当前位置:文档之家› 沸石分子筛膜的应用与研究进展

沸石分子筛膜的应用与研究进展

沸石分子筛膜的应用与研究进展
沸石分子筛膜的应用与研究进展

沸石分子筛的研究进展

第26卷第1期2004年1月 南 京 工 业 大 学 学 报 JOURNA L OF NAN J I NG UNI VERSITY OF TECH NO LOGY V ol.26N o.1 Jan.2004气相法制备沸石分子筛的研究进展 姚建峰,张利雄,徐南平 (南京工业大学化学化工学院,江苏南京210009) 摘 要:综述了气相法,包括气相转移法和干胶法在合成沸石分子筛、磷铝分子筛和其它杂原子分子筛及分子筛膜方面的研究进展。介绍了合成过程中一些影响因素,如时间、温度、干胶组分或有机模板剂对合成的影响。并且对气相法制备分子筛成型体作了简单介绍。 关键词:气相转移法;干胶法;沸石分子筛;分子筛膜;成型Ξ 中图分类号:O643.3 文献标识码:A 文章编号:1671-7643(2004)01-0103-07 沸石分子筛作为吸附剂、催化剂等,在化学工业、石油化工等领域发挥着越来越重要的作用,其制备方法也越来越受到人们的关注。长期以来,沸石分子筛都由传统的水热法合成[1~4],但是,1985年首次报道了在乙二醇等有机溶液体系中合成S OD 结构沸石分子筛[5],随后出现了在其它有机溶剂体系中合成ZS M25、ZS M235和ZS M248等沸石分子筛[6,7]的报道。Xu等[8]在1990年提出了一种全新的制备沸石分子筛的方法———气相转移法。气相转移法是指把不含有模板剂的沸石分子筛合成液制备成干胶,然后把干胶搁置于内衬聚四氟乙烯(T eflon)的不锈钢反应釜中,水和有机胺作为液相部分,在一定温度下在混合蒸汽作用下干胶转化为沸石分子筛。与水热法和有机溶剂法制备沸石分子筛相比,气相转移法有显著的优势[8]:可以大大减少有机模板剂的使用量;省去产品与母液分离的繁杂步骤;不会产生大量废液,对环境友好等优点。Sano等[9~11]以气相转移法为依据,使用干胶法制备了ZS M25分子筛薄膜及粉末。干胶法与气相转移法相类似,只是液相部分仅为水。Matsukata等[12]对用气相法合成沸石分子筛、磷铝分子筛和骨架中含T i、Zn、B等BE A结构分子筛作了一些总结,同时对合成分子筛膜[13]也进行了介绍。国内董晋湘等[14]和任瑜等[15]也分别对气相法制备分子筛及分子筛膜进行了综述。 本文在他们的基础上,更加全面的介绍气相法(气相转移法和干胶法)用于合成硅铝分子筛、磷铝分子筛、其它杂原子分子筛、分子筛膜及分子筛成型体。 1 气相法制备分子筛 1.1 硅铝沸石分子筛的制备 Xu等[8]首次提出用气相转移法制备ZS M25分子筛。首先把一定量的硫酸铝、硅酸钠、氢氧化钠和去离子水按一定的顺序混合均匀后过滤、洗涤,得到无定形凝胶。以乙二胺(E DA)、三乙胺(E t3A)和水的混合液作为模板剂,在453~473K下反应5~7d,制备出ZS M25分子筛粉末。这是气相法制备分子筛的首次报道,为分子筛的制备提供了一条新的途径。 Sano等[9~11]用干胶法合成ZS M25分子筛薄膜和粉末,并对ZS M25分子筛粉末进行了合成过程中的原位观察,给出了晶体生长的动力学信息。首先制备含有模板剂的干胶,把干胶搁置于反应釜中,在一定温度下在水蒸气的作用下进行反应。由XRD 表征可以得出,当用干胶法制备ZS M25时,随着反应时间的增加,结晶度越来越高;结晶速度随着温度的升高而加快。通过对结晶过程中晶粒生成的原位观察[11],发现在反应初期干胶表面首先被水蒸气浸润而变得光滑,经过一段时间后,表面开始有小晶粒出现,随着反应时间的延长,晶粒变得越来越大,但是当晶粒长到一定大小后,就停止生成。最终能用干 Ξ收稿日期:2003-06-12 基金项目:国家自然科学基金项目(N o.20141003和N o.20201007) 作者简介:姚建峰(1978-),男,江苏常州人,博士生,主要研究方向为沸石分子筛合成及催化。

沸石与分子筛的区别讲解

沸石与分子筛的区别研究 摘要 随着天然与人工分子筛在化工行业的应用的推广,以及各方面的生产要求的提高,促使分子筛的研究成为当今的热门。作为初学者,本文主要围绕沸石、分子筛的不同应用分别从二者的概念、特征、结构、性能、用途等几个方面阐述分子筛与沸石的区别。 关键词沸石分子筛应用区别 一、简介 1932年,McBain提出了“分子筛”的概念。表示可以在分子水平上筛分物质的多孔材料。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。人造沸石是:磺酸化聚苯乙烯;天然沸石:铝硅酸钠。沸石族矿物常见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。浙江省缙云县为我国境内沸石储量最高的地区。 狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体 或铝氧四面体通过氧桥键相连而形成的分 子尺寸大小(通常为0.3nm至2.0 nm)的 孔道和空腔体系,从而具有筛分分子的特 性。然而随着分子筛合成与应用研究的深

入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2 nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。由于含有电价较低而离子半径较大的金属离子和化合态的水,水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,这些微小的孔穴直径大小均匀,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。目前分子筛在冶金,化工,电子,石油化工,天然气等工业中广泛使用。 二,结构 沸石有很多种,已经发现的就有36种。它们的共同特点就是具有架状结构,就是说在它们的晶体内,分子像搭架子似地连在一起,中间形成很多空腔。因为在这些空腔里还存在很多水分子,因此它们是含水矿物。这些水分在遇到高温时会排出来,比如用火焰去烧时,

沸石分子筛膜的合成方法

沸石分子筛膜的合成方法 人工制备分子筛的合成得到的一般是松散的晶粒,要得到致密的分子筛膜,分子筛晶体之间必须互生,在多孔载体上定向长成致密层,具有一定的渗透性能。近年来,随着膜技术的发展,分子筛膜制备技术取得了不小的进展,常用的有原位生长法,二次晶种法和微波合成法,此外,还有溶胶-凝胶法、嵌入法、蒸汽相法等。 一、原位水热法 原位生长法采用与分子筛粉末合成相同的方法,将载体、硅源、铝源、模板剂、碱和水按照一定的生长比例加入反应釜中,在一定温度和自生压力下水热晶化,多孔材料在载体表面附着生长,多孔载体表面生长一层致密的分子筛膜层。使用该方法已经成功制备的分子筛膜有MFI、A、SAPO-34和八面沸石膜、丝光沸石膜等。原位水热合成中,沸石膜经历成核期和生长期两个阶段。成核期,母液中的营养随着水热能量的给与而随机成核,附着在载体上,也有部分散落在营养液中;生长期,已经生成的晶核不断原位长大,载体上附着的晶核也长大并互生,连成一片致密的膜层。 膜是由分子筛晶粒互生相连而成。生长液中硅铝比、碱浓度、模板剂的比例、温度和晶化时间都对合成的膜有影响,载体的适当修饰也会对提高分子筛膜的质量。该制备方法设备简单,方法易行,易实现大批量生产,具有工业化前景。不足之处在于可控性差,晶体要优先在载体表面成核而不是溶液主体,受载体表面性质影响和晶核随机生长的影响,膜层的生长很容易不均匀,难致密,膜层厚度不易控制。该方法比较适用于管状的载体生长沸石分子筛膜。迄今为止,人们已经成功的在石英、金属、氧化铝、玻璃等多孔材料表面原位合成了高质量的MFI 型分子筛膜。而且对合成的分子筛膜进行了气体分离和液体渗透汽化分离等测试,膜表现良好。 二、二次晶种法 二次晶种法,顾名思义,先要合成纳米级或者微米级的晶种,然后将纳米晶涂覆在载体的一侧表面,再将载体置于二次生长的母液中水热晶化成膜。合成的晶种的尺寸最好控制在纳米级别,将得到的纳米晶种洗干净后使之均匀分散在溶剂中,得到晶种的悬浮液。然后采用一定的办法,例如沾取涂布法、滴涂法,旋

MFI型沸石分子筛膜制备与应用

MFI型沸石分子筛膜制备与应用 作为沸石分子筛膜的重要组成部分,MFI型沸石分子筛膜具有孔径均一、硅铝比可调、耐高温、耐腐蚀等特性,并且具有较高的硅铝比,在催化反应、渗透蒸发、气体分离等方面均有着广阔的应用前景。由于其在提纯方面有着十分明显的效果,因此被业内誉为最具发展潜质的沸石分子筛膜。 MFI型沸石膜因其具有与常规分子大小相近的孔半径和高的热稳定性及化学稳定性,已成为分子筛膜研究的热点和首选对象。与其它类型分子筛膜相比,MFI型沸石膜更加容易制备,合成条件宽松,很少发生转晶,杂晶。同时,相对而言,MFI型分子筛膜的缺陷比其它类型的分子筛膜少,更有可能在气体分离等一些重要领域得到应用。因此需要使用TEOS和TPAOH为原料合成MFI沸石膜,使用常用的一些表征手段如XRD、SEM检测膜的性质。 制备实验中所用的载体为外径13.0mm,内径8.0mm的仅A1203管式材料,长75.0mm,

平均孔径为51am。由于载体表面比较粗糙,且有可能吸附微量的杂质,故无法直接在其表面合成分子筛膜,需要进行打磨以使表面平整。依次用600,800及1200的砂纸进行打磨,然后用超声波震荡清洗,除去孔内残留的砂纸颗粒,再分别用稀盐酸、氢氧化钠溶液和无水乙醇浸泡,以除去吸附在上面的各种杂质,最后放入马弗炉中程序升温至500℃焙烧12h,待温度降到室温后移至150℃烘箱烘干备用。 从SEM照片可以看出当温度升高后,MFI沸石晶体粒径增大,晶体形貌也有改变,粒径分布变大,由规则的六边形转化为不规则的长四边形。研究表明,晶体晶化过程分为成核期和生长期两个阶段,反应过程中分别需要成核活化能和生长活化能,根据反应动力学,相同时间下升温能加快反应速率,导致晶粒变大。 沸石分子筛膜在物质分离、膜反应、催化、传感器、微电子、导体等诸多领域都有广泛地应用。MFI型沸石膜因其独特的组成和性能,在醇/水、醇/醇分离方面有着广阔的应用前景。另外,MFI型沸石分子筛在光学和光催化方面也有着其独特的作用。

ZSM-5分子筛合成和改性的研究进展

ZSM-5分子筛合成和改性的研究进展 摘要:ZSM-5分子筛在工业中应用广泛。本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。 关键词:ZSM-5,分子筛,合成,改性 ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。由此,其成为了石油工业中择形反应中最重要的催化材料之一。不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。 本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。 1 ZSM-5分子筛的结构 ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。 ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。ZSM-5分子筛的孔道结构由截面呈椭圆形的直筒形孔道(孔道尺寸为0.54 nm × 0.56 nm)和截面近似为圆形的Z字型孔道(孔道尺寸为0.52 nm × 0.58 nm)交叉所组成[2],如图1所示。两种通道交叉处的尺寸为0.9 nm,这可能是ZSM-5

分子筛的一些知识

分子筛的一些知识 沸石分子筛的广泛应用,在于它具有优异的性能。为了深刻了解这些性能,就必须弄清分子筛的结构,而深入研究分子筛的结构与性能,反过来又将进一步促进它的应用和发展。 分子筛是一种晶体硅铝酸盐,因而,可以应用X-射线衍射进行结构分析。通常合成分子筛是10μ以下的粉末,在使用粉末衍射法进行测试时,对于对称性较差的沸石类型,指标化及搜集强度的工作都十分困难,因此,到目前为止,仅确定了四十多种沸石的结构,还有一半左右尚未测定出来。 倘若能够得到较大的佛石单晶,采用X-射线衍射的单晶转动法更为有效。较大的A型分子筛单晶可由种子晶体的再结晶得到。用X-射线衍射的单晶转动法,不仅可在指标化之前,引出晶胞参数,确定骨架结构,而且还可以推定出非骨架原子(或离子)和分子和位置。每一种分子筛都有特征的X-射线粉末衍射图样,因此由衍射图样的比较,可以确定沸石的类型。非晶态度的凝胶不产生衍射,故X-射线分析也可以用来观察分子筛结晶的情况,混和物的衍射图样,由各组分的粉末线迭合而成,并且衍射强度随含量而变化。所以X-射线衍射也用以确定分子筛的纯度。 现在又有一种新的红外光谱法测定分子筛的结构。通过测定已知结构分子筛的红外光谱,找出普带的特征频率与骨架结构基团间的关系,进而测定未知结构的光谱,推导出骨架结构。一般采用频率1300-200厘米-1的红外线。因为这一范围包含着(Si,Al)O4四面体的基本振动,反映出骨架结构的特征。目前,红外光谱已用于测定沸石骨架的结构类型,结构基团、骨架的硅铝组成,热分解过程中结构的变化和脱水、脱羟基过程中阳离子的迁移等。 在分子筛的应用中,表面性质十分重要。借助红外光谱,我们可以更透彻地了解沸石的表面性质以及在各种处理中的变化,如根据吸附分子引起的光谱变化,就可知道沸石表面与吸附分子相互作用,吸附分子的位置以及催化活性和表面性质的关系等。由于红外光谱的高度灵敏性,沸石结构的微小变化都在光谱中得到反映。 其他的物理测试技术如紫外光谱等也可以帮助确定分子筛的结构,但目前主要采用的是X-射线衍射和红外光谱法。 沸石A、沸石X、沸石Y和丝光沸石应用最广,对它们的结构和性能的研究也最为深刻。第一节分子筛结构概述 分子筛是一类具有骨架结构的硅铝酸盐晶体,晶体内的阳离子和水分子在骨架中有很大的移动自由度,可进行阳离子交换和可逆地脱水。 分子筛的化学组成可用以下实验式表示:M2/nO. Al2O3. xSiO2. yH2O M是金属离子,n是M的价数,x是SiO2.的分子数,也是SiO2/Al2O3克分子比,y是水分子数. 上式可以改写成M p/n[(AlO2)p()q] yH2O P是AlO2分子数,q是SiO2分子数,M,n,y同上.由上式可以看出:每个铝原子和硅原子平均加起来都有二个氧原子,若金属原子M的化合价n=1,则M的原子数等于铝原子数,若n=2,则M 的原子数等于铝原子数的一半。各种分子筛的区别,首先是化学组成的不同,如经验式中的M可为Na、K、Li、Ca、Mg等金属离子,也可以是有机胺或复合离子。 化学组成的一个重要区别是硅铝克分子比的不同。例如,沸石A、沸石X、沸石Y和丝光沸石的硅铝比分别为1.5~2、2.1~3.0、3.1~6.0和9~11。 当式中的x数值不同时,分子筛的抗酸性、热稳定性以及催化活性等都不同,一般x的数值越大,而酸性和热稳定性越高。各种分子筛最根本的区别是晶体结构的不同,因而,不同的分子筛具有不同的性质。

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展 摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。 关键词:分子筛;催化剂;应用;性能 Development and research of the molecular sieve catalyst Abstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail. Key words:Molecular sieve;catalyst;application;performance 1.分子筛的发展现状 所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。基本组成物质为:Na2O、Al2O3、SiO2。上世纪50年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。美国的多家公司,具有代表的是Linder公司、Exxon公司、联合碳化公司(UCC )模拟天然沸石的类型与生成条件,开发了一系列低硅铝和中硅铝的人工合成沸石。 上世纪60年代左右,上海试剂五厂开展沸石分子筛的研制开发工作,合成出A型、X型、Y型沸石分子筛。上世纪80年代,金陵石化有限公司炼油厂首次工业化生产ZSM-5沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷开展ZSM -5沸石分子筛的开发生产,并将其广泛应用催化裂解、辛烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等领域。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的规模也在不断扩大。中科院大连物化所自上世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂。已完成中试放大实验,据称,该研究所采用改性SAPO-34分子筛催化剂可使二甲醚单程转化率大于97%,低碳烯烃选择性达90%。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实现了大孔分子筛的合成。上海骜芊科贸发展有限公司生产经营ZSM-5高硅沸石分子筛结晶粉体、疏水晶态ZSM-5吸附剂等系列分子筛。南开大学催化剂厂主要生产了NFK-5分子筛(直接法合成ZSM-5分子筛)、Beta分子筛、Y型分子筛以及以其为载体的获得国家级发明奖的各类催化剂。 2.分子筛的性能 一切固体物质的表面都有吸附作用,只有多孔物质或表面积很大的物质,才有明显的吸附效应,才是良好的吸附剂。常用的固体吸附剂活性炭、硅胶,活性氧化铝和分子筛等都有很大的表面积。其中沸石分子筛在吸附分离方面有十分重要的地位,它除了有很高的吸附量外,还有独特的选择性吸附性能。这是由于它具有规整的微孔结构,这些均匀排列的孔道和尺寸固定的孔径,决定了能进入沸石分子筛内部的分子的大小。

制氧机进口分子筛和国产分子筛的区别

很多人在买家用制氧机的时候,都会遇到一个问题,就是到底该买进口分子筛,还是国产分子筛。在回答这个问题之前,我们先来看看什么是分子筛。 家用制氧机的分子筛 分子筛是一种具有立方结构的硅酸铝化合物,由于分子筛的表面积很大,所起分子筛的内部就形成了很多空隙,可以把空隙小的分子吸附进来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。而现在的家用制氧机就是利用了分子筛的这种筛分功能,把空气中的氧气和氮气分离开来。我们知道空气中的氧气含量是21%,但其含量是78%,还含有少量其他气体,分子筛把氮气除去后,剩下的几乎就是氧气了。 分子筛对家用制氧机价格的影响 分子筛是制氧机中的关键部件,所以分子筛质量的好坏,就决定了制氧机的使用效果和使用寿命,所以我们看到市场上的制氧机进口分子筛和国产分子筛价格还是相差很多的。拿健康之宝热卖的奥吉制氧机来说,采用进口分子筛的AJ-300B售价2650元,而采用国产分子筛的AJ-300A售价只有2350元,而两款制氧机的其他方面完全一样,进口分子筛的售价要比国产分子筛贵了300元,几乎是机器售价的12%。再比如神鹿制氧机SL-03,国产分子筛的型号售价2450元,进口分子筛的SL-03售价就达到了2800元,价格相差了350元,还是相差比较大的。 分子筛对家用制氧机寿命的影响 既然分子筛的价格相差不少,那么进口分子筛是否物有所值呢,我们有必要花大价钱购买进口分子筛的制氧机呢。其实进口分子筛的寿命比国产分子筛要长很多的,进口分子筛的寿命一般能达到1.8万小时,而国产分子筛寿命只有1.2万小时,两者相差50%左右,以每天家用制氧机的使用时间3个小时计算,采用进口分子筛的制氧机,可以多用6000天,相当于十多年的时间。当然制氧机的寿命也取决于制氧机的其他部件,比如压缩机,电路板等等,而且如果空气中的灰尘较多,对分子筛的寿命影响也很大。另外美国英维康制氧机采用的进口分子筛,其寿命远远超过其他普通进口分子筛,其寿命可达到惊人的3万小时。当然英维康制氧机的售价也是比较高的,健康之宝特价期间,最便宜的一款IRC5LXO2AW也要售价5800元,毕竟是一分钱一分货的。 家用制氧机选购 说了这么多,相信大家对于家用制氧机的分子筛已经有一个比较全面的了解了。购买的时候你可以根据自己的需要选择购买进口分子筛还是国产分子筛。对于一般保健用途,由于每天使用的时间不够多,您可以选择购买国产分子筛的制氧机。对于患有呼吸道疾病的人家来说,最好购买进口分子筛的制氧机。因为您每天的使用时间很长,使用进口分子筛的家用制氧机可以为您服务更长的时间。https://www.doczj.com/doc/8b17819304.html,

沸石分子筛如何制备合成

沸石分子筛及其复合材料新型合成方法研究进展 沸石分子筛作为离子交换材料、吸附剂、催化剂等,在化学工业、石油化工等领域发挥着重要作用。随着新材料领域和电子、信息等行业的不断发展,其使用范围已经跳出传统行业,在诸如新型异形分子筛吸附剂、催化剂和催化蒸馏元件、气体和液体分离膜、气体传感器、非线性光学材料、荧光材料、低介电常数材料和防腐材料等方面得到应用或具有潜在的应用前景。因此,沸石分子筛的制备方法也越来越受到人们的关注。 沸石分子筛传统的制备方法主要包括水热法、高温合成法、蒸汽相体系合成法等,但随着组合化学技术在材料领域应用的不断扩大,20世纪90年代末人们将组合化学的概念与沸石分子筛水热法结合,建立了组合水热法。将组合化学技术应用到沸石分子筛水热合成之中,加快了合成条件的筛选与优化。除此之外,气相转移和干胶法等新型制备方法也被提出并应用于实践,本文对这些方法进展进行简单概述。 1. 组合化学水热法 组合化学是一种能建立化学库的合成方法,其大的优势是能在短时间内合成大量的化合物,从而达到快速、高效合成与筛选的目的。水热法合成沸石分子筛及相关材料,要考察的因素比较多,包括多种反应原料的选择及配比、反应温度及反应时间等。使用组合化学法可以减轻实验工作量和劳动强度,大大提高工作效率。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

利用组合化学水热法制备沸石分子筛,设计了一种组合反应釜,即在圆形聚四氟乙烯片上钻100个小孔,然后在其上、下表面分别用不锈钢片夹紧,形成100个水热反应器,将不同配比的水热合成液分别置于各反应器中。在一定条件下,和传统水热法一样合成沸石分子筛。他们对Na2O-Al2O3-SiO2-H2O的四组分体系进行了考察,比较了使用传统的水热法和组合水热法的差别,证实了组合化学的高效性和快速筛选性。在此基础上,科学家对组合水热法进行了改进,设计出易于自动化X射线衍射测定的装置,并用这种方法对TS-1分子筛的合成配方进行了筛选。 组合化学水热法在分子筛的制备和无机材料合成方面已有一定的应用,但其应用还很有限。同时,要利用组合化学水热法,具备以下特点:(1)每次合成要产生出尽可能多的平行结果;(2)减少每组试样量;(3)增加合成与表征过程中的自动化程度;(4)实验过程与计算机充分结合,提高实验效率。 2. 气相转移法 2.1 气相转移法制备分子筛粉末 气相转移法可用于制备MFI、FER、MOR等结构的沸石分子筛。Zhang等利用气相转移法合成了ZnAPO-34和SAPO-34分子筛,证明水是气相法合成磷铝分子筛不可缺少的组分。后来,也有人利用气相法合成了AFI和AEI的磷铝分子筛,验证了水在合成过程中的作用。在n(P2O5)/n(Al2O3)=1时,分别用三乙胺和二正丙胺与水作为模板剂合成了AlPO4-5和AlPO4-11分子筛。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

新型分子筛催化剂的研究进展

综 述 文章编号:1002-1124(2006)02-0027-03 新型分子筛催化剂的研究进展 汪慧智 (辽宁省大连市渤海实验室,辽宁大连116000) 摘 要:本文主要介绍分子筛材料催化剂的特征、合成工艺、应用及理论研究和发展方向,并对其应用和发展前景作了总结和评述。 关键词:分子筛;催化剂材料;应用 中图分类号 :T Q424.25 文献标识码:A Advances in molecular sieve catalysts W ANG Hui-zhi (Dalian Bohai Laboratory,Dalian116000,China) Abstract:Advances in charactere,synthesis technology,application,theoretical research and development direc2 tion of m olecular sieve catalysts material were reviewed in this paper,and their prospect of application were discussed. K ey w ords:m olecular sieve;catalysts material;application 20世纪90年代以来,随着石油化工、精细化工产业的发展和环保要求的日趋严格,对新催化剂材料的需求也不断增加。目前,国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料[1]。 1 分子筛催化剂的特征 分子筛是具有均匀微孔,其孔径与一般分子大小相当的薄膜类物质,是由SiO2、Al2O3和碱金属或碱土金属组成的无机微孔材料,其化学组成式通常表示为: M X O?AlO3?Y SiO2?Z H2O(M:K、Na、Ca、Mg) 1930年Panling提出分子筛的结构由SiO4四面 收稿日期:2006-01-05 作者简介:汪慧智(1973-),男,助理工程师,1996年毕业于沈阳化工学院精细化工系。体和AlO4四面体以O/(Al+Si)=2(原子比)的比例排列组成的骨架为基体[2]。按照硅铝比(X)的不同,分子筛可分为低硅(A型),中硅(X、Y型),高硅(ZS M-5型)和全硅型(Silicalite)。分子筛的耐酸性、热稳定性及催化性能都随X值的不同而有所变化。 1883年Eichhorn首先观察到沸石的离子交换性并进行了应用[3]。1925年Weigel和Steinheff发现菱沸石脱水后,能强烈吸附H2O和乙醇,而对乙醚、丙酮和苯等都完全不吸附。1945年Barrer应用天然菱沸石分子筛进行气体分离。此后,随硅酸盐X射线研究的进展,逐渐掌握了结晶构造和吸附分离性能的关系,相继阐明了各种无机和有机气体的选择性和吸附现象。 1954年第一次人工合成沸石分子筛并作为吸附剂而商品化。1957~1959年先后合成了A型和X 型分子筛以及与天然八面沸石结构相似的Y型分 [2] 胡建芳,张其清,等1[J]1材料研究学报,1994,8(1):82-871 [3] Hans J G riesser et al1P olymer international,1992,27:10921 [4] ZhangMC,K angET,Neohkg,et al1Adhesion enhancement of thernally evaporated aluminum to surfaceg graft copolymerized poly (tetrafluoroethylene)film[J]1Journal Adhesion Science T echnology, 1999,13(7):819-8351 [5] 马於光,等1[J]1高分子学报,1990,(5):5701 [6] Chen X D,Sun R H,H U YJ,et al1[J]1J Radiat Res Radiat Proces, 1998,16(4):209-2121[7] 陈晓东,孙瑞焕,等1聚四氟乙烯的CH4/O2混合气体等离子体 表面亲水改性研究[J]1辐射研究与辐射工艺学报,2000,18 (1):25-291 [8] 潘林峰,田晓梅,等1介质阻挡放电处理PTFE的研究[J]1中南 民族大学学报,2004,23(1):59-611 [9] 方志,邱毓昌,等1用大气压下空气辉光放电对聚四氟乙烯进 行表面改性[J]1西安交通大学学报,2004,38(2):190-1941 [10] c1z1liu,et al1[J]1M aterials Chemistry and Physics,2004,85:340- 3461 Sum125N o12 化学工程师 Chemical Engineer 2006年2月

沸石分子筛

第三章 酸碱平衡 同步练习 P71 1.已知某成人胃液中,0.032H =+)(c mol?dm -3,)(-OH c =? 解:1314 w 103.10.032101.0) (H )(OH --+ - ?=?==c K c 2.据表3?1计算,100℃时,纯水中)(+H c 和)(-OH c 分别是多少? 解:714w 102.3105.474)H )OH --+-?=?=== K c c (( P72 1.某葡萄酒样品的pH=3.70,计算该葡萄酒中H 3O +之浓度。 解:pH= ?lg )(+H c 3.70= –lg c (H +) c (H +)=2.0×10-4(mol/L) 2.一漂白剂溶液,0.036OH =-)(c mol?dm -3,计算该漂白剂的pH 值。 解:pOH= ?lg )(O - H c =–lg0.036=1.4 pH=14–pOH=14–1.4=12.6 3.pH 值的适用范围是多少? 答:1~14 4.人体温度为37℃时,其 w K =14104.2-?,若此时,血液的pH 值为7.4,计算此时血 液中)(+H c 、)(-OH c 。 解:pH= ?lg )(+H c 7.4= –lg c (H +) c (H +)=3.9×10-8(mol/L) ∵ c (H +)×c (OH ?)= w K ∴ 78 -14w 106.0103.9102.4) H )OH --+- ?=??= =((c K c P75 1.判断正误,并说明理由。 (1)麻黄素(C 10H 15NO )是一种一元弱碱,常用作充血药物,室温时其 b K =4104.1-?, 所以,其碱性强于氨水。 答:正确。 (2)因为氢氟酸的解离度大于醋酸的解离度,因此,氢氟酸的酸性强于醋酸。

沸石分子筛的绿色合成路线

沸石分子筛的绿色合成路线 沸石分子筛材料在石油精细化工及环境治理等方面发挥着巨大的作用。通常,绝大多数沸石分子筛都是需要在有机模板参与的条件下合成,然而使用的大部分模板剂都是有毒的,这对沸石的实际生产应用有着强烈的影响。绿色合成路线是指使用较为绿色的原料来合成目标产品,并且在合成过程中减少甚至消除对环境的负面影响、减少废物的排放和提高效率。 首先,沸石分子筛所需的原料混合后,主要物种硅酸盐与铝酸盐聚合生成硅铝酸盐初始凝胶。这种硅铝酸盐凝胶是在高浓度条件下快速形成的,因此具有很高无序度,但是这种硅铝酸盐凝胶中可能含有某些初级结构单元,如:四元环、六元环等等。同时,这种凝胶和液相之间建立了溶解平衡。另外,硅铝酸根离子的溶度积与凝胶的结构和温度息息相关,随着晶化温度的变化,这种凝胶和液相之间建立起新的凝胶和溶液的平衡。其次,液相中多硅酸根与铝酸根浓度的增加导致晶核的形成,然后是沸石分子筛晶体的生长。在沸石分子筛的成核和晶体生长过程中,消耗了液相中的多硅酸根与铝酸根离子,从而引起硅铝凝胶的继续溶解。由于沸石晶体的溶解度小于无定形凝胶的溶解度,最后结果是凝胶的完全溶解,沸石分子筛晶体的完全生长。

对于合成沸石分子筛,温度是一个很重要的因素。温度变化会影响水在反应釜中的压力的变化、硅铝酸盐的聚合状态和聚合反应、凝胶的生成和溶解与转变、分子筛的成核与生长以及介稳相间的转晶。相同的体系在不同的温度下可能会得到完全不一样的物相,温度越高得到的沸石的尺寸和孔体积越小,晶体骨架密度相应增大。一般而言在150C以下,初级结构往往是四元环或六元环,而当温度高于150C,则往往是五元环的初级结构单元。由此可见,在高温水热条件下,无机物(主要是硅铝酸盐物种)的造孔规律和晶化温度与水蒸汽压之间存在着密切的联系。 为克服常规水热法合成沸石分子筛过程中由于溶剂水的引入造成的含碱废水排放,合成体系压力过高、单釜产率过低等问题,人们开发出了无溶剂法绿色沸石分子筛合成路线。过对晶化过程中晶化产物的表征结果发现,无溶剂法合成沸石分子筛经历如下过程:晶化初期,固相原料在无定形二氧化硅中逐渐发生扩散,并伴随着硅物种的聚合;随着晶化时间的延长,无定形的二氧化硅逐渐向晶体转换。总的来说,固相合成反应过程经历了初始原料混合和扩散,硅羟基的不断缩合等过程,最终使得反应原料在固相状态下转换为silicalite-1沸石分子筛。

分子筛催化剂的研究进展

课程报告 课程名称工业催化 专业化学工程与技术学号201610151529 姓名黄玲

沸石分子筛催化剂的研究与进展 摘要:本文主要介绍了沸石分子筛催化剂的结构、工业应用及发展前景,并对新型沸石分子筛催化剂的研究作了简要介绍. 关键词:沸石分子筛;催化剂;工业应用

第一章概述 1.1分子筛 分子筛是一种包含有精确和单一的微小孔洞的材料,可用于吸附气体或液体.最初的分子筛是天然沸石,即Si和A1组成的品体化合物.足够小的分子可以通过孔道被吸附,而更大的分子则不能.同时,分子筛也是一种多功能的催化剂,对反应原料和产物有筛分作用,已广泛用于石油化工和精细化上生产中. 1.2沸石分子筛的结构 沸石分子筛是一族结晶性硅铝酸盐的总称[1].沸石最基本的结构是由(SiO )四面 4 )四面体.相邻的四面体由氧桥连结成环,环有大有小,按成环的氧原子体和(AlO 4 数划分,有四元氧环,五元氧环,六元氧环,八元氧环,十元氧环和十二元氧环;环是分子筛的通道孔口,对通过的分子筛起筛分作用.氧环通过氧桥相互连结,形成具有三维空间的多面体.多面体有中空的笼,笼是分子筛结构的重要特征.空洞中 )四面体的负电荷,利用加热或含有结晶水和阳离子,这些阳离子用来中和(AlO 4 减压的办法,可以比较容易地脱除一部分或全部结晶水.不同结构的笼再通过氧桥互相连接形成各种不同结构的分子筛. 1.3沸石分子筛的催化机理 沸石分子筛在各种不同的酸性催化反应中,能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,酸度及其酸强度分布是分子筛的重要参数.研究表明,分子筛中B酸来源于骨架四面体铝,而L酸主要来源于非骨架六面体铝, 所以分子筛Al的含量及其分布与分子筛的表面酸性物质密切相关,故可采用分子筛的脱铝和补铝等二次水热处理,得到理想的硅铝比的分子筛.此外,分子筛的酸性还受取代金属离子影响,由于多价金属离子的水解作用,导致催化剂表面酸中心重新分布. 此外,在 1960 年首次提出了择形催化的概念,即催化反应的选择性取决于分子与孔径的相应大小,尤其对于中孔沸石.

A型分子筛的最新研究进展

A型分子筛的应用研究进展 王鹏飞 (上海化工研究院精细化工所200062) 摘要:综述了A型沸石分子筛在膜制备与应用、洗涤剂、新型材料、干燥剂或脱水剂、缓释肥料、变压吸附分离以及环境保护等方面的应用。 关键词:A型分子筛应用 1、引言 A型分子筛最早于1954年在美国联合碳化物公司(Union Carbide Corporation, 简称UCC)开始试生产[1],并于1957年移交工业生产,与X型、Y 型和丝光沸石一起被称为第一代分子筛。A型分子筛的化学组成经验式为(M2+, M+)O·Al2O3·2SiO2·yH2O,根据交换阳离子的不同或分子筛有效孔径的不同,可分为3A、4A、5A分子筛等。 A型分子筛最大特性在于其吸附性,因而常常被用作干燥吸附材料、膜分离介质、气体变压吸附分离以及有机溶剂或气体脱水剂等;由于其具有离子交换性能,被用作洗涤剂助剂、化肥肥效保持或土壤改良剂、废水处理等,在工农业诸多领域有着广泛的用途和巨大的应用潜力。 2、应用 2.1 A型沸石膜的合成与应用 无机膜分离技术是80年代初发展起来的高新分离技术,具有耐高温、化学稳定性好、抗微生物侵蚀能力强、机械强度高以及不易胀、易清洗再生等优点。A型分子筛具有较强的吸水性,利用其固有的特点,制成的A型分子筛膜具有很好的脱水性能。随着膜制备技术的发展,A型沸石膜也越来越受到人们的重视。 例如,用A沸石膜采用全蒸发分离醇—水混合物[2]。由均质溶液在大孔氧化锆复合物载体上制备出片状和管状的NaA沸石膜。KA沸石膜是从钠型通过离子交换而得。通过全蒸发测试了这些膜从异丙醇/水混合物中脱出水的性能,Na型和K型A沸石都有高选择性,热处理温度达150℃时膜的性能不受影响。Goldman等[3]将加入A型分子筛粉末的聚氯乙烯溶胶涂敷于玻璃表面上,在常温下蒸发16h、28℃下真空干燥28h,制成A型分子筛膜。主要用于乙醇—水共沸物分离,其中水的分离因子为29,蒸发能力为4×10-4g/(m.h)。 高滋等[4]将A型分子筛粉加到含有聚合物PV A溶液中,然后浇铸在玻璃圆

沸石分子筛

沸石分子筛的合成与应用 分子筛是一类具有均匀微孔,主要由硅、铝、氧及其它一些金属阳离子构成的吸附剂或薄膜类物质,根据其有效孔径来筛分各种流体分子。沸石分子筛是指那些具有分子筛作用的天然及人工合成的硅铝酸盐[1]。沸石分子筛由于其特有的结构和性能,它的应用已遍及石油化工、环保生物工程、食品工业、医药化工等领域,随着国民经济各行业的发展,沸石分子筛的应用前景日益广阔。 一、沸石分子筛的结构 沸石是沸石族矿物的总称,是一种含水的碱或碱土金属的铝硅酸盐矿物,加热脱水后,沸石晶体孔道可以吸附比孔道小的物质分子,而排斥比孔道直径大的物质分子,使分子大小不同的混合物分开,起着筛分的作用。 沸石分子筛是硅铝四面体形成的三维硅铝酸盐金属结构的晶体,是一种孔径大小均一的强极性吸附剂。沸石或经不同金属阳离子交换或经其他方法改性后的沸石分子筛,具有很高的选择吸附分离能力。工业上最常用的合成分子筛仅为A型、X型、Y型、丝光沸石和ZSM系列沸石。沸石分子筛的化学组成通式为:[M2(Ⅰ)M(Ⅱ)]O?Al2O3?nSiO2?mH2O[2],式中M2(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是纳和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和氢氧化铝等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石。 沸石分子筛的最基本结构是硅氧四面体和铝氧四面体,四面体相互连接成多元环以及具有三维空间多面体,即构成了沸石的骨架结构,由于骨架结构中有中空的笼状,常称为笼,笼有多种多样,如α笼、β笼、γ笼等,这些笼相互连接就可构成A型、X型、Y型分子筛。 二、沸石分子筛的合成方法 随着沸石分子筛在化学工业等领域发挥着越来越重要的作用,出现了多种制备方法,如传统的水热合成法、非水体系合成法、蒸汽相体系合成法、气相转移法等。 1. 水热合成法 这种合成法是以水作为沸石分子筛晶化的介质,将其它反应原料按比例混合,放入反应釜中,在一定的温度下晶化而合成沸石分子筛[3]。水热合成使晶体成核速度和晶化速度提高。合成过程中加料顺序、搅拌速度及晶化时间都会对晶化产物的结构和形貌产生很大的影响。

分子筛与硅胶的区别

Date: 2009-04-06/MLN
Technical Information Sheet
Adsorption materials, comparison between Silica Gel and Molecular Sieves For Rotary Heat Exchangers with a high moisture transfer capability different adsorption materials are used. The two main types of adsorption materials used for moisture transfer in normal comfort ventilation applications are Silica gel and Molecular Sieve. Silica gel: Silica gel is a partially dehydrated form of polymeric colloidal silicic acid. Silica gel has an amorphous micro-porous structure with a distribution of pore opening sizes of roughly 3-60 angstroms. These interconnected pores form a vast surface area that will attract and hold water by adsorption and capillary condensation, allowing silica gel to adsorb up to 40% of its weight in water. Silica gel is extremely efficient at temperatures below 25°C (77°F) (see Figures 1 and 2), but will lose some of its adsorbing capacity as temperatures begin to rise (Figure 3). Much of silica gel's popularity is due to its non-corrosive, nontoxic nature and its having received US government approval for use in food and drug packaging. Molecular sieves: Molecular sieves (also known as Synthetic Zeolite) adsorb moisture more strongly than silica gel. This can be seen by the high initial slope of the adsorption isotherm for molecular sieve as compared to the other desiccants (Figure 2). Where a very low relative humidity is required, molecular sieves are often the most economic desiccant because of their high adsorption capacity at low relative humidity. Also, molecular sieves will not give up moisture as readily as silica gel as temperatures rise (Figure 3). Molecular sieve contains a uniform network of crystalline pores and empty adsorption cavities, which give it an internal adsorptive surface area of 700 to 800 sq. m per g (1/2 the total volume of the crystals). Molecular sieve can adsorb up to 25% of its weight in water. Because of its uniform structure,
Page 1 of 4

相关主题
文本预览
相关文档 最新文档