当前位置:文档之家› 第6章 气动回路的设计及应用

第6章 气动回路的设计及应用

基本气动回路

基本气动回路 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

换向回路 单作用气缸控制回路气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向则靠其他外力,如重力、弹簧力等驱动。回路简单,可选用简单结构的二位三通阀来控制 常断二位三通电磁 阀控制回路 通电时活塞杆 伸出,断电时靠弹 簧力返回 常通二位三通电磁 阀控制回路 断电时活塞杆 缩回,通电时靠弹 簧力返回 三位三通电磁阀控 制回路 控制气缸的换 向阀带有全封闭型 中间位置,可使气 缸活塞停止在任意 位置,但定位精度 不高 两个二位二通电磁阀 代替一个二位三通阀 的控制回路 两个二位二通电 磁阀同时通电换向, 可使活塞杆伸出。断 电后,靠外力返回 双作用气缸控制回路 气缸活塞杆伸出或缩回两个方向的运动都靠压缩空气驱动,通常选用二位五通阀来控制 采用单电控二位五 通 阀的控制回路 通电时活塞杆 伸出,断电时活塞 杆返回 双电控阀控制回路 采用双电控电 磁阀,换向信号可 以为短脉冲信号, 因此电磁铁发热 少,并具有断电保 持功能 中间封闭型三位五通 阀控制回路 左侧电磁铁通电 时,活塞杆伸出。右 侧电磁铁通电时,活 塞杆缩回。左、右两 侧电磁铁同时断电 时,活塞可停止在任 意位置,但定位精度 不高 中间排气型三位五 通阀控制回路 当电磁阀处于中 间位置时活塞杆处 于自由状态,可由 其他机构驱动 中间加压型三位阀控制回路 电磁远程控制回路双气控阀控制回路

采用二位五通气控阀作为主控阀,其先导控制压力用一个二位三通电磁阀进行远程控制。该回路可 以应用于有防爆等要求的特殊场合 主控阀为双气控二位五通阀,用两个二位三通阀作为主控阀的先导阀,可进行遥控操作 当左、右两侧电磁铁同时断电时,活塞可停止在任何位置,但定位精度不高。采用一个压力控制阀,调节无杆腔的压力,使得在活塞双向加压时,保持力的平衡 采用带有双活塞杆的气缸,使活塞两端受压面积相等,当双向加压时,也可保持力的平衡 双 作用 气缸控制回路采用两个二位三通 阀的控制回路 两个二位三通 阀中,一个为常通 阀,另一个为常断 阀,两个电磁阀同 采用一个二位三通 阀的差动回路 气缸右腔始终 充满压缩空气,接 通电磁阀后,左腔 进气,靠压差推动 带有自保回路的气动 控制回路 两个二位二通阀 分别控制气缸运动的 两个方向。图示位置 为气缸右腔进气。如 将阀2按下,由气孔 管路向阀右端供气, 使二位五通阀切换, 二位四(五)通阀 和二位 二通阀串接的控制 回路 二位五通阀起 换向作用,两个二 位二通阀同时动 作,可保证活塞停 止在任意位置。当

真空吸附回路设计与气动元件选型

引言 CTP(Computer-to-plate)即脱机直接制版。CTP就是计算机直接到印版,是一种数字化印版成像过程。CTP直接制版机与照排机结构原理相仿。起制版设备均是用计算机直接控制,用激光扫描成像,再通过显影、定影生成直接可上机印刷的印版。计算机直接制版是采用数字化工作流程,直接将文字、图象转变为数字,直接生成印版,省去了胶片这一材料、人工拼版的过程、半自动或全自动晒版工序。以前CTP供版过程大部分靠人工来完成,而且版材位置容易摆放不准确,造成版材不同程度损伤,而且也大大增加了劳工费用。为了解决这一问题,提高CTP的自动化程度,我们在现有的CTP设备上面增加了一套外围自动供版设备,使供版更加的安全和效率,大大的省去了劳动力。该设备主要通过真空泵进行抽气,使抽气端达到真空负压,然后靠在版材附近的吸盘因真空引力来垂直吸附版材,同时排气端对上升一定角度的版材吹气,产生向上的气流,吹落可能连带吸起的版材或者衬纸。 真空泵吸附系统设计 一般真空吸附通过真空发生器进行吸附,如下图所示: 1-减压阀 2-真空供应电磁阀 3-气控换向阀 4-真空发生器 5-真空压力开关 6-过滤器 7-真空电磁破坏阀 8-消声器 9-工作缸

真空发生器系统原理图如图所示, 图中的PV 为供压口,真空供应电磁阀2 通电后,气控换向阀3 左端进气,压缩空气通过气控换向阀3 和真空发生器4 喷射,使真空吸取口Ⅰ产生负压吸住工件。当吸稳工件,真空度达到真空压力开关 5 所设定的压力时,则发出电信号,进行工作。当真空破坏电磁阀7 通电后(真空供应电磁阀2 同时断电),空气经真空破坏电磁阀7、密闭腔Ⅱ处进入真空吸附夹具密封腔,消除真空,释放工件。 但是由于我们要用真空泵来产生真空负压,并需要排气端对版材进行吹气,所以真空发生器无法满足要求。一般真空泵吸附物体的整个系统需要有过滤器,电磁阀,消声器等气动元件组成,为了满足真空泵抽气端吸气产生真空负压,排气端吹气产生正压,设计了2套不同气压回路,如图所示: 图1 图1这套回路主要有1-喷嘴、2-气泵、3-两位三通电磁阀、4-过滤器、5-气源、6-减压阀、7-压力表、8-单向阀、9-消音器、10-两位三通电磁阀、11-过滤器、12-吸盘组合、13-版材或者衬纸。当供版系统准备吸附版材时,2-真空泵和10-两位三通电磁阀通电工作,2-真空泵进行抽气,10-两位三通电磁阀换向。气体从12-吸盘进入,通过11-过滤器过滤掉外界气体中的杂质,防止气体的夹带的小颗粒物体损坏和堵塞后面的气动元件。然后推开9-单向阀,进入到6-减压阀,调节6-减压阀来控制回路中气体的压力,从来达到调节吸盘吸附力的效果。吹气时,3-两位三通电磁阀通电换向,气体由5-气源进入经过4-过滤器,对板材进行吹气;而12-吸盘处将不再进行抽气,8-单向阀防止气体回流,保持吸盘附近的回路的真空度。当供版过程完成时,10-两位三通电磁阀通电换向,由于1-吸盘处存在真空负压,气体将从9-消音器进入,调节吸盘中的气压,从而释放工件。为了防止泄气产生噪音加装了9-消声器,减轻整个系统的噪音。该回路的优点是可以调节流量和真空度,针对不同的吸附物体可以调节不同的吸附力,而且具有延时功能,能有效地对版材进行吹气;缺点是由于整个回路中各种气动元件容易产生泄露现象,回路比较复杂,系统协调程度要求比较高。

气动技术基本知识

一、气动技术基本知识 1. 气动技术中常用的单位 1个大气压=760mmHg =1.013bar =101kpa 压力单位换算 1N/㎡=bar 105-=1002.17-?kgf/m ㎡=1002.15-?kgf/c ㎡ 1kgf/c ㎡=0.1Mpa 2. 气动控制装置的特点 ⑴空气廉价且不污染环境,用过的气体可直接排入大气 ⑵速度调整容易 ⑶元件结构紧凑,可靠性高 ⑷受湿度等环境影响小 ⑸使用安全便于实现过载保护 ⑹气动系统的稳定性差 ⑺工作压力低,功率重量比小 ⑻元件在行程中途停止精度低 3. 气动系统的组成 气动系统基本由下列装置和元件组成 (1)气源装置——气动系统的动力源提供压缩空气 (2)空气处理装置——调节压缩空气的洁净度及压力 (3)控制元件 方向控制元件——切换空气的流向 流量控制元件——调节空气的流量 (4)逻辑元件——与或非 (5)执行元件——将压力能转换为机械功 (6)辅助元件——保证气动装置正常工作的一些元件 压缩机 a )气源装置 储气罐 后冷却器 过滤器 油雾分离器 减压阀 b )空气调节 油雾器 处理装置 空气净化单元 干燥器 其它

电磁阀 气缸 气压控制阀 带终端开关气缸 方向控制阀 机械操作阀 带制动器气缸 手动阀 气缸 带锁气缸 其它 带电磁阀气缸 其它 速度控制阀 C )控制元件 速度控制阀 d )执行元件 节流阀 摆动缸 回转执行件 逻辑阀 空气马达 管子接头 消音器 e )辅助元件 压力计 其它 二、空气处理元件 压缩空气中含有各种污染物质。由于这些污染物质降低了气动元件的使用寿命。并且会经常造成元件的误动作和故障。表1列出了各种空气处理元件对污染物的清除能力。 1.空气滤清器 空气滤清器又称为过滤器、分水滤清器或油水分离器。它的作用在于分离压缩空气中的水分、油分等杂质,使压缩空气得到初步净化。 2.油雾分离器

纯气动控制实例

纯气动应用实例 7.1冲压印字机 如图7.1所示,阀体成品上需要冲印P 、A 、B 及R 等字母标志。将阀体放置在一握器内。 气缸1.0冲印阀体上的字母。气缸2.0(B)推送阀体自握器落入一筐篮内。 7.2 清洗池 某盘形工件在一清洗池内清洗。一气缸推动盛满盘形工件的筐篮在清洗池内升降上下。 要求条件可采用二种程序完成清洗,第一种程序:操作者用手动完成容器的上、下运动;第二种程 序:操作者 手动产生起 动信号,经过一预先设定的时间后自行切断清洗操作。其具体位移—步骤图如图7.4所示,动作顺序如表7.1所示。在阀1.8切断前容器不停的进行上下摆动。

表7.1 顺序图 7.3 滚珠轴承的装配夹持器 在一装配在 线上装配滚珠轴 承。 滚珠轴承经零件装配后,利用一气压气缸1.0固定握住。气缸2.0(B)操作黄油压床使滚珠轴承充满黄油。因为在此装配在线需要装配不同尺寸的滚珠轴承,黄油压床的冲程速度须为可以调整。

控制顺序: 操作阀1.2(起动)使阀1.1在Z 接转。气缸1.0(A)外伸,压紧滚珠轴承。在气缸的外端点位置,操作阀1.12/2.2及因此通过梭动阀1.4使控制链1被自动保持。在同时一个讯号 送入阀2.1的Z 。使气缸2.0(B)外伸至前端点位置。操作阀2.3后开始回行运动。在阀1.9、阀2.3及1.7使回动阀1.5/2.6接转前,气缸2.0(B)继续产生摆动运动。压缩空气进入作动组件2.1的Y 。气缸2.0(B)回行至后端点位置。空气进入阀1.5/2.6及阀1.3/l.6的Z,使阀1.1排放。气缸1.0(A)再度回到后端点位置。阀1.8及1.10联合成为一安全措施。当气缸1.0(A)完全缩回时才能开始新的循环。 7.4 冲口器 夹持器在工件的孔端冲三个开口。 该设备的工作原理如图7.8所示。用手将工件放在夹持器内。起动讯号使气缸1.0(A)移送冲模进入长方形工件内。自此以后,气缸2.0(D)、3.0(C)及4.0(D)一个接一个推动冲头在工件孔内冲开口。在气缸4.0(D)的最后冲口操作完成后,所有三个冲糙气缸2.0(B )、3.0(C)及4.0(D)返回至它们的起始位置。气缸1.0(A)从工件抽回冲模,完成最后的运动。用手将已冲口工件从夹持器上拿出。该设备的位移一步骤图如图7.9所示,动作顺序如表7.2所示。

气动技术基本知识(精)

气动技术基本知识 1. 气动技术中常用的单位 1个大气压=760mmHg = =101kpa 压力单位换算 ' 1N/㎡=bar 105-=1002.17-?kgf/m ㎡=1002.15-?kgf/c ㎡ 1kgf/c ㎡= 2. 气动控制装置的特点 ⑴空气廉价且不污染环境,用过的气体可直接排入大气 ⑵速度调整容易 ⑶元件结构紧凑,可靠性高 ⑷受湿度等环境影响小 。 ⑸使用安全便于实现过载保护 ⑹气动系统的稳定性差 ⑺工作压力低,功率重量比小 ⑻元件在行程中途停止精度低 3. 气动系统的组成 气动系统基本由下列装置和元件组成 (1)气源装置——气动系统的动力源提供压缩空气 ] (2)空气处理装置——调节压缩空气的洁净度及压力 (3)控制元件 方向控制元件——切换空气的流向 流量控制元件——调节空气的流量 (4)逻辑元件——与或非 (5)执行元件——将压力能转换为机械功 (6)辅助元件——保证气动装置正常工作的一些元件 、 压缩机 a )气源装置 储气罐

后冷却器 { 过滤器 油雾分离器 减压阀 b)空气调节油雾器 处理装置空气净化单元 干燥器 其它 . 电磁阀气缸 气压控制阀带终端开关气缸 方向控制阀机械操作阀带制动器气缸 手动阀气缸带锁气缸 其它带电磁阀气缸 其它 / 速度控制阀 C)控制元件速度控制阀d)执行元件 节流阀 摆动缸 回转执行件 逻辑阀 ) 空气马达 管子接头 消音器 e)辅助元件压力计 其它

[ 污染物质的去除能力 污染物质过滤器油雾分离器干燥器 水蒸气微小水雾微小油雾 { 水滴固体杂质 × × × ○ ○ " × ○ ○ ○ ○ ○ ○ : × ○ ×表1 二、空气处理元件 压缩空气中含有各种污染物质。由于这些污染物质降低了气动元件的使用寿命。并且会经常造成元件的误动作和故障。表1列出了各种空气处理元件对污染物的清除能力。 1.空气滤清器 ? 空气滤清器又称为过滤器、分水滤清器或油水分离器。它的作用在于分离压缩空气中的水分、油分等杂质,使压缩空气得到初步净化。 ) 2.油雾分离器 油雾分离器又称除油滤清器。它与空气滤清器不同之处仅在于所用过滤元件不同。空气滤清器不能分离油泥之类的油雾,原因是当油粒直径小于2~3цm 时呈干态,很难附着在物体上,分离这些微粒油雾需用凝聚式过滤元件,过滤元件的材料有: 1){ 2)活性炭 3)用与油有良好亲和能力的玻璃纤维、纤维素等制成的多孔滤芯 3.空气干燥器 为了获得干燥的空气只用空气滤清器是不够的,空气中的湿度还是几乎达100%。当湿度降时,空气中的水蒸气就会变成水滴。为了防止水滴的产生,在很多情况下还需要使用干燥器。干燥器大致可分为冷冻式和吸附式两类。

气动工程应用案例(8个)

目录 应用实例1.自动调节病床 (2) 应用实例2.软床垫耐久性试验机 (4) 应用实例3.自动传输带 (6) 应用实例4.印花机 (8) 应用实例5.自动钻床 (10) 应用实例6.插销分送机构 (13) 应用实例7.垃圾集装压实机 (15) 应用实例8. 自动物料输送 (17)

应用实例1.自动调节病床 在医院的住院病人中,有一些是行动不便的,特别是大小便需要有人照料。自动调节病床为这类病人解决了难题,病人只需轻轻压下一个按钮,便桶就可以从床下自动移至对病人合适的位置,用完后病人只需松开按钮,便桶就可以移回原位,如图 1 所示。 图1自动调节病床 自动调节病床由两只气缸控制,水平气缸 A 使便桶水平移动,垂直气缸 B 使可动床垫移开或复位。操作步骤如下:当病人压下按钮时,气缸 B 后退,退到底后,A 气缸退回,便桶到位;当病人松开按钮时,气缸 A 前进,进到头后,B 气缸上升,便桶、床垫恢复原位。控制系统如图 2 所示,b0 为 B 气缸退到底后的行程开关,a1 为 A 气缸伸到前端的行程开关,只有当 B 气缸将b0 压下后,A 气缸才能退回,另外只有当 A 气缸压下a1 后,B 气缸才能顶出。

图2自动调节病床气动控制系统

应用实例2.软床垫耐久性试验机 试验对象为软床垫,试验要求两个一定形状和质量的模块,从规定的高度以一定频率交替加载,以模拟日常使用条件,检验软床垫对长期重复性载荷的承载能力,试验机如图3所示。 图3软床垫耐久性试验机 气缸A、B 带动两个模块,上下交替加载,其顺序动作为:A1 T1 A0 T2 B1 T1 B0 T2,每次动作间隔需延时T1,自动循环加载,自动计加载次数,计数到达设定值后,自动停止,位置流程图如图4: 图4软床垫耐久性试验机位置流程图 采用步进模块对系统进行设计,如图5,计数信号为w1、w2,由两只延时阀实现动作间隔延时,启动时同时对步进模块总复位,计数器可进行预先置数,当达到设定值时发出停

气动回路设计

其它气动回路 在气动系统中除了换向回路、速度控制回路和压力控制回路外,根据工作要求,还经常使用下列一些回路。 一、气液联动回路 目的:把气压传动转换为液压传动,这就使执行件的速度调节更加稳定.运动干稳。若采用气液增压回路,则还能得到更大的推力。气液联动回路装置简单,经济可靠。 1.气液速度控制回路 1)气液转换器 说明:执行元件3是液压缸;1、2是气液转换器。 作用:气压→液压,获得平稳易控制的活塞运动速度 调速:供气节流调速 注意:气液转换器中贮油量应不少于液压缸有效容积的1.5倍,同

时需注意气液间的密封,以避免气体混入油中。 2)气—液阻尼缸 在这种回路中,用气缸传递动力,由液压缸阻尼和稳速,并由液压缸和调速机构进行调速。由于调速是在液压缸和油路中进行的,因而调速精度高、运动速度平稳。因此,这种调速回路应用广泛,尤其在金属切削机床中用得最多。 图中所示为串联型气液阻尼缸双向调速回路。由换向阀1控制气液阻尼缸2的活塞杆前进与后退,阀3和阀4调节活塞杆的进、退速度,油杯5起补充回路中少量漏油的作用。 2.气液增压回路 当工作时既要求工作平稳,又要求有很大的推力时,可用气液增压回路。

1)气液增压缸:较低的气压→较高的液压力。该回路中用单向节流阀调节 2)气液缸:工进(右行)液压驱动,返回时用气压驱动。 二、安全保护回路 由于气动执行元件的过载、气压的突然降低以及气动执行机构的快速动作等原因,都可能危及操作人员或设备的安全。因此,在气动回路中,常常要加入安全回路。 l. 双手操作安全回路 所谓双手操作回路就是使用两个启动用的手动阀,只有同时按动这两个阀时才动作的回路。这在锻压、冲压设备中常用来避免误动作,以保护操作者的安全及设备的正常工作。

基本气动回路

1、1 换向回路 单作用气缸控制回路气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向则靠其她外力,如重力、弹簧力等驱动。回路简单,可选用简单结构的二位三通阀来控制 常断二位三通电磁阀控制回路 通电时活塞杆伸出,断电时 靠弹簧力返回 常通二位三通电磁阀控制回路 断电时活塞杆缩回,通电时 靠弹簧力返回 三位三通电磁阀控制回路 控制气缸的换向阀带有全封闭 型中间位置,可使气缸活塞停止在任 意位置,但定位精度不高 两个二位二通电磁阀代替一个二位三 通阀的控制回路 两个二位二通电磁阀同时通电换 向,可使活塞杆伸出。断电后,靠外力 返回 双作用气缸控制回路 气缸活塞杆伸出或缩回两个方向的运动都靠压缩空气驱动,通常选用二位五通阀来控制 采用单电控二位五通 阀的控制回路 通电时活塞杆伸出,断电时 活塞杆返回 双电控阀控制回路 采用双电控电磁阀,换向信号 可以为短脉冲信号,因此电磁铁 发热少,并具有断电保持功能 中间封闭型三位五通阀控制回路 左侧电磁铁通电时,活塞杆伸出。 右侧电磁铁通电时,活塞杆缩回。左、 右两侧电磁铁同时断电时,活塞可停 止在任意位置,但定位精度不高 中间排气型三位五通阀控制回路 当电磁阀处于中间位置时活塞 杆处于自由状态,可由其她机构驱 动 中间加压型三位阀控制回路电磁远程控制回路 采用二位五通气控阀作为主控 阀,其先导控制压力用一个二位三通 电磁阀进行远程控制。该回路可以应 用于有防爆等要求的特殊场合 双气控阀控制回路 主控阀为双气控二位五通阀, 用两个二位三通阀作为主控阀的先 导阀,可进行遥控操作 当左、右两侧电磁铁同时断 电时,活塞可停止在任何位置,但 定位精度不高。采用一个压力控 制阀,调节无杆腔的压力,使得在 活塞双向加压时,保持力的平衡 采用带有双活塞杆的气缸,使活 塞两端受压面积相等,当双向加压时, 也可保持力的平衡

气动控制应用实例

首页 当前位置:电子教案 第7章 纯气动应用实例 7.1冲压印字机 如图7.1所示,阀体成品上需要冲印P 、A 、B 及R 等字母标志。将阀体放置在一握器内。 气缸1.0冲印阀体上的字母。气缸2.0(B)推送阀体自握器落入一筐篮内。 7.2 清洗池 某盘形工件在一清 洗池内清洗。一气缸推动盛满盘形工件的筐 篮在清洗池 内升降 上下。 要求条件可采用二种程序完成清洗,第一种程序:操作者用手动 完成容器的上、下运动;第二种程 序:操作者 手动产生起 动信号,经过一预先设定的时间后自行切断清洗操作。其具体位移—步骤图如图7.4所示,动作顺序如表7.1所示。在阀1.8切断前容器不停的进行上下摆动。

7.3 滚珠轴承的装配夹持器 在一装配在 线上装配滚珠轴 承。 滚珠轴承经零件装配后,利用一气压气缸1.0固定握住。气缸2.0(B)操作黄油压床使滚珠轴承充满黄油。因为在此装配在线需要装配不同尺寸的滚珠轴承,黄油压床的冲程速度须为可以调整。

控制顺序: 操作阀1.2(起动)使阀1.1在Z接转。气缸1.0(A)外伸,压紧滚珠轴承。在气缸的外端点位置,操作阀1.12/2.2及因此通过梭动阀1.4使控制链1被自动保持。在同时一个讯号 阀2.3及1.7使回动阀1.5/2.6接转前,气缸2.0(B)继续产生摆动运动。压缩空气进入作动组件2.1的Y。气缸2.0(B)回行至后端点位置。空气进入阀1.5/2.6及阀1.3/l.6的Z,使阀1.1排放。气缸1.0(A)再度回到后端点位置。阀1.8及1.10联合成为一安全措施。当气缸1.0(A)完全缩回时才能开始新的循环。 7.4 冲口器 夹持器在工件的孔端冲三个开口。 该设备的工作原理如图7.8所示。用手将工件放在夹持器内。起动讯号使气缸1.0(A)移送冲模进入长方形工件内。自此以后,气缸2.0(D)、3.0(C)及4.0(D)一个接一个推动冲头在工件孔内冲开口。在气缸4.0(D)的最后冲口操作完成后,所有三个冲糙气缸2.0(B)、3.0(C)及4.0(D)返回至它们的起始位置。气缸1.0(A)从工件抽回冲模,完成最后的运动。用手将已冲口工件从夹持器上拿出。该设备的位移一步骤图如图7.9所示,动作顺序如表7.2所示。

气动控制技术速度控制回路

气动控制技术—速度控制回路 教案首页

课题:速度控制回路 课前准备: 1、气动实训一体化装置26台; 2、计算机26套,多媒体投影仪1台,云台摄像头系统1套; 3、常用电工工具、六角扳手各26套。 授课内容: 时间 教学内容和过程备注 2分钟 考勤、填写教学日志,调节课堂气氛,调动学生主动参与课堂, 创造和谐活泼课堂,做好接受新知识的准备工作。让学生把下课的心放到课堂上来,用故事、激励、表扬等方法实现。 5分钟 教师提问:1、我们前面所学的气动控制基本回路有哪几种? 学生回答:方向控制回路、压力控制回路 教师提问:2、常见控制阀的图形符号有哪些? 学生上黑板画或由教师画出符号,学生回答符号代表的意思和所 起的作用复习前面所学的控制回路,巩固所学的知识。 复习几种常见控制阀符号和作用,为新课做铺垫。 6分钟 让学生观看自动化生产线工件加工过程的视频,总结出工作台的动作过程。假如你们是工程技术人员,现在要你设计一台气动传动的机床,要求这台机床工作时自动刀架先带刀具快速接近工件,后以慢速工进,对工件进行加工,加工完快速退回原处。那么你启发学生,引导学生思考,让学生各抒己见,不一定要用课本的知识,只要有自己的见解或是创造性思维的就给予表扬,然后引入本课内容举例、演示、情境教学,让学生有主人翁的感觉。设疑,引起学生的兴趣。 一、组织教学 二、复习回顾 三、任务引入

们如何设计才能满足这种要求呢? 12分 钟 一、快进回路 二、工进回路 三、快退回路用逐步演示动画的方式让学生清清楚楚地看到速度控制回路的工作过程,对其原理及工作过程进行详细的分析。答疑,前面在导入新课时所设的问题这里给了明确的答复。 四、任务分析

气压基本回路认识与典型气压传动系统分析

《设备控制基础》课程教案

学习单元3:气压传动认识及典型气压传动系统分析 3.2 气动基本回路认识与典型气压传动系统分析 授课内容: 1. 理解气压传动控制系统的主要优缺点。 2. 掌握各主要气压基本回路的工作原理与功用。 2. 理解气动系统在数控设备上的具体应用。 3. 认识各个气动系统的工作原理和组成: 1.1 压力控制回路 1.一次压力控制回路 这种回路,用于使储气罐送出的气体压力不超过规定压力。为此,通常在储气罐上装一电接点式压力表,或压力继电器,一旦罐内超过规定压力时,即控制空气压缩机断电,不再供气。也常在储气罐上安装一只安全阀,用来实现一旦罐内超过规定压力就向大气放气。 2.二次压力控制回路 为保证气动系统使用的气体压力为一稳定值,多用如图所示的由空气过滤器—减压阀—油雾器(气动三大件)组成的二次压力控制回路,但要注意,供给逻辑元件的压缩空气不要加入润滑油。 3.高低压转换回路 若设备有时需要高压,有时需要低压,则可用高低压转换回路,由两个减压阀和换向阀构成的高低压转换回路,可控制气缸输出两种大小不同的力。 4.连续压力控制回路 近年来,由于计算机技术、微电子技术与气动技术的结合,电气比例控制技术的应用日益广泛。 图示为采用比例阀构成的压力控制回路。气缸有杆腔的压力大小由减压阀调为定值,而无杆腔的压力由计算机输出的控制信号控制比例阀的输出压力来实现,从而使气缸的输出力得到连续控制

1.2 换向回路 1.单作用气缸换向回路 2.双作用气缸换向回路 1.3 速度控制回路 1.单作用气缸速度控制回路 2.双作用气缸速度控制回路 除用单向节流阀构成的调速回路外,采用其它流量控制阀也可构成调速回路。图c) 所示为采用排气节流阀的调速回路。为了提高气缸的速度,可以在气缸出口安装快速排气阀,这样气缸内气体可通过快速排气阀直接排放。图d)为采用快速排气阀构成的气缸快速返回回路。 3.缓冲回路 在实际当中,可采用缓冲回路来满足气缸行程末端的缓冲要求。由速度控制阀配合使用的缓冲回路。当活塞向右运动时,缸右腔的气体经行程阀再由三位五通阀排掉,当活塞运动到末端,活塞杆上的挡块碰到行程阀时,节流阀短接的路被堵死,气体就只能经节流阀排除,这样活塞运动速度就得到了缓冲。调整行程阀的安装位置就可以改变缓冲开始时间。此回路适用于活塞惯性大的场合。 1.4 气液联动回路

气压传动基本回路

第四章气动传动系统的回路【课程性质】 理论课 【教学目标】 1、熟悉分析回路的步骤; 2、掌握气动基本回路的工作原理和应用; 【教学重点】 1、分析回路步骤理解 2、气动基本回路的工作原理和应用; 【教学难点】 分析回路步骤理解 【教学课时】 4课时 【教学策略】 采用多媒体动画的教学方式,进行直观教学 【教学方法】 讲授法,多媒体教学法 【教学过程】 环节教学内容师生互动设计意图 导入一、气动基本回路 气动基本回路按其功能分为:方向控制回路、压力控制回路、速度控制回路和其他常用基本回路。 新课 二、方向控制回路 1、单作用气缸换向回路 图a所示为由二位三通电磁阀控制的换向回路,通电时,活塞杆伸出;断电时,在弹簧力作用下活塞杆缩回。 图b所示为由三位五通电磁阀控制的换向回路。 2、双作用气缸换向回路

新课 下图a为小通径的手动换向阀控制二位五通主阀操 纵气缸换向;图b为二位五通双电控阀控制气缸换向; 图c为两个小通径的手动阀控制二位五通主阀操纵气缸 换向;图d为三位五通阀控制气缸换向。该回路有中停 功能,但定位精度不高。 压力控制回路 压力控制回路的功用是使系统保持在某一规定的 压力范围内。常用的有一次压力控制回路,二次压力控 制回路和高低压转换回路。 3、次压力控制回路 下图所示为一次压力控制回路。此回路用于控制贮 气罐的压力,使之不超过规定的压力值。常用外控溢流 阀1或用电接点压力表2来控制空气压缩机的转、停, 使贮气罐内压力保持在规定范围内。 4、二次压力控制回路 下图所示为二次压力控制回路,图a是由气动三大 件组成的,主要由溢流减压阀来实现压力控制;图b是 由减压阀和换向阀构成的对同一系统实现输出高低压 力p1、p2的控制;图c是由减压阀来实现对不同系统输 出不同压力p1、p2的控制。 三、速度控制回路 气动系统因使用的功率都不大,所以主要的调速方 法是节流调速。 1、单向调速回路 下图所示为双作用缸单向调速回路。图a为供气节 流调速回路。在图示位置时,当气控换向阀不换向时, 进入气缸A腔的气流流经节流阀,B腔排出的气体直接 经换向阀快排。当节流阀开度较小时,由于进入A腔的 流量较小,压力上升缓慢。当气压达到能克服负载时, 单作用气缸换向回路 双作用气缸换向回路 一次压力控制回路 1—溢流阀2—电接点压力表 二次压力控制回路 (a)由溢流减压阀控制压力(b)由 换向阀控制高低压力(c)由减压 阀控制高低压力

气动系统基本回路

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 气动系统基本回路 SMC气动培训教程气动系统基本回路? SMC(中国)有限公司上海分公司 1/ 59

基本回路分类1.换向控制回路2.压力(力)控制回路5.同步控制回路6.气动逻辑回路3.位置控制回路4.速度控制回路7.其它控制回路

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 换向控制回路 3/ 59

换向控制回路——单作用气缸换向回路? 回路的初始由三通阀的弹簧控制阀处于常闭状态电磁阀得电,三通阀换向,单作用气缸活塞杆向前伸出电磁阀失电,三通阀回到初始状态,单作用气缸活塞杆在弹簧作用下退回

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 换向控制回路——单作用气缸换向回路? 回路的初始由三通阀的弹簧控制阀处于常闭状态电磁阀得电,三通阀换向,单作用气缸活塞杆向前伸出电磁阀失电,三通阀回到初始状态,单作用气缸活塞杆在弹簧作用下退回 5/ 59

纯气动应用实例

第八章 纯气动应用实例 8.1冲压印字机 如图8.1所示,阀体成品上需要冲印P 、A 、B 及R 等字母标志。将阀体放置在一握器内。 气缸1.0冲印阀体上的字母。气缸2.0(B)推送阀体自握器落入一筐篮内。 8.2 清洗池 某盘形工件在一清洗池内清洗。一气缸推动盛满盘形工件的筐篮在清洗池内升降上下。 要求条件可采用二种程序完成清洗,第一种程序:操作者用手动完成容器的上、下运动;第二种程序:操作者手动产生起动信号,经过一预先设定的时间后自行切断清洗操作。其具体位移—步骤图如图8.4所示,动作顺序如表8.1所示。在阀1.8切断前容器不停的进行上下摆动。

表8.1 清洗池控制顺序图

8.3 滚珠轴承的装配夹持器 在一装配在线上装配滚珠轴承。 滚珠轴承经零件装配后,利用一气压气缸1.0固定握住。气缸2.0(B)操作黄油压床使滚珠轴承充满黄油。因为在此装配在线需要装配不同尺寸的滚珠轴承,黄油压床的冲程速度须为可以调整。 控制顺序: 操作阀 1.2(起动)使阀1.1在 Z 接转。气缸1.0(A)外伸,压紧滚珠轴承。在气缸的外端点位置,操作阀1.12/2.2及因此通过梭动阀1.4使控制链1被自动保持。在同时一个讯号 送入阀2.1的Z 。使气缸2.0(B)外伸至前端点位置。操作阀2.3后开始回行运动。在阀1.9、阀2.3及1.7使回动阀1.5/2.6接转前,气缸2.0(B)继续产生摆动运动。压缩空气进入作动组件2.1的Y 。气缸2.0(B)回行至后端点位置。空气进入阀1.5/2.6及阀1.3/l.6的

Z,使阀1.1排放。气缸1.0(A)再度回到后端点位置。阀1.8及1.10联合成为一安全措施。当气缸1.0(A)完全缩回时才能开始新的循环。 8.4 冲口器 夹持器在工件的孔端冲三个开口。 该设备的工作原理如图8.8所示。用手将工件放在夹持器内。起动讯号使气缸1.0(A)移送冲模进入长方形工件内。自此以后,气缸2.0(D)、3.0(C)及4.0(D)一个接一个推动冲头在工件孔内冲开口。在气缸4.0(D)的最后冲口操作完成后,所有三个冲糙气缸2.0(B )、3.0(C)及4.0(D)返回至它们的起始位置。气缸1.0(A)从工件抽回冲模,完成最后的运动。用手将已冲口工件从夹持器上拿出。该设备的位移一步骤图如图8.9所示,动作顺序如表8.2所示。 表8.2 利用回动阀控制的顺序表 冲口器的气动回路图如图8.10、8.11所示。

气动系统基本回路讲解及举例

东莞市塘厦领航者自动化设备厂 公司官网:https://www.doczj.com/doc/8b3087044.html,/ 气动系统基本回路讲解及举例 1、换向控制回路 采用二位五通阀的换向控制回路,使用双电控阀具有记忆功能,电磁阀失电时,气缸仍能保持在原有的工作状态 问:单电控失电会怎样? 采用三位五通阀的换向控制回路 三种三位机能

东莞市塘厦领航者自动化设备厂 公司官网:https://www.doczj.com/doc/8b3087044.html,/中位封闭式 中位加压式 中位排气式

东莞市塘厦领航者自动化设备厂 公司官网:https://www.doczj.com/doc/8b3087044.html,/ 2、压力(力)控制回路 气源压力控制主要是指使空压机的输出压力保持在储气罐所允许的额定压力以下 为保持稳定的性能,应提供给系统一种稳定的工作压力,该压力设定是通过三联件(F.R.L)来实现的

东莞市塘厦领航者自动化设备厂 公司官网:https://www.doczj.com/doc/8b3087044.html,/ 双压驱动回路: 在气动系统中,有时需要提供两种不同的压力,来驱动双作用气缸在不同方向上的运动,采用减压阀的双压驱动回路 电磁铁得电,气缸以高压伸出

东莞市塘厦领航者自动化设备厂 公司官网:https://www.doczj.com/doc/8b3087044.html,/电磁铁失电,由减压阀控制气缸以较低压力返回 多级压力控制回路 在一些场合,需要根据工件重量的不同,设定低、中、高三种平衡压力 利用电气比例阀进行压力无级控制,电气比例阀的入口应该安装微雾分离器

东莞市塘厦领航者自动化设备厂 公司官网:https://www.doczj.com/doc/8b3087044.html,/ 3、位置控制回路 利用双位气缸,可以实现多达三个定位点的位置控制

相关主题
文本预览
相关文档 最新文档