于2009年动工建设,2010年投入正常运行。余热锅炉采用四烟道立式布置,对流受热面积灰表现明显,最初受热面积灰被迫停炉次数较多,严重困扰了锅炉的正常运行调整和连续运行时间,大大增加了运行费用和设备因启停造成的损耗。运行时间最初为1个月左右,经过多方面的改造、控制和调整,现在已得到了有效控制,连续运行时间可以保证3个月以上,余热锅炉利用效率大为提高,单炉日垃圾处理350t以上,负荷率为105%,吨位垃圾产汽达到1.8以上。下面,就针对绿色动力积灰浅谈自己的见解。 2、改造前积灰部位分析 图一对流管束运行一个月后积灰图二高温过热器运行50天后积灰

图一:对流管束入口积灰情况: ①对流管束结构:对流管束布置于三烟道,Ⅲ级过热器的前面。蒸发管束的管子成倾斜状,以避免产生汽水分层。蒸发管束与第二隔墙、后墙水冷壁组成水循环回路。共分上下两级,各50组,共100组,每组4根组成。管道规格为:¢42*4.5,每组之间的管壁距离为 70.5mm,节距为114mm,其中布置有24根吊挂管。 ②锅炉连续运行20天左右,锅炉负荷维持在23~32T/H,对流管束入口烟温从450℃升至720℃,且三烟道入出口负压测点压差不断增大,烟气通流面积减少,被迫降低锅炉负荷,以至难以维持正常运行被迫停炉。 ③停炉后检查积灰部位:三烟道对流管束入口处管子与管子之间间隙几乎被全部堵死,锅炉运行后期因积灰换热效果较差,烟温偏高,至积灰成熔融状且较硬的灰块,受烟气冲刷的影响表面管子挂有成(钟乳岩)状的挂焦。 图二:高温过热器出口与中温过热器接口部位积灰: ①由于管组中间部位脉冲吹灰器难以形成有效的冲击,加上管束节

锅炉结渣与积灰的原因

锅炉受热面结渣的影响因素 锅炉的结渣问题是燃煤电厂普遍存在的问题。所谓“结渣”,是指熔灰在锅炉受热壁面上的积聚,其本质为锅炉中高温烟气携带处于熔融或部分熔融状态下的未燃尽煤粉颗粒,遇到低温的壁面冷却、凝固而形成沉积物的过程。锅炉结渣是一个非常复杂的过程,涉及因素很多,它不仅与燃用煤种的成分和物理、化学特性有关,而且还与锅炉的设计参数有关(如燃烧器的布置方式、炉膛热负荷、炉内空气动力结构、炉膛出口烟温、过热器的布置位置、各部分的烟气流速和烟温、炉膛负压等),同时还受锅炉运行工况的影响(如负荷的变化、过量空气系数、煤粉细度、炉膛燃烧温度的控制、配风方式以及炉内燃烧空气动力场的控制等)。这些因素总的来说可以分为两大类,一为先天因素,如燃用煤种的特性和锅炉的设计参数;二为后天因素,如锅炉的运行工况。因此,在分析解决锅炉的结渣问题时就需要从这两个方面来考虑,以此判断导致锅炉结渣的主要因素。 1煤质特性对锅炉结渣的影响 实际煤质与设计煤质偏差很大是造成炉膛结渣的主要原因之一, 灰的熔融特性是判断燃烧过程中是否发生结渣的一个重要依据, 不同煤质的灰具有不同的成分和熔融特性。另外, 灰分中碱性和酸性两类氧化物含量之比即碱酸比偏高, 那么这种煤质容易发生结渣。 1.1 煤灰熔融温度 在煤灰熔融性的四个特征温度中,一般以软化温度ST 作为集中代表。通常认为ST 为1 350℃,是一个分界点,高于1 350℃,锅炉不易结渣,软化温度ST 越高,结渣可能性越小。反之,ST 低于1 350℃,锅炉易于结渣,软化温度ST 越低,结渣可能性就越大,也就越严重。 煤灰熔融温度的高低,一般将煤灰分为易熔、中等熔融、难熔、不熔四种,其熔融温度范围大致为:易熔灰,ST 值低于1 160℃:中等熔融灰,ST 值在1 160℃~1 350℃范围内;难熔灰,ST 值在1 350℃~1 500℃范围内;不熔灰,ST 值高于15℃。 在考察煤灰熔融性时,还要尤其注意煤灰熔融性是在什么样气氛条件下的测值。由于煤灰中的铁在不同气氛下处于不同的价态,在氧化气氛中,铁呈三价,32O Fe 熔点为1 565℃。在还原性气氛中,铁呈金属状态,FeO 的熔点为1 535℃。而在弱还原性气氛中,铁呈二价,FeO 的熔点为1 420℃。 1.2 煤中含硫量和灰分含量 灰的结渣指数取决于从中碱性氧化物与酸性氧化物的比值及煤中含硫量。煤灰中碱性氧化物与酸性氧化物比值越小,煤中含硫量越低,则锅炉结渣指数值越小。煤灰碱性氧化物与酸性氧化物的比值稳定,结渣指数则由煤中含硫量决定。因此,煤中含硫量低,对避免锅炉结渣非常有利。煤中灰分含量太高,炉膛中从量很大,一旦结渣,自然渣量也就很大,结渣的危害也就越大。同时,煤中灰分含量较高,意味着煤的热值较低,煤粉可能燃烧不完全,导致不完全燃烧,增加热损失,而在炉膛内容易产生还原性气体,促使灰熔融温度降低,有助于产生结渣或加剧结渣的严重程度,电厂煤粉锅炉也不宜燃用灰分含量过低,热值过高的

燃煤电站锅炉折焰角积灰的原因分析及对策研究

燃煤电站锅炉折焰角积灰的原因分析及对策研究 火电站锅炉所使用的燃煤烟气含量一般在25%左右,质量较差的燃煤的烟气含量更高,在长期的使用过程中锅炉内部势必会积存大量的烟灰,折焰角积灰在燃煤电站中十分常见,如果不能加以解决将直接影响电站生产的经济性和安全性,威胁作业人员的生命安全,因而必须针对积灰找出恰当的解决对策。 1锅炉折焰角积灰原因分析。 本文的研究对象是某燃煤电站9号锅炉折焰角斜坡的积灰,该锅炉选用的燃煤质量中上等,高低温过热器底部的煤灰厚度均超过一米,且由于长时间未对其进行处理导致折焰角积灰的严重性日趋增加。该锅炉布置在半露天的环境之下,锅筒数量只有一个在自然循环下下降和上升,排渣炉为固态。空气预热器、省煤器以及烟道交错分布在炉膛的尾部,煤粉燃烧器采用当前通用的双通道形式,正四角中间存储仓的煤粉通过热风进行传送。 1.1实验分析。 笔者对该9号锅炉的运行状况数据进行了分析,研究结果表明该锅炉长时间在低负荷状态工作,实际负荷量与满负荷状态标准负荷量

相差近20%.此外该锅炉内部烟气流速不均匀且流速较低,其中下烟道流速在6.5-7.5m/s,上烟道烟气流速8-9m/s,上下烟道流速相差在1.5m/s左右,与正常12m/s的烟气流速相差甚远,煤灰很难被这种低流速的烟气带走,此外不均匀的烟气流速使得折焰角这种边角落难以被烟气吹到,进而会造成折焰角的积灰较多。结合燃煤电站锅炉运行原理和煤灰堆积特点进行分析,锅炉在满负荷状态下运行煤灰往往不宜结渣,而长期的低负荷运行也会使得折焰角处的煤灰日益固化,处理的难度大大提升。 1.2理论分析。 通过锅炉折焰角烟气流动压力分布和回流区域的模拟发现燃煤电站的折焰角区域上部的压力要明显小于其他位置,该区域形成回流,烟气流流经此处时由于较低的压力导致流速降低且出现回流现象,气流所携带的飞灰就会有很多沉降在此处,这是折焰角积灰的来源。为了使积灰自然排出需要将折焰角的斜度坡度设计的偏大一些,但是该锅炉的折焰角坡度却无法达到这一要求。吹灰器作为避免烟灰堆积的主要装置,应当有足够的能量让折焰角的飞灰重新返回烟气流场中,以便于被烟气带走,但是该电站原来使用的声波吹灰能量器对积灰产生的动能较小,折焰角堆积的煤灰无法被声波带回气流中。此外高低温过热器之间较短的距离使得飞灰流动性大大减弱,为烟尘在折焰角的堆积创造了条件。

锅炉结渣原因分析及解决措施

衡丰发电有限责任公司#1炉结渣 原因分析及解决措施 Cause Analysis and Solution to Slagging in Boiler No.1 of Hengfeng Power Generation Co. Ltd. 张万德1,刘永刚1,刘文献1,胡兰海2 (1.河北省电力研究院,河北石家庄050021; 2.衡丰发电有限责任公司,河北衡水053000) 摘要:介绍了衡丰发电有限责任公司#1炉炉膛结渣、掉大块渣造成锅炉灭火的情况,阐述了该炉防止结渣已采取的措施及达到的效果,分析了炉膛结渣的原因,探讨了解决炉膛结渣的措施。 关键词:结渣;卫燃带;空气动力场;火焰温度水平 Abstract:This paper introduces the slagging situation of combustor of Boiler No.1 of Hengfeng Power Generation Co. Ltd.,and the dropped large slag causes boiler fire extinguished,relates measures adopted and its effects to protectthe boiler from slagging. Keywords:slagging;refractory zone;air dynamic field;flame temperature level 衡丰发电有限责任公司#1炉是由北京巴布科克·威尔科克斯有限公司(Babcock & Wilcox) 设计制造的亚临界参数、单汽包、自然循环、固态排渣煤粉锅炉。采用钢球磨中间储仓式热风送粉系统,前后墙各3层共24个EI-DRB型旋流燃烧器对冲燃烧方式。锅炉设计煤种和校核煤种均为山西阳泉无烟煤+晋中贫瘦煤。自1995-12投产以来,该炉膛始终存在较严重的结渣问题,特别是在锅炉降负荷时,由于炉膛温度变化较大,大块渣容易脱落,低负荷时锅炉燃烧稳定性较差,大块渣掉落引起炉膛负压较大波动,造成锅炉灭火事故。 1 结渣情况 2001年掉大块渣灭火4次,2002年3次。2003年以前,针对该问题采取了一些防止措施,主要有:控制来煤质量,进行燃烧调整,治理锅炉底部漏风,合理控制炉内过剩空气系数,做好锅炉定期吹灰,停运部分燃烧器等。通过采取以上措施,炉膛结渣现象有所减轻。2003-02-03#1炉大修期间,针对结渣问题对燃烧设备进行了检修,并进行了炉内空气动力场试验,机组投运8个月以来未发生锅炉炉膛掉大块渣灭火事故,仅发生掉小块渣现象2次。这说明通过检修,#1 炉炉膛结渣状况明显减轻。

浅谈大型锅炉结渣和飞灰磨损的危害及预防措施

浅谈大型锅炉结渣与飞灰磨损的危害及预防措施 南通天生港发电有限公司王伟 内容提要:介绍锅炉受热面的结渣的诸因素与飞灰磨损的机理,分析锅炉受热面结渣对锅炉安全经济运行的危害,提出预防炉膛及其它受热面结渣的措施。探讨受热面磨损的机理,分析影响磨损的因素,提出防磨损的途径或方法。 关键词:锅炉结渣飞灰磨损危害措施 目前,火力发电厂锅炉受热面的结渣和飞灰磨损一直是威胁机组安全经济运行的主要因素,受热面爆漏造成的主设备非计划停运次数占火力发电机组非计划停运总次数的40~50%,有些机组这个比例数还要大。直接威胁到电厂的安全运行,同时也给电网安全稳定运行带来了极大的困难。如何解决受热面结渣和磨损已成为锅炉检修人员关注和研究的问题。因此我们必须弄清锅炉结渣与飞灰磨损的形成机理从面有针对性地分析出实用的预防措施和方法。 【锅炉的结渣】 一、锅炉受热面结渣对锅炉安全经济运行的危害 固态排渣煤粉炉在燃烧过程中形成的熔融灰渣在凝固之前接触到受热面时,会粘结在上面,并积聚和发展成一层硬结的灰渣层,这种现象称为结渣。其基本成因为:受热面的结渣发生于呈熔融状态的灰粒与壁面的碰撞,从而被黏附在壁面上。因此产生结渣的条件首先是二者间的碰撞,其后灰粒呈熔融状态具有黏附在壁面上的能力。炉内具有一定的温度分布,一般在煤粉炉火焰中心区域的烟温很高,有相当一部分灰粒呈熔融或半熔融状态;在靠近炉壁区域则烟温较低。炉内的煤粉或颗粒会随气流而运动,或从气流中分离出来,在这分离的过程中,颗粒的温度会随它从高温区域到达壁面的运动速度、环境温度条件而改变。如果存在足够的冷却条件,那些原属熔融状态的颗粒将重新固化,失去黏附能力,失去产生结渣的条件;反之产生结渣的程度即大,这就是受热面产生结渣的基本成因。锅炉受热面结渣对锅炉安全经济运行的危害是相当严重的,可以归纳为下述几个方面: (1)、使炉内传热变差,加剧结渣过程。水冷壁结渣后,由于灰渣层导热系数极小,即热阻很大,火焰辐射给受热面的热量不能及时传给管内工质,而聚集在灰

锅炉除尘器积灰分析及解决方法

锅炉除尘器积灰分析及解决方法- 废气处理 【摘要】通过对塔什店火电厂7号炉除尘器积灰原因分析、探讨,确定了治理方案,并于2000年实施治理,后来又进行了完善,使#7炉除尘器积灰问题得到了彻底解决,有效地避免积灰给机组带来的不利影响,保证机组长周期运行。 【关键词】除尘器、积灰、文丘里烟道、最优尺寸、扩张角、烟气流速、改造 一、前言 我厂#7锅炉除尘器为MCS-3400型麻石湿式除尘器,自安装运行后,内部积灰严重。积灰部位在除尘器进口、切向过渡段以及进入除尘器水膜处1/3段,形成积灰高度2米左右,且除尘器底部也形成了大量积灰。积灰问题破坏了除尘器筒内的动力场,除尘器阻力增大,引风出力下降,影响了锅炉的经济性。同时,大量积灰使清灰工作劳动强度加大。该问题已成为锅炉运行、检修的一个突出问题。经长观察、测量、分析,该除尘器每次积灰情况大致相同,而且无论如何调整水量,积灰情况也没有改变,检修人员对可能造成积灰的其它因素进行了多次查找、检修,积灰情况也未得到改善。最后,确定除尘器进口文丘里烟道尺寸误差过大,不符合最优尺寸,造成积灰问题。因此,我们着手对文丘里烟道出口(即除尘器主筒进口)尺寸进行了改造。 二、分析、计算及解决办法 下面是我厂矩形文氏烟道的俯视示意图,由渐缩管、喉部及渐扩管组成。含尘气流进入渐缩管,气流速度逐渐增加,在喉部气流速度最高,

气流在渐扩管内速度逐渐降低,静压得到一定的恢复,所以流速的降使除尘器很容易积灰。未改造前文氏烟道各部分尺寸测量为:渐缩部分L1=1.8m A1=1.6m、渐缩段进口高度H1=2m;渐扩部分L2=4.2m、A2=1.0m,渐扩段高度H2=1.65m;喉部长度L0=0.05m,喉部宽度A0=0.5m,喉部高度H0=1.5m。从空气动力的角度分析,文氏管各部分尺寸存在最优尺寸的选择。所以必须对原文氏烟道各部分尺寸进行校核。 1、校核时,按锅炉满负荷单台文氏烟道处理烟气量情况进行,并以当量直径的方法计算。因喉部长度极短,可认为无喉部长度L0。实际测量喉部流速v0=48m/s,单台处理烟气量Q0=128304m3/h。喉部截面:0.5×1.5=0.75m2,当量直径Φ0=0.98m;渐缩段进口截面:A1 H1=1.6×2=3.2m2,当量直径Φ1=2.02m;渐扩段出口截面:A2 H2=1.0×1.7=1.7m2,当量直径Φ2=1.47m。所以,对文氏烟道最优尺寸校核情况如下: (1)喉部当量直径= 实测渐缩管扩张角=30°,渐缩管的长度按入口当量直径及喉部当量直径确定: (2) 实测渐扩段的扩张角α2=10°,渐扩段烟道长度根据出口直径及喉部当量直径确定: (3) 2、从以上对文氏烟道的校核计算可以看到:渐缩段长度为1.95m、

造成锅炉结渣的原因及预防措施

编号:AQ-JS-09194 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 造成锅炉结渣的原因及预防措 施 Causes of boiler slagging and preventive measures

造成锅炉结渣的原因及预防措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 (1)锅炉结渣,也叫结焦,指灰渣在高温下粘结于受热面、炉墙、炉排之上并越积越多的现象。 燃煤锅炉结渣是个普遍性的问题,层燃炉,沸腾炉,煤粉炉都有可能结渣,由于煤粉炉炉膛温度较高,煤粉燃烧后的细灰呈飞腾状态,因而更易在受热面上结渣。 结渣使受热面吸热量减少,降低锅炉的出力和效率;局部水冷壁管结渣会影响和破坏水循环,甚至造成水循环故障;结渣会造成过热蒸汽温度的变化,使过热器金属超温;严重的结渣会妨碍燃烧设备的正常运行,甚至造成被迫停炉。 (2)造成结渣的原因是: ①煤的灰渣熔点低;②燃烧设备设计不合理;③运行操作不当。 (3)发现锅炉结渣要及时清除,进行“打焦”,打焦应在负荷较低,燃烧稳定时进行。打焦人员应注意防护和安全。

(4)预防结渣的措施: ①在设计上,要控制炉膛燃烧热负荷,在炉膛中布置足够受热面,控制炉膛出口温度使之不超过灰渣变形温度;合理设计炉膛形状,正确设置燃烧器,在燃烧器结构性能设计中充分考虑结渣问题;控制水冷壁间距不要太大,把炉膛出口处受热面管间距拉开,作成“垂彩管”;炉排两侧装设防焦联箱等。 ②在运行中,要避免超负荷运行,控制火焰中心位置,避免火焰偏斜和火焰冲墙,合理控制炉膛过量空气系数和减少漏风。 ③对沸腾炉和层燃炉,要控制送煤量,均匀送煤,及时调整料层和煤层厚度。 这里填写您的公司名字 Fill In Your Business Name Here

影响锅炉结渣的因素及其预防措施

影响锅炉结渣的因素及其预防措施 华电山东十里泉发电厂(277103)谢孝东 摘要:为了确保300MW机组安全经济运行,本文研究了引起炉膛结渣的主要原因,并制定了防止和减轻炉内结渣的技术措施。 关键词:炉内结渣防结渣技术 300MW机组 0 引言 近年,各个电厂锅炉结渣问题突出,不少300MW机组都发生过严重结渣。锅炉结渣不仅影响机组的经济满发,而且严重威胁安全运行。北仑港电厂1号机组特大事故的惨痛教训使人们不能不对锅炉结渣问题予以高度重视。 1 与锅炉结渣有关的因素 结渣是复杂的物理和化学过程,国内外学者已做了大量研究,初步揭示了其形成的机理及与煤灰性质的关系,制定了若干用以判断煤灰结渣性的指数,同时揭示了锅炉设计和运行对结渣的影响。 1.1 灰与渣的特性 煤灰的结渣性同灰的化学成分、灰渣的物理特性有关。现选择其中一些主要的指标详述如下。 1.1.1 灰的熔化温度 灰熔温度同灰的成分有关,灰中的酸性氧化物,如SiO2,Al2O3和TiO2等都是聚合物的构成者,因此会提高灰的熔化温度;碱性氧化物则相反,如CaO,MgO和Na2O等都是聚合物的破坏者,会降低灰的熔化温度。但这种解释对含有大量碱性物的灰来说不适用,所谓“褐煤型灰”就会有大量CaO和MgO,其量比Fe2O3多得多,这些灰中的SiO2、Fe2O3、Na2O和K2O都会降低软化温度,而Al2O3、CaO和MgO却提高软化温度。美国对国内一些特定煤种,依据大量统计数据已建立了精确的灰熔温度与灰化学成分之间的关系,这样,根据灰中的碱性组分就可以确定灰熔点。 至于灰中铁的作用,要视其氧化状态而定,三价铁是聚合物的构成者,提高灰熔温度;二价铁则是聚合物的破坏者,降低灰熔温度。 灰的熔化温度在氧化氛围与还原氛围中是不同的,两者的差异是随着灰中CaO和MgO成分的增加而变小。 1.1.2 渣的粘度

(陈高飞)浅谈垃圾锅炉积灰及对策

(陈高飞)浅谈垃圾锅炉积灰及对策

浅谈垃圾焚烧炉受热面积灰及对策 -----陈高飞 关键词:垃圾炉受热面过热器积灰预防措施 1、引言 常州绿色动力环保热电有限公司垃圾锅炉为绿色动力环境工程有限公司自主研发的三驱动机械炉排炉,日处理1050t/d,配套三套余热锅炉WGZ27.8-400℃/4MPa,一期工程于2006年动工建设,于2008年4月份进入商业运行;二期工程于2009年动工建设,2010年投入正常运行。余热锅炉采用四烟道立式布置,对流受热面积灰表现明显,最初受热面积灰被迫停炉次数较多,严重困扰了锅炉的正常运行调整和连续运行时间,大大增加了运行费用和设备因启停造成的损耗。运行时间最初为1个月左右,经过多方面的改造、控制和调整,现在已得到了有效控制,连续运行时间可以保证3个月以上,余热锅炉利用效率大为提高,单炉日垃圾处理350t以上,负荷率为105%,吨位垃圾产汽达到1.8以上。下面,就针对常州绿色动力积灰浅谈自己的见解。 2、改造前积灰部位分析 图一对流管束运行一个月后积灰图二高温过热器运行50天后积灰

图一:对流管束入口积灰情况: ①对流管束结构:对流管束布置于三烟道内,Ⅲ级过热器的前面。 蒸发管束的管子成倾斜状,以避免产生汽水分层。蒸发管束与第二隔墙、后墙水冷壁组成水循环回路。共分上下两级,各50组,共100组,每组4根组成。管道规格为:¢42*4.5,每组之间的管壁距离为70.5mm,节距为114mm,其中布置有24根吊挂管。 ②锅炉连续运行20天左右,锅炉负荷维持在23~32T/H,对流管束入口烟温从450℃升至720℃,且三烟道入出口负压测点压差不断增大,烟气通流面积减少,被迫降低锅炉负荷,以至难以维持正常运行被迫停炉。 ③停炉后检查积灰部位:三烟道对流管束入口处管子与管子之间间隙几乎被全部堵死,锅炉运行后期因积灰换热效果较差,烟温偏高,至积灰成熔融状且较硬的灰块,受烟气冲刷的影响表面管子挂有成(钟乳岩)状的挂焦。 图二:高温过热器出口与中温过热器接口部位积灰: ①由于管组中间部位脉冲吹灰器难以形成有效的冲击,加上管束节

垃圾焚烧锅炉积灰危害及处理

垃圾焚烧锅炉积灰危害及处理 一、锅炉积灰的定义 “积灰”是指温度低于灰熔点时灰沉积在受热面上的积聚,多发生在锅炉的烟道受热面上。积灰通常可按如下标准进行分类:(1)根据飞灰温度范围划分,可分为熔渣,高温沉积灰,低温沉积灰。(2)根据积灰的强度,可分为松散性积灰和粘结性积灰。积灰是个复杂的物理化学过程,是目前垃圾焚烧炉运行中的重要影响因素。探讨积灰的形成和抑制方法,对于垃圾焚烧炉的安全运行具有重要的意义。 二、积灰对垃圾焚烧锅炉的影响 太仓协鑫垃圾焚烧发电XX公司三台型号为SLC250-4.1/400 垃圾焚烧炉排炉,是杭州新世纪设计生产的第二代焚烧炉。其原身为处理垃圾量225 吨/天垃圾焚烧锅炉。由于当时燃料热值设计点较低,使炉膛热容积偏小,受热面布置较为保守。所以自投产以来,锅炉炉膛结焦和受热面积灰问题始终是困扰我公司的一个难题,前二年由于垃圾量少,热值低,锅炉运行周期短,对我们影响没有这么突出,自从2008 年下半年开始,随着城市生活垃圾量的不断上涨及其它高热值垃圾量的拓展,公司垃圾池库存量明显增多,垃圾热值呈直线上升。这样,锅炉超温情况越来越多,炉膛结焦和受热面积灰情况变得突出,严重影响了锅炉的出力,这样的恶性循环一度给生产带来了极大的困难。 锅炉水冷壁、过热器及换热器的积灰、结焦影响受热面的传热效率,使锅炉排烟温度上升,导致锅炉的热效率下降,理论计算和运行经

验表明,锅炉排烟温度升高20C,锅炉热效率就会 下降1%,同样严重的是积灰、结焦达到一定程度时会引起锅炉受热面的腐蚀和意外停炉,造成重大的经济损失。具体影响为: 1.对于经济性来说积灰不利于传热,锅炉经济性变差,积灰如果严重,直接的就是燃料量增加。 2.灰的传热系数为普通钢的四十分之一。所以积灰严重时还会导致爆管,严重威胁锅炉的安全运行。 所以,能否减缓锅炉结焦、积灰程度,尽可能延长锅炉运行周期,保证锅炉最大垃圾处理能力,对我们来说意义重大。 三、针对积灰,吹灰的必要性锅炉吹灰和在线吹灰的目的是防止受热面积灰。在没有漏风的前提下,排烟温度没有因为加大风量而升高,表明对流受热面有较多积灰,换热量降低。这时就需要重点吹灰。 我厂锅炉的吹灰是分乙炔脉冲吹灰,和在线吹灰相结合,是我们厂保持受热面清洁及较高锅炉效率的有效手段。乙炔吹灰和在线吹灰主要目的是为了保持受热面的清洁,保证锅炉的效率,吹完灰后,各受热面的积灰一部分消除,金属壁吸热能力应略有提高,从而蒸汽温度上升,同时热交换加大,排烟温度下降。 四、人工在线清灰的方法和必要性 通过近期的运行来看,锅炉在运行了半个月后,由于炉膛温度的特性,此时在三通道入口温度一般达到550-650 度,蒸发器和高过水平烟道受热面上就开始有了积灰。积灰一旦形成,由于表面具有粘性,能进一步捕捉飞灰。时间一久,管束阻力会不断地迅速增长,直到

锅炉用煤结渣及积灰分析

锅炉用煤结渣及积灰分析 摘要本文阐述了燃煤煤质对锅炉的影响,及炉内结渣、受热面积灰的影响。并对新疆部分煤矿的煤质进行了结渣特性和积灰特性的分析。提出了事业部410吨煤粉炉主烧煤、掺烧煤以及主烧煤、掺烧煤的掺混比例。 关键词炉内结渣;受热面积灰;结渣特性;掺混比例 中图分类号TK17 文献标识码 A 文章编号1673-9671-(2012)071-0135-01 1 炉内结渣 结渣是锅炉运行中普遍的现象,尤其是燃用劣质煤时,结渣的情况更显著。 1.1 结渣对锅炉运行的危险 1)结渣引起过热气温升高,甚至会导致爆管。 2)结渣可能造成掉渣灭火、损伤受热面和人员伤害。 3)结渣会使锅炉出力下降,严重时造成被迫停炉。 1.2 结渣使排烟损失增加,锅炉热效率降低 结渣是一种绝热体,渣块黏附在受热面上就会使其吸热大为减少,造成排烟温度升高,排烟损失增加。结渣后,锅炉出力下降,为了保持额定出力,燃料量就要增加,使煤粉在炉内停留时间缩短,q4损失会增加,当空气量不足时,q3也会增加,锅炉热效率下降。 1.3 结渣形成机理及影响因素 煤中灰分随着温度升高开始发生变形随后出现软化和熔化状态。软化或熔化的灰粒如果黏附在某一温度较低的受热面上,就形成结渣。灰分的结渣与灰的熔融特性、黏结性有直接关系。 1)灰分的熔融性。灰分的熔融性温度主要与灰分的组成成份和存在的介质气氛有关。 煤灰中的难熔成分多为酸性氧化物,熔点多在1500-2000℃之间,如果SiO2为1470℃,AlO3为2015℃。煤灰的组成中,也用一些是易熔的化合物,主要是碱金属化合物,它们的熔点多在1000℃以下,如K20、Na2O的熔点为700℃。 2)介质气氛对熔化特性的影响。灰熔点其存在的介质气氛也有关系。在氧化气氛中,FeO会被氧化生成Fe2O3,所以,在氧化气氛中铁的氧化物通常以Fe2O3形态存在。但在半还原气氛中的熔点与半还原性气氛中的熔点差值可以达到很大的数值,对我国部分煤的实验研究结果表明:同一煤种,半还原气氛中灰分的熔化特性温度tDT、tST、tFT均比氧化气氛下低,一般约低30-300℃;氧化气氛下的凝固点也均高于半还原气氛下灰的凝固点,温差范围为30-80℃。 3)灰渣黏度。灰渣黏度随温度变化的规律是表示灰分在高温条件下物理特性的另一指标。随着温度下降,熔化的灰分黏度升高。当温度下降时,灰渣在狭窄的温度范围内从液态转变为固态,而无明显的塑性区,此灰渣属于短渣;温度下降时,在相地较宽的温度范围内,灰渣难度逐渐增加,呈现塑性状态,但仍然无明确的相变温度和塑性区界限,属于长渣。如图所示实现 曲线。 4)结渣的判定。 ①碱酸比B/A。碱酸比B/A=(Fe2O3+CaO+MgO+Na2O+K2O)/(SiO2+Al2O3+TiO2)

垃圾锅炉受热面积灰原因分析

垃圾焚烧炉尾部受热面积灰原因分析及措施 生活垃圾焚烧处理具有占地少,处理快速,减量化显著,无害化彻底以及可回收余热等优点,在世界各国得到了越来越广泛的应用。但是,垃圾成分复杂多样,含水量高,焚烧过程中容易在受热面上形成积灰。 “积灰”是指温度低于灰熔点时灰沉积在受热面上的积聚,多发生在锅炉的烟道受热面上。积灰通常可按如下标准进行分类:(1)根据飞灰温度范围划分,可分为熔渣,高温沉积灰,低温沉积灰。(2)根据积灰的强度,可分为松散性积灰和粘结性积灰。 积灰是个复杂的物理化学过程,是目前垃圾焚烧炉运行中的重要影响因素。探讨积灰的形成和抑制方法对于垃圾焚烧炉的安全运行具有重要的意义。 制约锅炉运行周期最严重的问题是:尾部烟道受热面积灰严重。通常情况下垃圾焚烧炉运行20天左右,在尾部烟道受热面可观察到显著的积灰现象,最严重的时候,30天左右需要停炉清灰一次。高温烧结灰,属于粘结性积灰。它主要是在管道迎风面形成并沿着气流方向生长。这种积灰会引起管束阻力不断地迅速增长,直到烟道完全堵塞,被迫停炉。积灰底层相当坚硬密实,具有很高的烧结强度。外层积灰较内层松散,灰粒间存在孔隙结构。积灰整体呈梳状,硬而脆,形成后难以用吹灰器清除。 锅炉尾部烟道受热面积灰会引起很多问题,主要有经济性和安全性两个方面,积灰会降低炉内受热面传热能力,增加传热阻力,降低锅炉经济性;在高温烟气作用下,积灰会与管壁发生复杂的化学反应,形成高温腐蚀;使锅炉连续运行周期缩短;积灰清除困难,增加工人劳动强度。 1.积灰的成分分析 飞灰中的碱金属元素比较高。而水溶性的碱金属化合物在高温区中会发生气化,

气化的碱金属化合物与挥发性氯结合形成了碱金属氯化物。当烟气中有足够的硫存在时,大部分碱金属氯化物会和硫化物发生反应生成硫酸盐。对于炉内高温受热面的积灰来说,硫酸钠与硫酸钙或钠,钙与硫酸盐的共晶体是形成粘性灰沉积的基本物。硫酸钠的熔点(888oC)低于硫酸钾(1027oC),因此在碱金属化合物型积灰的形成过程中,起主要作用的是Na2SO4,它常构成灰沉积物中的液相成分。凝结后的Na2SO4吸收烟气中的SO3,并与受热面上及沉积物中的Fe2O3进一步反应,生成碱金属复合硫酸盐,如Na3Fe(SO4)3。其熔点很低,只有600oC左右,而高温对流受热面的壁温可达650oC~700oC左右,因此生成的碱金属复合硫酸盐可处于熔融态,并作为一种粘性基覆盖在管道表面上。这是管道表面上形成的积灰的初始原因。形成后的表面具有粘性,能进一步捕捉飞灰。气化的碱金属成分在凝结过程中,颗粒间的接触面积增大,有时候伴随着液相的存在,从而也为飞灰间的快速烧结提供了条件。同时由于尾部烟道受热面管束设计间隙较小,管束阻力会不断地迅速增长,直到烟道完全堵塞,被迫停炉。 2.影响烟气携带灰份的因素: 城乡接合统筹收集的垃圾中水分、灰分较大,其中水分为25%~50%,灰分为15%~30%,同时还富含有大量生物质,生物质中碱金属含量较高,此外有塑料、橡胶等有机制品。这给垃圾焚烧带来了极大的困难。焚烧炉一次风量越大、一次风压越高、炉膛负压越大,那么烟气携带飞灰就越多。负荷越高,烟气量也就越大,所携带的灰分也就越多。翻动炉排翻动频率越高,烟气扬析所带的灰分也就越大。高温炉渣落入水冷出渣机中的瞬间会产生大量的水蒸气,这时炉内会产生极大的正压,为保持炉内负压,引风机就会开大,烟气所携带的灰分也就变大。给推料器平台与顺推炉排之间的落差,顺推炉排相互间的落差,垃圾中的细灰在燃烧过程中,经过这两个“落差”时,都会被风烟带走,设计的落差越大,带走飞灰的可能性越大。

垃圾焚烧炉尾部受热面积灰原因分析及措施

垃圾焚烧炉尾部受热面积灰原因分析及措施 高攀峰 摘要:本文主要针对垃圾焚烧炉普遍存在焚烧过程中出现的尾部烟道受热面积灰问题,分析了其积灰主要产生的原因,并结合本厂实际情况拿出了部分措施,为国内垃圾焚烧炉的工作者提供参考。 关键词:积灰,焚烧,生活垃圾,乙炔,腐蚀 作者简介:高攀峰(1980-),男,湖北武汉人,武汉电力职业技术学院电厂热能动力专业,2008-2011年任光大环保能源(江阴)有限公司锅炉专工,现为漳州环境再生能源有限公司锅炉专业工程师。 基金项目:无;(本文系光大环保能源(江阴)有限公司技改成功成果。) 一.引言: 生活垃圾焚烧处理具有占地少,处理快速,减量化显著,无害化彻底以及可回收余热等优点,在世界各国得到了越来越广泛的应用。但是,垃圾成分复杂多样,含水量高,焚烧过程中容易在受热面上形成积灰。 “积灰”是指温度低于灰熔点时灰沉积在受热面上的积聚,多发生在锅炉的烟道受热面上。积灰通常可按如下标准进行分类: (1)根据飞灰温度范围划分,可分为熔渣,高温沉积灰,低温沉积灰。 (2)根据积灰的强度,可将其分为松散性积灰和粘结性积灰两种。 积灰是个复杂的物理化学过程,是目前垃圾焚烧炉运行中的重要影响因素。探讨积灰的形成和抑制机理对于垃圾焚烧炉的安全运行具有重要的意义。 二.垃圾焚烧炉尾部受热面积灰情况 光大环保能源(江阴)有限公司自运行以来,制约锅炉运行周期最严重的问题是:尾部烟道受热面积灰严重。通常情况下垃圾焚烧炉运行20天左右,在尾部烟道受热面可观察到显著的积灰现象,最严重的时候,30天左右需要停炉清灰一次。图1是我公司垃圾焚烧过程中形成的积灰为高温烧结灰,属于粘结性积灰。它主要是在管子迎风面形成并沿着气流方向生长。这种积灰会引起管束阻力不断地迅速增长,直到烟

造成锅炉结渣的原因及预防措施示范文本

造成锅炉结渣的原因及预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

造成锅炉结渣的原因及预防措施示范文 本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 (1)锅炉结渣,也叫结焦,指灰渣在高温下粘结于受热 面、炉墙、炉排之上并越积越多的现象。 燃煤锅炉结渣是个普遍性的问题,层燃炉,沸腾炉, 煤粉炉都有可能结渣,由于煤粉炉炉膛温度较高,煤粉燃 烧后的细灰呈飞腾状态,因而更易在受热面上结渣。 结渣使受热面吸热量减少,降低锅炉的出力和效率; 局部水冷壁管结渣会影响和破坏水循环,甚至造成水循环 故障;结渣会造成过热蒸汽温度的变化,使过热器金属超 温;严重的结渣会妨碍燃烧设备的正常运行,甚至造成被

迫停炉。 (2)造成结渣的原因是: ①煤的灰渣熔点低;②燃烧设备设计不合理;③运行操作不当。 (3)发现锅炉结渣要及时清除,进行“打焦”,打焦应在负荷较低,燃烧稳定时进行。打焦人员应注意防护和安全。 (4)预防结渣的措施: ①在设计上,要控制炉膛燃烧热负荷,在炉膛中布置足够受热面,控制炉膛出口温度使之不超过灰渣变形温

对煤粉炉结渣_积灰及其影响的认识

对煤粉炉结渣、积灰及其影响的认识 Slagging and Ash Fouling of Pulverized Coal 2fired Boiler and Their Impacts 东南大学 盛昌栋 (南京210096) 收稿日期:1997206210 【摘要】 结渣、积灰是我国燃煤电站锅炉中广泛存 在的问题。本文简要论述了结渣、积灰对锅炉运行的危害,着重强调了轻度的结渣、积灰对锅炉经济性的影响。在此基础上对我国目前急需进行的相关研究课题作出建议。【关键词】 煤粉锅炉 结渣 积灰 煤中的矿物质和无机成份经炉内燃烧后变成煤灰。煤灰沉积到受热面上即形成结渣和积灰。结渣和积灰轻则影响锅炉的传热和正常运行,重则导致降负荷甚至意外停炉,严重影响锅炉运行的安全性和经济性。 ,它首先取决于煤质,而研究表明,现有大机组用煤约有半数属易结渣煤,主要动力煤产区也富藏低灰熔点煤种。此外,动力用煤入洗率低,大量使用高灰、高硫煤的现状一时还难以改变。除煤质外,炉膛结渣还与炉膛结构特性、燃烧器形式与布置、运行方式以及防犯措施等因素有关。近年来,低NO X 燃烧器的使用,为设计运行时防止渣的产生提出了新课题。 积灰一般是指发生在锅炉水平和尾部烟道中对流受热面上的灰沉积。虽然国内对专门因积灰引起的运行问题的报道很少,但诸如过热器、再热器的局部超温、腐蚀、爆管,省煤器的局部磨损,空气预热器的积灰、腐蚀,烟道阻力大,炉膛负压不够等问题却频繁发生,而积灰正是引起这些问题的主要原因之一。 在采用结渣、积灰防犯措施方面,在设计时因设计依据不足,主要是煤质特性数据不足,导致措施的针对性水平不高。如对于结渣,我国通常是根据灰熔融特性温度进行控制。虽然灰熔点用于预报煤的结渣趋势的准确率可达80%,但毕竟还有20%的失误率。而结渣取决于煤中特殊矿物,如黄铁矿在炉内的行为。因而仅依据灰熔融特性温度所设计的炉膛结构参数及防犯措施必然存在问题。对于积灰,特别是高温积灰也同样因缺乏必要的煤灰和矿物成份数据而不能恰当地采取针对性措施。 在运行中对防犯措施的使用重视不够,也是结渣积灰多发的原因。如吹灰器的投用率普遍较低,平均投用率仅为36%,即使是500MW 以上的机组也不过74%,因而未能充分发挥其在防止灰沉积和节能方面的作用。此外,实际使用煤质与设计煤质的差异、煤质多变的广泛存在,也使得设计时所采用措施的针对性水准大大降低。 长期以来,人们对严重结渣、积灰的危害已形成共识,但对相对轻度(不致于降负荷和停炉)的结渣、积灰的影响,特别是在其经济性方面影响认识不足。本文的目的在于加深这方面的认识。 1 轻度结渣、积灰对锅炉运行经济性的影响 一般认为,对结渣而言,厚度小于215mm 的灰沉积是轻度的,表现为具有锐利尖角的疏松灰沉积,还未发展到熔融和蠕动;而对轻度积灰,其厚度相对于轻度结渣要小得多,是松散的,还未发生烧结或粘结。轻度的结渣、积灰因不妨碍锅炉正常运行,更不会危及安全性,其对经济性的影响在我国还未引起足够重视。 一台300MW 锅炉,其燃煤量约3000t d (热值大于20MJ kg ),即使所用煤的灰分仅为15%(已经较低了),仍有450t d 的煤灰产生。因此随时效作用,只要极小比例的灰分沉积就会产生巨大影响。而事实上,保持受热面清洁是不可能的,即使燃用不易结渣和积灰煤种也难例外。 轻度结渣和积灰对锅炉运行的影响首先体现在传热方面。从烟气侧到汽水侧的传热过程中,沉积物的导热系数较其它环节介质小得多(见附表),因而所引起的附加热阻在受热面总传热热阻中占主导地位,如得不到及时清除,必将显著地影响传热。附图所示表明:当受热面积有3mm 疏松灰或10mm 熔融渣时,就可造成炉膛传热量下降近40%,相应炉 — 21—1997年第9期 中 国 电 力 第30卷

相关主题
文本预览
相关文档 最新文档