当前位置:文档之家› 不同温度下橡胶的动态力学性能及本构模型研究

不同温度下橡胶的动态力学性能及本构模型研究

不同温度下橡胶的动态力学性能及本构模型研究
不同温度下橡胶的动态力学性能及本构模型研究

第22卷 第1期2007年2月

实 验 力 学

J OU RNAL OF EXPERIM EN TAL M ECHANICS

Vol.22 No.1

Feb.2007

文章编号:100124888(2007)0120001206

不同温度下橡胶的动态力学性能及本构模型研究3

王宝珍1,胡时胜1,周相荣2

(1.中国科学技术大学中国科学院材料力学行为和设计重点实验室,安徽合肥230026;

2.中国船舶重工集团上海船舶设备研究所,上海200031)

摘要:利用带有温度调控装置的SHPB(Split Hop kinson Pressure Bar)试验装置和岛津材料试验机,测定了CR橡胶在不同温度(-20℃~50℃),不同应变率(5×10-3/s~3×103/s)条件下的应力应变曲线。结果表明:CR橡胶的力学性能具有温度敏感性和应变率敏感性,两者有一定的等效性,且在动态条件下,-20℃时的应力应变曲线表现出向“玻璃态”转变的特性。本文在以前研究者提出的率相关本构模型的基础上进行了改进,同时考虑了温度效应的影响,提出了一个能描述CR橡胶在不同温度和应变率下的一维压缩力学行为的本构模型,该模型和试验数据有很好的一致性,为数值模拟提供了重要的依据。

关键词:橡胶;SH PB;温度效应;应变率效应;玻璃化转变温度

中图分类号:O347;TQ33.7+3 文献标识码:A

0 引言

橡胶属于一种高聚物材料,具有高弹性、低阻抗、粘弹性等力学性能,在汽车、船舶、电子、建筑及机械工业等行业中常用作冲击吸能和抗震材料,具有重要的社会价值和经济价值。但橡胶材料的力学性能会受到环境温度和应变率的影响,且两者还存在一定的等效关系。不仅如此,随着温度和应变率的变化,橡胶材料还可呈现出三种不同的力学形态,即:粘流态、橡胶态和玻璃态。一旦力学状态发生改变,其良好的力学性能也无法体现,使用价值就会受到很大的影响。因此研究橡胶在不同温度、不同应变率下的力学性能具有十分重要的意义。

橡胶材料在变温、低应变率时力学性能已经有了大量的研究。近来,SH PB技术的广泛应用,橡胶材料高应变率下力学性能及本构模型的研究也受到很大的关注,卢芳云[1]、Bo Song[2]等在室温下对橡胶材料做了大量的动态力学试验,解决了橡胶由于低阻抗材料,透射信号弱,应力很难达到均匀性等试验问题,但橡胶材料高应变率下非室温的试验数据还很缺乏。

V.P.W.Shim,L.M.Yang等[3]提出了一个描述橡胶粘超弹性的本构模型,Bo Song[4]等将应变能函数和描述粘弹性的松弛函数相联系,提出了一个率相关的材料模型,描述EDPM橡胶受压和受拉时的应力应变行为。发现常温下理论与试验的结果都符合得很好,但没有考虑温度的影响。

本文采用改进的带温控箱的SHPB装置(图1)对橡胶在不同环境温度下的动态力学性能进行试验研究。并对Bo Song的模型进行改进,用来描述CR橡胶在不同温度不同应变率下的力学性能。

1 试验方案

由于橡胶材料低阻抗、低波速的特点,传统的Hop kinson技术不能获得有效可用的结果。针对这3收稿日期:2006212228;修订日期:2007202207

通讯作者:胡时胜(1945-),男,教授。主要研究领域:材料动态力学性能。E2mail:sshu@https://www.doczj.com/doc/8c13799767.html,

图1 带有温控装置的SHPB 设备简图Fig.1 Schematic of the SHPB (Φ14.5)system with temperature controller

一问题,本次试验选用波阻抗低的铝杆,入射波采用整形技术,使波形上升沿变缓,并针对不同的应变率采用不同的整形方法。入射波的数据由贴在入射杆上的电阻应变片采集,而微弱的透射波信号则采用灵敏度系数高的半导体应变片(其灵敏度约为普通电阻应变片的50倍)采集。CR 橡胶试件采用直径为8mm ,厚度为1mm ,较薄的厚度是为了保证应力能尽快达到均匀。试验中,为了减小摩擦力的影响,试件两端涂上薄薄的一层凡士林以起到润滑作用。温度控制时,考虑到橡胶的导热系数较低,要使试件达到所需的试验温度,温控箱的温度稳定后需等待数分钟再进行动态冲击。试验中透射杆的应变片贴

在离杆-试件交界面500mm 的位置,热源对应变片的信号基本没有影响[5],且在(-20℃~50℃

)温度范围内,铝杆的模量基本没有变化,因此也可以忽略温度梯度场对波传播的影响[6]。

为了比较,还对橡胶材料做了应变率为0.0005/s 的准静态试验,采用的试验装置是岛津万能试验机,也选用了与动态试验相对应的五种温度:-20℃,-10℃,0℃,-20℃,50℃,采用的试件尺寸直径为10mm ,厚度为5mm 。

2 结果与分析

2.1 试验结果

通过试验得出同温度不同应变率下的应力应变曲线和同应变率不同温度下的应力应变曲线如图2、图3。

从图2、图3可以看出:应变率提高或温度降低,橡胶的流动应力、屈服强度和松弛模量(即割线模量)也相应增加,表现出明显的应变率和温度效应,两者有一定的等效性。

比较图2中(a )~(e )可以看出,动态的应力应变曲线偏离准静态应力应变曲线的程度受温度的影响十分明显,温度愈低,偏离愈大。从准静态动态的应力应变曲线的急剧变化,表现出了从“橡胶态”向“玻璃态”转变的力学行为。

比较图3(a )~(e )可以看出,温度对准静态情况下流动应力的影响比动态要小得多,而四种不同应变率的动态应力应变曲线表现出更强的温度效应。在三种动态压缩条件下,温度从-10℃下降到-20℃时,应力应变曲线变化显著,表现出向“玻璃态”转变的特性,即动态情况下,-20℃与其玻璃化转变温度接近。

从图2、图3还可以看出,准静态时应力应变曲线保持着橡胶材料特有的凹向上的特征。而动态时的应力应变曲线,随着应变增加到一定程度,一些曲线中的应力反而呈现了不大的下跌,即所谓软化现象,高应变率下的这种软化现象可用文献[7]的理论来解释,由于材料的粘性耗散性质使得在变形过程中有相当一部分能量被耗散掉,在绝热条件下,当这部分耗散能完全转化为热能时,就会使材料的温度上升。而温度的升高又会导致材料弹性模量和粘性系数的改变,应变率越大,热-力耦合效应也就越明显,使得在高应变率下应力反而有下降的趋势,出现软化现象,且表现出更强的温度效应。

2.2 温度和应变率相关的本构模型

Bo Song [4]等将应变能函数和松弛函数联系起来,提出了一个描述橡胶材料单轴冲击压缩和拉伸时

2 实 验 力 学 (2007年)第22卷 

图2 某一温度下,CR 橡胶不同应变率下真实应力应变曲线Fig.2 True stress 2strain curves of CR rubber at 5different strain rates at a certain temperature

的本构模型,如图4所示。其中应变能函数部分用两个

非线性弹簧表示,用来表征橡胶材料的非线性大变形行

为,而松弛函数部分用一个Maxwell 体表示,用来表征橡

胶材料的粘弹性行为。

假定橡胶材料不可压,其一维应力下的应力应变关系用应变能函数形式可表述为:σhy per =2λ2-1λ5U 5I 1+15U λ5I 2

(1)I 1和I 2为应变不变量;λ为伸长率;U 为应变能函数。

λ=1+ε(2)

I 1=λ2+2λ I 2=1λ

2+2λ(3)这里应变为工程应变,应力为真实应力,取压缩为负。

各向同性不可压缩材料的应变能函数可以表示为以

下各项的和:

U =

∑N i +j =1C ij (I 1-3)i (I 2-3)j (4)

这就是Rivilin 所推导的橡胶应变能密度函数,也是人们引用较为频繁的橡胶基本模型,许多有限元分析软件如ANS YS 和ABAQU S 向用户推荐的计算橡胶类材料的应变能函数形式,都是基于Rivilin 级数一次、二次和三次的完整幂级数。这里,我们选取一次完整幂级数形式,即取N =1,可得到Mooney 方程,如下:

U =C 10(I 1-3)+C 01(I 2-3)

(5)将(5)式代入(1)式中,可以得到一个基于应变能函数的超弹性本构模型

σhy per =21-1λ3(C 10λ+C 01)(6)

3第1期 王宝珍等:不同温度下橡胶的动态力学性能及本构模型研究

(e ) ε≈3×103(1/s )

图3 某一应变率下,CR

橡胶不同温度的真实应力应变曲线

Fig.3 True stress 2strain plots of CR rubber at 5different

temperatures at a certain strain

rate 图4 率相关本构模型

Fig.4 Strain 2rate 2independent

constitutive model

C 10和C 01为模型参数。考虑到准静态时的温度效应,将(6)进行改进,加进温度效应项,可得到:

σhy per =21-1λ3(C 10λ+C 01)(1-m (T -T R ))(7)

这里m 为模型参数;文中取T R =293K ,用(7)式来描述CR 橡胶在准静态时的非线性大变形超弹性力学行为。而对线性粘弹性材料来说,一般用如下公式来描述其本构行为:

σvisco =∫

t -∞<(t -τ)d ε(τ)d τd τ(8)<(t )=∑N

i =1E i exp -t -τθi

(9) 式(9)用N 个Maxwell 单元并联来描述粘弹性材料的力学行为,式中E i 代表第i 个Maxwell 体弹4 实 验 力 学 (2007年)第22卷 

性单元的模量;θi 代表粘壶的松弛时间。当材料在很宽的温度和应变率范围加载时,E i ,θi 还会与温度应变率相关。ZW T 模型[8],取N =2,即用两个Maxwell 单元并联,再附加一应力平衡项,已被成功应用于描述多种热塑性和热固性高聚物材料在应变率范围10-4~103/s 的粘弹性力学行为,其中两个Maxwell 体分别用来描述高应变率和低应变率时的粘弹行为。

这里我们取N =1,即用一个Maxwell 体来描述橡胶在高应变率下的粘弹性行为。而对准静态则用超弹性模型来描述。杨黎明[9]等将超弹性模型和粘弹性模型作简单相加,得到一个坐标无关的粘超弹性本构模型,此处采用类似处理方法,将(7)式与(8)式相加,并假定应变率恒定,则可以得到:

σtrue =2λ1-1λ

3(C 10λ+C 01)(1-m (T -293))+E v εθ1-e -ε εθ(10) 准静态时的温度效应仅由第一项引起,此时温度效应有,但不是很明显,橡胶主要表现出超弹性特性。而高应变率时应变率效应和温度效应主要是由第二项引起的,两种效应都很明显,并具有阶段性,这种阶段性是由于橡胶因温度和应变率影响呈现出不同的力学状态而产生的。

从图2还可发现,随着应变的不同,应变率敏感程度也不同,为了描述这种应变相关的应变率效应,在(9)式中应变能函数部分引入应变率相关项,用来描述大应变时的应变率效应。而粘弹性项用来描述小应变时的应变率效应。E v 与θv 均为温度和应变率的函数。即:

σtrue =2λ1-1λ

3(C 10f 1( ε)λ+C 01f 2( ε))(1-m (T -293))+E v ( ε,T ) εθ( ε,T )1-e -ε εθ( ε,T )(11)式(11)中各温度和应变率相关项可以用如下形式来表述:

C 10f 1( ε)=A 0+A 1 ε ε0

α(12)C 01f 2( ε)=B 0+B 1 ε ε0+B 2 ε ε02+B 3 ε ε03(13)E v ( ε,T )=C 1log ε εr

+C 2T -260T -260+C 3(14)θ( ε,T )=D 1 ε ε0

β(1-D 2T )(15)其中A 0,A 1,B 0,B 1,B 2,B 3,C 1,C 2,C 3,D 1,D 2,α,β为模型参数,并取 ε=1/s 。用(11)式对CR 橡胶在五

种应变率(5×10-3/s ,5×102/s ,1×103/s ,2×103/s ,3×103/s ),四个温度(50℃,20℃,0℃,-10℃

)下实测的应力应变曲线进行最小二乘法拟合,可以得到模型参数(表1)。从图2(b )~(e )发现模型与试验结果有很好的一致性,说明该模型能很好地描述CR 橡胶一维压缩条件下温度和应变率相关的粘弹性力学行为。但是我们用该模型对-20℃时高应变率下的试验数据进行拟合时,发现很难得到满意的结果,故这里未给出-20℃时的拟合结果。从前面的分析可知,这是因为-20℃接近CR 橡胶的玻璃化转变温度。

表1 CR 橡胶试验数据拟合得到的模型参数

Tab.1 Material model parameters derived f rom experiments

Parameter

A 0(MPa )A 1(MPa )

B 0(MPa )B 1(MPa )B 2(MPa )B 3(MPa )

C 1(MPa )C 2(MPa )CR

-1.5545 4.2200-0.3121-0.0051 3.2328e -6-5.5234e -1080.31-232.62Parameter

C 3(K )

D 1(μs )D 2(1/K )αβ εr (/s )m CR 10.0829505.430.00310.0656-0.6713 2.140.0059

3 结论

本文利用带温控装置的Hop kinson 压杆,在不同温度下(-20℃~50℃

)对CR 橡胶进行了冲击压缩试验,发现CR 橡胶具有温度和应变率敏感性,且动态条件下,-20℃时应力应变曲线表现出向“玻璃态”转变的力学特征。提出了一个描述橡胶在不同温度和应变率下的单轴压缩应力应变行为,发现理论和试验有很好的一致性。

5第1期 王宝珍等:不同温度下橡胶的动态力学性能及本构模型研究

6 实 验 力 学 (2007年)第22卷 参考文献:

[1] 赵习金,卢芳云,林玉亮.硅橡胶的动态压缩试验和力学性能研究[J].高压物理学报,2004,18(4):328~332

(ZHAO Xijin,L U Fangyun,L IN Yuliang.Research on dynamic compressive testing and mechanical properties of silicon rubber.Chinese Journal of High Pressure Physics,2004,18(4):328~332(in Chinese))

[2] Song B,Chen W N.One2Dimensional Dynamic Compressive Behavior of EPDM Rubber[J].Journal of Engineering

Materials and Technology,2003:294~301.

[3] Shim V P M,Yang L M,Lim C T,et al.A Visco2Hyperelastic Constitutive Model to Characterize Both Tensile

and Compressive Behavior of Rubber[J].Journal of Applied Polymer Science,2004,92:523~531.

[4] Song B,Chen W N,Ming Cheng.Novel Model of Unixial Strain2Rate2Dependent Stress2Strain Behavior of

Ethylene2Propylene2Diene Monomer Rubber in Compression or Tension[J].Journal of Applied Polymer Science, 2002,92:1553~1558.

[5] 夏开文,程经毅,胡时胜.SHPB装置应用于测量高温动态力学性能的研究[J].实验力学,1998,13(3):307~313

(XIA Kaiwen,CH EN G Jingyi,HU Shisheng.Application of SHPB Apparatus to the Measurement of High Temperature Dynamical Mechanical Behavior of Materials.Journal of experimental mechanics,1998,13(3):307~313(in Chinese))

[6] 工程材料实用手册编辑委员会.工程材料实用手册[S].北京:中国标准出版社,1988:240(Editing Committee of

Engineering Material Application Manual.Engineering Material Application Manual.Beijing:Standard Press, 1988:240(in Chinese))

[7] 张赟,黄筑平.剪切变形下非晶态高聚物的力学行为[J].应用数学和力学,2004,25(10):997~1006(ZHAN G

Yun,HUAN G Zhuping.Mechanical Behavior of Amorphous Polymers in Shear.Applied Mathematics and Mechanics,2004,25(10):997~1006(in Chinese))

[8] 王礼立,施绍裘,江瑛,黄得进.ZWT非线性热粘弹性本构关系的研究与应用[J].宁波大学学报(理工版),2000,13

(sup):141~149(WAN G Lili,SHI Shaoqiu,J IAN G Y ing,HUAN G Dejin.Research and Application of a nonlinear viscoelastic constitutive model(ZWT model).Journal of Ningbo University(NSEE),2000,13(sup):141~149(in Chinese))

[9] 杨黎明,Shim V P W.描述橡胶粘超弹性的一个本构模型[J].宁波大学学报(理工版),2000,13(sup):102~108

(Yang L M,Shim V P W.A Constitutive model describing Visco2hyperelasticity of rubber.Journal of Ningbo University(NSEE),2000,13(sup):102~108(in Chinese))

R esearch of Dynamic Mechanical B ehavior and Constitutive Model of Rubber U nder Different T emperatures

WAN G Bao2Zhen1,HU Shi2Sheng1,ZHOU Xiang2Rong2

(1.CAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China,Hefei230026, China;2.Shanghai Marine Equipment Research Institute,Shanghai200023,China)

Abstract:St ress2st rain curves of CR rubber under various st rain rates(5×10-3~3×103/s)and various temperat ures(-20℃~50℃)are obtained t hrough test s using t he Split Hop kinson Pressure Bar(SHPB)and Shimadzu universal testing machine equipped wit h temperat ure controllers.The obtained result s show t hat t he mechanical behavior of CR rubber is sensitive to temperat ure and st rain rate equivalently.Under dynamic loading condition,st ress2st rain curves at-20℃exhibit t he t ransition fro m“rubbery”to“glassy”.Based on t he rate2dependent p henomenological material model p resented by t he former researchers,a one2dimension constit utive equation containing t he temperat ure and strain rate effect is modified in t his paper.The good agreement s between t he model descriptions and t he experimental result s indicate t hat t he model is capable of accurately describing t he st rain2rate and temperat ure dependent mechanical behavior of t he CR rubber under uniaxial compressive loading conditions.The p roposed model is valuable for numerical simulation.

K eyw ords:rubber;SH PB;temperat ure effect;st rain rate effect;glass t ransition temperat ure

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

竹子的力学特性

选题:从力学观点分析竹子的力学特征 徐锴,材料1302,2013012057 【摘要】本文通过分析竹子的材料和构造,说明竹子的强度特性。并通过该种特性进行一些实际应用设计,本文选用建筑中的应用。 【关键词】竹子,强度,建筑,可持续发展 1、收集的常识【1】: (1)竹,禾本科,竹木质化,有明显的节,节间常中空,高大、生长迅速,竹枝杆挺拔,修长。(2)分布于热带、亚热带至温带地区,其中东亚、东南亚和印度洋及太平洋岛屿上分布最集中,种类也最多。 (3)在竹材研究方面,国内外对竹材的物理性质研究的较多,研究重点主要集中在密度、吸水率及干缩性等方面。密度在很大程度上决定着竹材的力学性质,密度主要取决于纤维含量、纤维直径及细胞壁厚度,密度随纤维含量增加而增加。 2、分析竹子强度特性【2】 相比较于钢材,竹子体轻,但是硬度大。根据实验测定, 竹材的形变量非常小, 弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa。特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半。虽然钢材的抗拉强度为一般竹材的2.5~3倍,但若按单位重量计算抗拉能力,则竹材要比钢材强2~3倍。 3、竹强度大的力学分析 3.1 空心圆截面的强度分析【4】

(1)根据化工设备机械基础的弯曲强度理论【4】, 杆件强度主要指标是弯曲应力。弯曲强度条件为 ][W M max max σσ≤=。 要提高杆件的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料。,实心圆截面和空心圆截面的抗弯截面模量分别是 3d 321W π=实)1(32 1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。2 1D D = α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时 )(2122D -D 4 1d 41ππ=或212D -D d = 则11-1-1D 32 1d 321W W 22433>+==α ααππ)(空实 (1)根据以上分析, 空心圆截面杆的抗弯强度比同样截面积的实心杆大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大。 例如, 当α= 0。 7 时, 它的抗弯强度比同样重量的实心圆截面大2倍。 因为, 杆件抗弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用。 若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度。 (2)在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面的截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。 3.2 材料分布的强度分析 (1)由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点:竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。 (2)对于抗剪,竹节又起到了关键的作用。坚硬实心的竹节将竹身分成小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪力能力。 3.3 阶梯状变截面的强度分析 (1)竹子在风载作用下各段抵抗弯曲变形能力基本相同, 相当于阶梯状变截面杆, 是一种近似的“等强度杆”。 (2)因为在风力作用下, 沿杆自上而下各截面的弯矩越来越大。 竹子根部所受弯矩最大, 因而根部最粗, 自下而上各截面弯矩越来越小, 竹子也就越来越细。 (3)另外, 竹节不仅能够增强竹子的抗弯强度, 同时,能大大地提高竹子横向的抗挤压和抗剪切的能力。 4、竹子最为建筑用材在实际中的应用 4.1 背景: 中国是世界上最大的产竹国。竹子生长快,成材早产量高、用途广。据竹材研究者介绍,竹子的生长速度非常快,比其他木材的生长速度都要快。竹子最快的生长速度是24小时长长

氯化丁基橡胶阻尼材料动态力学性能的影响因素研究

氯化丁基橡胶阻尼材料动态力学性能的影响因素研究 孙志勇1马卫东1张鲲1孙国华1马丽华1杜文泽2 (1.中国兵器工业集团第五三研究所,济南 250031;2.总装备部装甲兵驻济南地区军事代表室,济南 250031) 摘要利用DMA242热机械分析仪,研究了增粘树脂类型、高耐磨炉黑用量、测试频率等因素对氯化丁基橡胶阻尼材料动态力学性能的影响。结果表明,增粘树脂对材料动态力学性能具有显著的影响,加入3#增粘树脂材料的损耗因子峰值最大,损耗因子峰值温度最高;随着高耐磨炉黑用量增大,材料的损耗因子峰值降低、损耗因子峰值温度升高;随着测试频率由3.33Hz到1.66Hz逐渐减小,材料的损耗因子峰值温度逐渐降低,损耗因子峰值逐渐减小。 关键词氯化丁基橡胶损耗因子增粘树脂高耐磨炉黑测试频率 目前,粘弹性阻尼材料仍以橡胶型基材为主,其中丁基橡胶由于分子链上带有许多侧甲基,弹性滞后较大,有明显的阻尼作用。丁基橡胶经氯化或溴化后,分子极性提高,除了具有与丁基橡胶类似的优良性能外,还具有反应性高、硫化速度快和粘合性能好等特点,因而工程上常用丁基橡胶的改性胶种,即氯化丁基橡胶或溴化丁基橡胶代替丁基橡胶制备阻尼材料。五三所研制的氯化丁基橡胶阻尼材料目前已在风能设备上获得一定规模的应用,提高了风轮叶片的结构阻尼、工作寿命及工作可靠性;此外,该材料还可广泛应用于车辆、舰船的减振降噪,具有良好的应用前景。 当前,对丁基橡胶的研究已相对成熟,对氯化丁基橡胶虽然也进行了一定的研究[1~5],但对其动态力学性能影响因素的系统研究报道较少。 本文主要研究了增粘树脂类型、高耐磨炉黑用量、测试频率等因素对氯化丁基橡胶阻尼材料动态力学性能的影响,并对影响机理进行了分析。 1 实验部分 1.1 原材料 氯化丁基橡胶,美国埃克森公司; 增粘树脂,自制; 高耐磨炉黑,辽宁抚顺化工总厂; 硫化剂等其它助剂均为市售。 1.2 主要仪器设备 开放式炼胶机,XK—250,青岛双星橡塑机械有限公司; 橡胶真空硫化机,THP/V/150/3RT/2/PCD,东毓油压工业股份有限公司;

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

聚合物材料动态力学分析

聚合物材料动态力学分析 实验目的 1.了解DMA的测量原理及仪器结构 2.了解影响DMA实验结果的因素,正确选择实验条件 3.掌握DMA试样制备方法及测量步骤 4.掌握DMA在聚合物分析中的应用 实验原理 材料的动态力学行为是材料在振动条件下,即在交变应力下(或交变应变)作用下的所作出的力学相应。测试材料在一定温度范围内动态力学性能的变化即为动态热力学分析。 聚合物是粘弹性材料,研究聚合物的粘弹性常采用正弦性的交变外力,使试样产生的应变以正弦方式随时间改变,这种周期性的外力引起试样周期性的形变,应变始终落后应力一个相位。 δ=ε0E l sinω++ε0E"cosω+ 其中,E l = ζ0cosδ/ε0 ,与应变同相的模量,称为实数模量,又称贮能模量。 E" = ζ0sinδ/ε0 ,与应变异相的模量,称为虚数模量,又称损耗模量。 损耗角正切或损耗因子tanδ=E" /E l 原料及仪器 试样:PS 条件:DMA多级应变尺寸:10.00mm×10.22mm×4.2mm ,振幅:20μm,泊松比:0.35 实验仪器:美国TAQ800动态机械分析仪 模量范围:1KPa-3TPa 频率范围:0.01-200HZ 力值范围:0.001-18N 温度范围:-145-600℃ 应变分辨率:1nm 动态变形:±0.5-104μm 实验步骤 1.仪器及系统校准 2.试样的制备 a.对试样的总要求:表面光滑平整,无气泡,边缘精确平行、垂直,尺寸公差不超过 ±0.1%,湿度大于滞留溶剂的试样必须预先干燥。 b.根据试样模量大小选择受力方式,按照各测量方法,对照试样的尺寸要求制备试样。 c.选择测量方式遵循的原则。 3.根据测量方式选择相应夹具,将夹具固定在合金柱上,装载试样,在室温下进行应力- 应变扫描,确定线性弹性区域,从而选择正确的测试条件 4.测量试样尺寸 5.根据要求编辑测试条件 6.实验结束后,自动温度控制器停止工作

塑料橡胶常规力学性能测试实验

第二章塑料橡胶常规力学性能测试实验材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。 高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下: 1、试样制备 ⑴ 薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。 ⑵ 软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵氏A)。 ⑶ 模塑试样:按有关标准或协议模塑。 ⑷ 硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。 ⑸ 各向异性的材料应沿纵横方向分别取样。 2、试样外观检查 试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。 3、实验环境 温度:热塑性塑料为25 ± 2 C; 热固性塑料为25 ± 5 C。 湿度:相对湿度为65± 5%

材料力学性能实验(2个)讲解

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: s s A P = σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到 P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

高中物理动态力学分析

专题动态平衡中的三力问题图解法分析动态平衡 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 例1.1 如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G、斜面支持力F1、挡板支持力F2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F1的方向不变,但方向不变,始终与斜面垂直。F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F2。由此可知,F2先减小后增大,F1随增大而始终减小。 同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)

一种适合橡胶类材料的非线性粘弹性本构模型 (1)

第!"卷第#期应用力学学报$%&’!"(%’# +,-’)**! )**!年!)月!"#$%&%’()*$+,(-+..,#%/0%!"+$#!& !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !文章编号:!***.#/0/()**!)*#.**01.*2 一种适合橡胶类材料的非线性粘弹性本构模型" 安群力危银涛杨挺青 (华中科技大学武汉#0**1#) 摘要 借助非线性流变模型建立大变形情况非线性粘弹材料的本构关系,考虑到大多数橡胶类材料具有的几乎不可压缩性,以及体积响应和剪切响应的流变性能不同,将 变形梯度乘法分解为等容部分和体积变形部分,给出了一种适合橡胶类材料的非线 性粘弹性本构模型,并模拟了粘滞效应。对于极快或极慢的过程,该模型退化为橡胶 弹性理论;在小变形情况下退化为经典的广义3456,&&粘弹性材料。模型与热力学 第二定律相容,适合于大规模数值分析。 关键词:橡胶;粘弹性;有限变形;本构关系 中图分类号:70#2;8900文献标识码:: !引言 在橡胶结构的设计与分析中因橡胶类材料力学性能的复杂性使得数值方法起着越来越重要的作用[!]。目前,应用数值方法时缺乏适于大规模计算用的本构关系,本构模型成为解决问题的关键[);!*]。构造粘弹材料的本构模型,一种方法是从连续介质力学本构理论的基本原理出发,经过简化而得到[!*;!)]。另外一种常用的方法是基于内变量理论,借助于连续介质热力学和流变模型来确定材料的本构模型[#;/,!0;!<]。在通常的内变量理论中,自由能的构造、内变量的选取及演化方程的确定有一定的困难。 本文利用非线性流变模型,认为总应力等于弹性应力与非弹性应力的和,通过平衡应变能函数表述其演化方程,绕过了通常内变量理论的困难,在参考位形内建立了以=>%&4.?>@-AA%BB 应力和C@,,D应变表示的大变形非线性粘弹性本构关系,给出了一种适合橡胶类材料的非线性粘弹性本构模型,物理意义简明。在一定条件下模型可以退化为相应的弹性或线粘弹性模型,讨论了材料的粘滞现象。 "基金项目:国家自然科学基金资助项目(!/<0)*0*)来稿日期:)***.*#.*0修回日期:)***.!!.!1 万方数据 第一作者简介:安群力,男,!/<"年生,博士,华中科技大学力学系;研究方向:粘弹塑性理论及其应用E

氧化铝陶瓷材料力学性能的检测

实验二 氧化铝陶瓷材料力学性能的检测 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对 中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My =σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P max max 21σ?????圆形截面 16矩形截面 332D Pa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:

定性分析竹子的力学特性(红色推荐)

定性分析竹子的力学特性 结12,高鸣,2001010132 初次见到竹子的人大概都为竹子如此之细却能长那么高而感到惊讶,尤其是竹子多生长在南方,而且最茂密的季节是夏季,很难想象竹子在南方夏天的狂风骤雨中如何屹立不倒。笔者试图通过自己有限的一点知识,从竹子的结构出发浅谈竹子的受力优点。 先看一下竹子的结构有哪些特点。竹子的断面是圆环形,中空,一般直径6厘米,壁厚0.5厘米,大约每隔15厘米有一个实心坚硬的竹节。 对于空心固体的受力性能,意大利科学家伽利略曾经做过专门的研究,这里摘录如下:“人类的技艺(技术)和大自然都在尽情地利用这种空心的固体。这种物质可以不增加重量而大大增加它的强度,这一点不难在鸟的骨头上和芦苇上看到,它们的重量很小,但是有极大的抗弯力和抗断力,麦秆所支持的麦穗重量,要超过整株麦茎的重量,假如与麦秆同样重量的物质却生成实心的而不是空心的,它的抗弯和抗断力就要大大减低。”“实际上也曾经发现并且用实验证实了,空心的棒以及木头和金属的管子,要比同样长短同样重量的实心物体更加牢固,当然,实心的要比空心的细一些。人类的技艺就把这个观察到的结果应用到制造各种东西上,把某些东西制成空心的,使它们又坚固又轻巧。” 竹子在自然界中主要受自重荷载和风荷载。在自重荷载下(无风时),竹子相当于一根受压杆,根据欧拉公式,临界荷载:2 2)(l EI F Pcr μπ= ,对于竹子,E 是它的材料性能, 取决于竹纤维的强度,生长在土地上长度系数2=μ, 这些都是常数。除去长度因素外,还和截面抗弯刚度Pcr F EI 成正比。显然,在同样的重量下,把截面作成空心圆环对于提高抗弯刚度EI 是最有利的。计算表明,假如把竹子做成实心的,则其抗弯能力是原来的1/10。因此,竹子特有的空心圆环形的截面保证了它的受压整体稳定性,从而能提高其生长高度。那么竹子如何保证受压局部稳定性呢?竹节的作用此时就体现了。竹节所起到的作用与箱形截面柱中横向加劲肋是一样的,从而保证了竹子的受压局部稳定性。同时,竹节的存在也保证了竹子的抗扭能力,避免竹子发生扭转失稳。 在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。同时,由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点。竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。对于抗剪,竹节又起到了很关键的作用。坚硬实心的竹节将竹身分成小段小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪能力。举个例子,农业上小麦减产主要原因之一“倒伏”,就是小麦返青拔节时,由于雨水过多,生长迅速而拔节快,形成节与节之间间距大,减低了麦秆的抗剪能力,头重脚轻杆软倒伏于地。 从上面的分析可以看出,竹子的结构特点十分符合它在自然界中的受力需要。自然界中的许多动植物身上都有许多这样的特点,这些都是生物在进化过程中逐渐产生的有利于其生存的特点,受力优越性便是其中之一。

橡胶力学性能测试标准

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型)

聚合物动态力学性能的测定.

实验7 聚合物动态力学性能的测定 聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA ) 一、二、实验目的 了解动态力学分析的测量原理及仪器结构。了解影响动态力学分析实验结果的因素,正确选择实验条件。掌握动态力学分析的试样制备及测试步骤。掌握动态力学分析在聚合物分析中的应用。 实验原理 聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δ?σσ+=t (7-1) )900(0<<δ应变 t ?εεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。

式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。 图7.1 应力应变和时间的关系 将式(7-1)展开为: δ?σδωσσsin cos cos sin 00t t += (7-3) 即认为应力由两部分组成,一部分)cos sin (δ?σt 与应变同相位,另一部分)sin cos (0δ?σt 与应变相差2/π。根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即 t E t E ?εωεσcos ''sin '00+= (7-4) 此时模量是一个复数,叫复数模量*E 。 '''*iE E E += (7-5) 'E 为实数模量又称储能模量,表示材料在形变过程中由于弹性形变而储存的能量;''E 为虚数模量也称损耗模量,表示在形变过程中以热的方式损耗的能量。 ' ''tan E E =δ (7-6) 式(7-6)中,δtan 为损耗角正切或称损耗因子。 研究材料的动态力学性能就是要精确测量各种因素(包括材料本身的结构参数及外界条件)对动态模量及损耗因子的影响。 聚合物的性质与温度有关,与施加于材料上外力作用的时间有关,还与外力作用的频率有关。当聚合物作为结构材料使用时,主要利用它的弹性、强度,要求在使用温度范围内有较大的贮能模量。聚合物作为减震或隔音材料使用时,则主要利用它们的粘性,要求在一定

橡胶件的技术规范

橡胶件的技术规范 1 范围本标准规定了本公司各类产品中使用的橡胶件的技术要求、试验方法、检验规则、包装及贮存。本标准适用于橡胶件成品件的进货检验、型式检验、包装、贮存管理。 2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 533 硫化橡胶密度的测定 GB/T 1690 硫化橡胶耐液体试验方法 GB/T 3452.2 液压气动用O 型橡胶密封圈外观质量检验标准 GB/T3452.1 液压气动用O 型橡胶密封圈第1 部分:尺寸系列及公差 GB/T 3512 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验 GB/T 5723 硫化橡胶或热塑性橡胶试验用试样和制品尺寸的测量 GB/T 20739 橡胶制品贮存指南 GB/T 5721 橡胶密封制品标志、包装、运输、贮存的一般规定 GB/T 528 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 BS EN549 燃气器具、设备密封件和膜片用橡胶材料规范 NSF 61 饮用水系统部件健康影响 BS EN331 建筑物燃气供应设备用手动球阀和密封底部锥体旋塞阀ASME B16.33 压力在125PSI 以下燃气系统用手动金属制燃气阀门ASME B16.44 家用管道系统中使用的手工操作的金属气体阀门 CJ 50 瓶装液化石油气调压器 CJ/T 180 家用手动燃气阀门 HG/T 2807 城镇燃气调压器用橡胶膜片 Q/NZFJ30 液化石油气瓶阀 3 技术要求 3.1 通用技术要求 3.1.1 气味:无刺鼻气味; 3.1.2 外观:表面无气泡、无杂质、无飞边、无缺胶、无脱层、色泽一致、无局部缺陷; 3.1.3 尺寸:符合图纸要求;3.1.4 应采用耐工作介质的材料且材料应采用正料。

橡胶力学性能测试标准

橡胶力学性能测试标准公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法

荔枝果核力学特性分析及试验

万方数据

万方数据

万方数据

荔枝果核力学特性分析及试验 作者:程红胜, 李长友, Cheng Hongsheng, Li Changyou 作者单位:华南农业大学,工程学院,广州,510642 刊名: 农机化研究 英文刊名:JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH 年,卷(期):2009,31(12) 被引用次数:1次 参考文献(12条) 1.刘燕群中国荔枝产业发展现状、问题及对策[期刊论文]-世界农业 2008(03) 2.徐秉业;罗学富接触力学 1992 3.Mohsenin N N Physical properties of plant and animal materials 1970 4.王泽南;单明彻水果机械特性及损伤的研究 1986(03) 5.吴德光;蒋小明农产品压缩试验研究及其应用(Ⅰ)-压缩试验方法 1990(03) 6.周祖锷农业物料学 1994 7.戴晓红荔枝加工机结构设计原理分析[期刊论文]-包装与食品机械 1997(02) 8.王旭东荔枝去核机的设计[期刊论文]-农业机械学报 2005(09) 9.张林泉荔枝剥壳设备的研制[期刊论文]-包装与食品机械 2004(06) 10.陈震荔枝力学特性参数测试研究[期刊论文]-农机化研究 2008(09) 11.王旭东;朱立学;刘江清荔枝物理参数和机械特性的试验研究[期刊论文]-农机化研究 2007(12) 12.袁沛元;蔡长河荔枝加工现状与技术探讨[期刊论文]-中国热带农业 2005(25) 本文读者也读过(10条) 1.贾彦丽.温陟良.吕瑞江.段玉春.智福军.JIA Yan-li.WEN She-liang.LU Rui-jiang.DUAN Yu-chun.ZHI Fu-jun 无核小枣果核发育的解剖学研究[期刊论文]-华北农学报2007,22(z2) 2.陈震.徐凤英.李长友.卢顺成.CHEN Zhen.XU Feng-ying.LI Chang-you.LU Shun-cheng荔枝力学特性参数测试研究[期刊论文]-农机化研究2008(9) 3.陈震.李长友.洪英荔枝力学特性分析与测试[会议论文]- 4.宋慧芝.王俊.陈琦峰.严志权.Song Huizhi.Wang Jun.CHEN Qifeng.Yan Zhiquan梨动力学特性有限元分析[期刊论文]-农业机械学报2005,36(6) 5.徐永春.陈震农业物料力学测试平台系统设计[期刊论文]-现代农业装备2004(9) 6.张洋.王德成.王光辉.刘德旺.王书茂牧草种子机械化加工工艺的分析[会议论文]- 7.刘建军.宋建农.陆建伟.彭樟林.彭何欢.LIU Jian-jun.SONG Jian-nong.LU Jian-wei.PENG Zhang-lin.PENG He-huan大蒜物理力学特性的试验研究[期刊论文]-农机化研究2008(2) 8.杨晨升.马小愚.Yang Chensheng.Ma Xiaoyu农业物料动态力学特性的试验研究[期刊论文]-农机化研究2009,31(4) 9.刘圣勇.王淮东.康艳.李文雅.苏超杰.袁超.朱长河.LIU Sheng-yong.WANG Huai-dong.KANG Yan.LI Wen-ya.SU Chao-jie.YUAN Chao.ZHU Chang-he玉米秸秆成型燃料结渣特性试验与分析[期刊论文]-河南农业大学学报2006,40(6) 10.刘圣勇.李文雅.苏超杰玉米秸秆成型燃料结渣特性实验与分析[会议论文]-2006 引证文献(1条) 1.陈燕.蔡伟亮.邹湘军.徐凤英荔枝整果压缩力学特性试验[期刊论文]-安徽农业科学 2010(29)

不同温度下橡胶的动态力学性能及本构模型研究

第22卷 第1期2007年2月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.22 No.1 Feb.2007 文章编号:100124888(2007)0120001206 不同温度下橡胶的动态力学性能及本构模型研究3 王宝珍1,胡时胜1,周相荣2 (1.中国科学技术大学中国科学院材料力学行为和设计重点实验室,安徽合肥230026; 2.中国船舶重工集团上海船舶设备研究所,上海200031) 摘要:利用带有温度调控装置的SHPB(Split Hop kinson Pressure Bar)试验装置和岛津材料试验机,测定了CR橡胶在不同温度(-20℃~50℃),不同应变率(5×10-3/s~3×103/s)条件下的应力应变曲线。结果表明:CR橡胶的力学性能具有温度敏感性和应变率敏感性,两者有一定的等效性,且在动态条件下,-20℃时的应力应变曲线表现出向“玻璃态”转变的特性。本文在以前研究者提出的率相关本构模型的基础上进行了改进,同时考虑了温度效应的影响,提出了一个能描述CR橡胶在不同温度和应变率下的一维压缩力学行为的本构模型,该模型和试验数据有很好的一致性,为数值模拟提供了重要的依据。 关键词:橡胶;SH PB;温度效应;应变率效应;玻璃化转变温度 中图分类号:O347;TQ33.7+3 文献标识码:A 0 引言 橡胶属于一种高聚物材料,具有高弹性、低阻抗、粘弹性等力学性能,在汽车、船舶、电子、建筑及机械工业等行业中常用作冲击吸能和抗震材料,具有重要的社会价值和经济价值。但橡胶材料的力学性能会受到环境温度和应变率的影响,且两者还存在一定的等效关系。不仅如此,随着温度和应变率的变化,橡胶材料还可呈现出三种不同的力学形态,即:粘流态、橡胶态和玻璃态。一旦力学状态发生改变,其良好的力学性能也无法体现,使用价值就会受到很大的影响。因此研究橡胶在不同温度、不同应变率下的力学性能具有十分重要的意义。 橡胶材料在变温、低应变率时力学性能已经有了大量的研究。近来,SH PB技术的广泛应用,橡胶材料高应变率下力学性能及本构模型的研究也受到很大的关注,卢芳云[1]、Bo Song[2]等在室温下对橡胶材料做了大量的动态力学试验,解决了橡胶由于低阻抗材料,透射信号弱,应力很难达到均匀性等试验问题,但橡胶材料高应变率下非室温的试验数据还很缺乏。 V.P.W.Shim,L.M.Yang等[3]提出了一个描述橡胶粘超弹性的本构模型,Bo Song[4]等将应变能函数和描述粘弹性的松弛函数相联系,提出了一个率相关的材料模型,描述EDPM橡胶受压和受拉时的应力应变行为。发现常温下理论与试验的结果都符合得很好,但没有考虑温度的影响。 本文采用改进的带温控箱的SHPB装置(图1)对橡胶在不同环境温度下的动态力学性能进行试验研究。并对Bo Song的模型进行改进,用来描述CR橡胶在不同温度不同应变率下的力学性能。 1 试验方案 由于橡胶材料低阻抗、低波速的特点,传统的Hop kinson技术不能获得有效可用的结果。针对这3收稿日期:2006212228;修订日期:2007202207 通讯作者:胡时胜(1945-),男,教授。主要研究领域:材料动态力学性能。E2mail:sshu@https://www.doczj.com/doc/8c13799767.html,

相关主题
文本预览
相关文档 最新文档