当前位置:文档之家› 面团拉伸性能测定(拉伸仪)

面团拉伸性能测定(拉伸仪)

面团拉伸性能测定(拉伸仪)
面团拉伸性能测定(拉伸仪)

面团拉伸性能测定(拉伸仪)

一、测定原理

小麦粉在粉质仪揉面钵中加盐水揉和成面团后,在拉伸仪中揉球、搓条、恒温醒面,然后将装有面团的夹具置于测量系统托架上,牵拉杆和拉面钩以固定速度向下移动,用拉面钩拉伸面团,面团受拉力作用产生形变直至拉断,记录器自动将面团因受力产生的抗拉伸力和拉伸变化情况记录下来,从所得拉伸曲线评价面团的抗拉阻力和延伸度等特性。

二、试剂和仪器

蒸馏水或与纯度相当的水

软塑料刮片

氯化钠(分析纯)

拉伸仪(BRABENDER拉伸仪)

天平(感量0.1g)

锥形瓶(250ml)

三、操作步骤

1、先开恒温器电源(先开总开关,再开程序开关),再开主机电源,然后打开电脑,进入程序。

2、预热约30分钟,并精确调节恒温器上的温度,确保醒发室内的温度为30℃,待仪器稳定后,开始实验。

3、根据电脑提示,称取适量面粉和6克盐。

4、单击[开始新测试]。

5、按[START]按钮,再点击[确定],再点击[测试开始]。

6、根据电脑提示,加入称量好的面粉。(注意:观察曲线是否在20BU以下,否则可能是面钵未洗净或其他问题)

7、根据估计的加水量将水加入盛有食盐的烧杯中,搅拌至食盐全部溶解,用漏斗匀速一次性加入,争取在25S内加完。然后,用面铲将和面钵壁上的面刮净,立即盖上小盖,以防水份散失。

8、观察曲线使5分钟内最大稠度是否在480-520BU之间,否则调整吸水率,重新测试。

9、在电脑计时5分钟时点击STOP,再点击[测试结束]。

10、打开和面钵,顺势取下面团,依次称取2个150克,然后迅速搓圆,搓条。将面团顺势滚入托盘架上,立即放入醒发室内,计时。

11、将机器的有关部位擦干试净,退出程序,关主机电源,再关恒温器程序开关及电源开关。

四、电脑操作程序

1、根据实验需要,在电脑上设置实验次数。

2、单击测试开始,单击增加新测试将测试数据填入其中,如估计吸水率、测试次数、样品名称等,点击OK保存。

3、做哪个样品,将其点黑,时间指示颜色变红为测试过样品。

五、结果表示

在正常情况下,使用135min后的评价值

1)延伸性:为测得曲线的长度mm,是各面团的一个度量值。

2)抗延伸阻力:为拉伸过程的起点到50mm处拉伸曲线的高度,它表示面团抵抗延伸作用力的力。

3)比值:是抗延阻力除以延伸性计算出来的值,与能量一起表示面团除潜在的烘焙体积以外的性能和稳定性。当比值较低时,面团会迅速失去强度扩散开来并趋于流散,非常易于延展;当比值较高时,面团在发酵期间是趋于收缩的,面筋不易伸展,韧性大,影响面团的松弛和醒发。

4)能量:是指封闭拉伸曲线的面积,单位平方厘米。能量是一种面粉的可加工性能的度量。它表示面粉样品制成的面团在发酵期间是否会迅速弱化,或是否具有良好的可加工性能的强度和弹性。在应用中能量较低的面团仅有较小的发酵耐力容许极限,仅适用于一个短而紧凑的面团工艺;随着能量的逐渐增大,发酵耐力容许极限变大,该面团就适用于较长的面团工艺。

5)最大抗延伸阻力:拉伸曲线最高处的高度能量和比值是拉伸曲线两个最重要的值,它们在一起可以表征面团在发酵期间的稳定性,以比值为基础可以更好地调节和改善面团的最佳流变特性,并可以借助拉伸实验这一可靠和可再现的方法来评定和表征小麦粉面团的延展特性。

六、注意事项

1、加水时要匀速一次性加入,控制在25S内加完。

2、要确保醒发室内温度为30℃。

3、从和面钵里取出面团时,要顺势拿下,不要破坏面筋网络。

4、称取面团时,尽量一次称好,宁多勿少,剪下时应从一个地方剪去。

5、放入搓圆机搓圆,不要人为的改变面团形状,如面团太软,可在其上洒少许淀粉,不要洒在滚筒上。

6、面团从滚筒里滚出时,要顺势滚入托盘架上,不要将两端提起。

7、托盘架上应经常涂沫植物油,以防粘连

8、搓圆机连杆上要定期涂机油,搓圆板下面涂黄油,每次使用前在托盘架上涂上植物油。

9、滚筒要定期拆下清扫,安装时滚筒要平,与两侧在一条直线上。

10、搓圆机上的螺丝旋钮可调节机框的高低。

11、搓条机上两个固定螺丝千万不能随意调整。

12、新皮带掉沫为正常现象,使用一段时间后如有松动可截下一截。

13、拉伸面团快断时,用手托一下。

14、恒温器内的水不要加得太多,加到下沿即可,并定期进行清洗换水。

七、说明

以上内容为海韦力公司技术中心粉质分析室提供,仅供参阅。

海韦力技术中心

拉伸性能的测定

拉伸性能的测定 一.准备工作 (一)测量原始截面积So 测量试样原始截面尺寸时,应按照表选取量具。根据所测得的试样尺寸,(厚度在0.1mm 至小于3 mm 准确到±2%,其它试样准确到±1%)计算横截面积So 并至少保留4位有效数字或保留两位小数点。 量具或测量装置的分辩率 试样横截面尺寸 分辩率不大于 0.1~0.5 0.001 >0.5~2.0 0.005 >2.0~10.0 0.01 >10.0 0.05 圆形截面试样应在试样工作段的两端及中间处两个相互垂直的方向上各测1次直径,取其算术平均值,先用3处测得横截面积的最小值。横截面积So 按下式计算: 214 So d π= 矩形截面试样应在试样工作段的两端及中间处测量其宽度和厚度,选用3处测得横截面积中的最小值。横截面积So 按下式计算: So ab = 圆管纵向弧形试样在试样工作段的两端及中间处测量,选用3处测得横截面

积中的最小值。有关标准或协议无规定时,横截面积So 按下式计算: 当/b D <0.25 时 2 [1]6(2) b So ab D D a =+- 当/b D <0.17时 So ab = 计算时,管外径D 取标称值。 圆管截面试样应在管的一端两个相互垂直的方向各测1次外径,取其算术平均值。在同一管端圆周上相互垂直的方向测量4处管壁厚度,取其算术平均值。用平均外径和平均管壁厚度计算得到的横截面积作为标距内的原始横截面积。原始横截面积 So 按下式计算:()So a D a π=- (二)标记原始标距Lo 试样的原始标距所在位置一般应在平行长度居中对称的位置上。应采用不损伤试样或不影响试验结果的方法标记试样标距。例如采用打点机打的小冲点、细划线或细墨线等标记。标记应清晰,对于脆性试样,应可能采用不损伤表面的方法标记。比例试样的原始标距值,取计算结果最接近5mm 或10mm 的倍数,中间值向大的一方取值,标距的长度应精确到取值数值的±1%。 (三)选取试验机和引伸计 根据试样选取合适的夹持装置以及试验机合适的量程。一般是在量程80%左右。检定过的拉力试验机应满足1级或优于1级的准确度。引伸计标距应不小于试样标距的一半(即Le ≥1/2Lo )。 (四)确定试验速率 如仅测定上屈服强度时试验时的弹性应力速率应在标准的表4规定的范围内尽可能保持恒定的速率如仅测定下屈服强度,平行长度屈服期间应变速率应在0.00025/s ~0.0025/s 范围内尽可能保持恒定。。当不能直接调节这一应变速率,允许调节屈服即将开始前的应力速率,不超过标准的表4规定的最大速率,直至屈服阶段完成之前不再改变试验机的控制。 若仅测定抗拉强度,在弹、塑性范围内,试样工作段的应变速率可达到0.008/s 。 材料弹性模量E/(N/mm 2) 应力速率(N/mm 2)。s 1- 最小 最大 <150 000 2 20 ≥150 000 6 60

ISO_527-2塑料拉伸性能测试方法

塑料拉伸性能的测定 第二部分:模塑和挤塑塑料的试验条件 1 范围 1.1GB/T 1040的本部分在第1部分基础上规定了用于测定模塑和挤塑塑料拉伸性能的实验条件。 1.2本部分适合下述范围的材料: ----硬质和半硬质的热塑性模塑、挤塑和铸塑材料,除未填冲类型外还包括列入用短纤棒、细棒、小薄片或细粒料填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----硬质和半硬质热固性模塑和铸塑材料,包括填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----热致液晶聚合物。 本部分不适用于纺织纤维增强的复合材料、硬质微孔材料或含有微孔材料夹层结构的材料2.名词和定义 见ISO 527-1:2012,章节3 3原理和方法 见ISO 527-1:2012,章节4 4仪器 4.1概述 见ISO 527-1:2012,章节5,特别是5.1.1致5.1.4 4.2引伸计 4.3测试记录装置 5测试样品 5.1形状和尺寸 只要可能,试样应为如图一所示的1A型和1B型的哑铃型试样,直接模塑的多用途试样选择1A型,机加工试样选择1B型。 关于使用小试样时的规定,见附录A/ISO 20753 注:具有4mm厚的IA型和1B型试样分别和ISO 3167规定的A型和B型多用途试样相同。与ISO 20753的A1和A2也相同

5.2试样的制备 应按照相关材料规范制备试样,当无规范或无其他规定时,应按ISO293、ISO 294-1,ISO295或者ISO 10724-1以适宜的方法从材料直接压塑制备试样,或按照ISO 2818由压塑或注塑板材经机加工制备试样。 试样所有表面应吴可见裂痕、划痕或其他缺陷。如果模塑试样存在毛刺应去掉,注意不要损伤模塑表面。 由制件机加工制备试样时应取平面或曲率最小的区域。除非确实需要,对于增强塑料试样不宜使用机加工来减少厚度,表面经过机加工的试样与未经机加工的试样实验结果不能互相比较。 5.3标线 见ISO 527-1:2012,6.3 5.4检查测试样品 见ISO 527-1:2012,6.4 5.5各向异性 5.6测试样数量 见ISO 527-1:2012,章节7. 6 状态调节 见ISO 527-1:2012,章节8 7 测试过程 见ISO 527-1:2012,章节9 在测量弹性模量时,1A型、IB型试样的试验速度应为1mm/min,对于小试样见附录A。8结果计算和表示 见ISO 527-1:2012,章节10 9精确度 见附录B 10实验报告 试验报告应包扩一下内容: a)注明引用ISO 527的本部分,包括试样类型和试验速度,并按下列方式表示;

面粉特性

1、吸水率 吸水率是指单位面粉吸水的能力。吸水率的大小直接影响食品的出品率。一般来说,影响面粉吸水率的主要因素是蛋白质和破损淀粉的含量。从表一可以看出,心磨粉的吸水率高于同级皮磨粉。后路粉的吸水率高于前路粉。但是由于破损淀粉的吸水率高(大约相当于自身的100%),持水性差,所以后路粉的弱化度要远远大于前路粉,面团发酵时易出现析水现象,蒸制的馒头形状较扁,另外麦谷蛋白与麦胶蛋白的比例也对吸水率有影响,麦谷蛋白的吸水率好于麦胶蛋白。 2、形成时间 形成时间是指面团达到最大稠度所用的时间。形成时间主要与蛋白质的含量呈正相关。一般来说,皮磨粉的形成时间高于心磨粉。对于馒头专用粉来说,形成时间在1.5---3min之间较为合适。太短则面团易打过,影响操作性,太长则打面时间延长,增加能耗。 3、稳定时间 稳定时间是指面团耐受机械搅拌的能力。蛋白质的数量和质量是影响稳定时间的主要因素。皮磨粉的稳定时间长于心磨粉,渣磨粉介于两者之间,面团的稳定时间在一定意义上也说明了面团发酵过程中保持CO2气体的能力。一般来说,馒头专用粉的稳定时间在2---4min 较为合适。太短则馒头体积小;太长则馒头易收缩。 4、弱化度 弱化度是指面团达最大稠度后经12min搅拌所需能量的衰减程度。它与蛋白质的数量和质量呈负相关,与破损淀粉的含量和酶活力呈正相关。后路心磨粉由于破损淀粉含量较高,弱化度也较大。一般来说馒头专用粉弱化度在80---120BU之间较为合适。 5、评价值 评价值表示搅拌12min后面团阻力下降的对数函数。它与面团的形成时间、稳定时间、弱化度都有一定的相关性,是一个整体评价指标。在各路系统中,评价值规律性稍差,而与工艺操作因素,粉路合并情况相关性大。 6、最大抗延伸阻力 抗延伸阻力表示的是面团的强度和筋力。一般来说,心磨粉的蛋白质质量好于皮磨粉。最大抗延伸阻力太小时,面团持气能力差,CO2气体易从微气室冲出聚集成大气泡,蒸制的馒头易出现皮心分离现象,且馒头较扁。最大抗延伸力在250---400BU之间的面粉蒸制馒头效果较好。 7、拉伸长度 拉伸长度表示的是面团的延伸性与可塑性。面团的延伸性与麦胶蛋白含量呈正相关。一般来说,皮磨粉麦胶蛋白含量高于心磨粉,也就是说皮磨粉的延伸性好于心磨粉。拉伸长度太长的面粉蒸制的馒头形状扁。 8、降落数值 降落数值反映的是面粉中的酶活性。它与酶活性呈负相关。“前路粉适合蒸煮食品,后路粉适合挤压食品”这是多年来面粉企业生产通用粉时所总结出的经验。前路粉酶活性高,能分解破损淀粉,为酵母提供养料,而后路粉酶活性低,能防止淀粉溢出,增强耐煮性。另外,我们还发现几乎国内所有的面粉厂所测降落数值都较资料介绍的偏高,这可能与我国的小麦及仪器的使用有关,降落数值350---500S之间的面粉蒸制的馒头都是正常的。 9、干湿面筋 根据蛋白质在小麦籽粒的分布特点,由外至内,蛋白质数量逐渐变少,但质量逐渐变好,在生产中也基本符合这种规律,一般来说,湿面筋含量在28---33%之间的面粉做出的馒头效果较好。 10、面筋指数

拉伸性能的测定修改版(优.选)

拉伸性能的测定修改号0 页数第 1 页共12 页 拉伸性能的测定 1.原理 沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。 2.术语和定义 2.1标距() 试样中间部分两标线之间的初始距离,以mm为单位。 2.2实验速度() 在实验过程中,实验机夹具分离速度,以mm/min为单位。 2.3拉伸应力tensil e stress σ 在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。 2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy 发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。 2.3.2拉伸断裂应力tensile stress at break σB 试样断裂时的拉伸应力(见图1)以MPa为单位。 2.3.3拉伸强度tensile strength σM 在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。 2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx 应变达到规定值x%时的应力以MPa为单位。适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。但在任何情况下x 都必须小于拉伸强度所对应的应变。如土工格栅产品中的2%、5%拉伸力。 此条用于取代92版的“偏置屈服应力” 2.4拉伸应变tensile strain ε 标距原始单位长度的增量用无量纲的比值或百分数(%)表示。 适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称 应变”代替。 2.4.1拉伸屈服应变tensile strain at yield εy 屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%

粉质曲线和拉伸曲线

粉质曲线 粉质曲线 面团的揉混特性反映面团的耐揉程度,是通过粉质仪来测定的。 测定过程如下:将定量的面粉置于揉面钵中,用滴定管加定量的水,在定温下开机揉成面团,根据揉制面团过程中动力消耗情况,仪器自动绘制一条特定的曲线,即粉质曲线,反映揉和面团过程中混合搅拌刀所受到的综合阻力随搅拌时间的变化规律,它是分析面团、面粉品质的依据。 1.吸水率(Absorption) 吸水率表示在制作面团时,混合一定重量面粉所需水的量。这些水一部分吸附在淀粉和蛋白质颗粒(或蛋白质分子)的表面;一部分处于自由状态。吸水率在粉质仪上是指面团最大稠度处于500±20BU时所需的加水量,以占14%湿基面粉重量的百分数表示。注意加水的整个过程要在25s内完成。以容积300g面粉的揉面钵为例:吸水率(%)=(加水量+小麦粉重量—300)/3,其中,加水量以ml计。 国外优质小麦面粉的吸水率多在60%~70%之间,我国小麦粉的吸水率平均在57%,并且北方麦区的冬小麦吸水率较高。 2.形成时间(Development time) 从开始加水到面团稠度达到最大时所需要的揉混时间是面团的形成时间。软麦的弹性差,形成时间一般在1~4min之间;硬麦弹性强,形成时间在4min左右。我国商品小麦的形成时间普遍较短,平均时间在2.3min。 3、稳定时间(Stability time) 曲线首次穿过500BU和离开500BU两点的时间差是面团的稳定时间。如果曲线的最大稠度不是准确集中在500BU,则必须在该最大稠度处画一条平行于500BU的标线,用这条表现来测取曲线到达和离开的时间差。面团的稳定时间反映面团的稳定性、耐揉程度。面团的稳定性好,反映其对剪切力降解有较强的抵抗力,也就意味着其麦谷蛋白的二硫键牢固,不易打开,或者这些二硫键处在十分恰当的位置上。稳定时间越长,韧性越好,面筋的强度越大,面团的加工性质越好。

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

如何利用小麦粉面团拉伸仪提升面团延展性

如何利用小麦粉面团拉伸仪提升面团延展性 一、小麦粉面团拉伸仪/面团拉伸仪/拉伸仪简介概述: 面食品的制作肯定离不开面粉,小麦粉面团拉伸仪可检测面团的品质。那什么叫面团呢?什么是面团延展性呢?面团就是在外力作用下发生变形,外力消除后,面团会部分恢复原来状态,表现出塑性和弹性。不同品质的面粉形成的面团变形的程度以及抗变形阻力差异不大,这种物理特性称为面团的延展特性,是面团形成后的流变学特性。面团流变学特性我们可以使用小麦粉面团拉伸仪来进行研究。硬麦面粉形成吸水率高、弹性好、抗变形阻力大的面团;相反,软麦面粉形成吸水率低、抗变形阻力小、弹性弱的面团。 小麦粉面团拉伸仪的拉伸曲线反应了麦谷蛋白赋予面团的强度和抗延伸阻力,以及麦醇溶蛋白提供的易流动性和延展性所需要的粘合力。抗拉伸阻力和延伸性反映了面粉的一些特性,能量和比值是反映面粉特性最主要的指标,能量越大、面团强度越大,一般能量大、比值适中的面粉其食用品质比较好。 小麦粉面团拉伸仪相对阻力越大,表示面团筋力越强,阻力越小,表示面团筋力越弱。面团抗延伸性阻力与面团中酵母所产生的CO2气体保留程度有关。只有当面团对拉伸有一定阻力时,才能保留主CO2气体,如果面团抗延伸性阻力太低,则面团中的CO2气体易于冲出气泡的泡壁形成大的气泡或由面团的表面逸出。 拉伸仪/小麦粉面团拉伸仪专门用于面团延伸阻力和延伸长度检测,由球形器、搓条器、拉面机构和数据记录和处理系统组成。由计算机对所采集到的数据进行分析,并绘制延伸图,计算出面团延伸性、延伸阻力、曲线面积、拉力比等

指标,主要测定面粉筋力强度和面粉改良剂改良效果的检测仪器,高性能高精密度称重传感器测定面团抗拉伸阻力。 托普云农HZF-350面团拉伸仪的研发原理为小麦粉在粉质仪揉面钵中加盐水揉和成面团后,在拉伸仪中揉球、搓条、恒温醒面,然后将装有面团的夹具置于系统托架上,牵拉杆和拉面钩以固定速度向下移动,用拉面钩拉伸面团,面团受拉力作用产生形变直至拉断,此时记录器自动将面团因受力产生的抗拉伸力和拉伸变化情况记录下来,从所得托伸曲线评价面团的抗拉阻力和延伸度等性能。拉伸仪广泛用于评价小麦粉品质及面团改良剂的研究,并通过不同醒面时间的拉伸曲线所表示的面团拉伸性能指导面包生产,选定合适的醒发时间。 二、小麦粉面团拉伸仪/面团拉伸仪/拉伸仪伸曲线指标: 1、抗拉伸阻力:面团的弹性用抗拉伸阻力表示,正常面包粉的抗拉伸阻力为600~700 BU。面团的弹性好,表示面筋筋力和持气能力强,一般说,粉质性能好的面团抗拉伸性能相应也好。 2、延伸性:正常面包粉的拉伸曲线延伸性指标应为160~180 mm。国内顶级的面包粉甚至达到200mm以上,弹性(即阻力)大小表明面筋网络结构的牢固性、强度和持气能力;延伸性的大小表明面筋网络的膨胀能力。只有韧性与延伸性的适当平衡和有机配合,才能既保证正常发酵,又能得到理想体积、形状和良好内质的面包产品。 3、面团能量:它是指拉伸曲线与水平线所围成的面积,用cm2表示,表示拉伸面团时所需要的能量、筋力大小的数据。面积越大,能量越大,面粉的筋力或面团强度也越大。如果面粉的能量值低于50 cm2,说明面粉的筋力较弱,面粉的烘焙品质很差。面包粉的正常拉伸图曲线面积应为120~200cm2。 4、面团的RE比:根据面包发酵原理,面粉的筋力(韧性)不是越大越好,而是必须适中。面包粉的正常面团RE比值为3~5之间。如果比值过小(<3),表示面团弹力过小,筋力弱,延伸性过大。如果比值过大(>5),表示面团弹力太强,延伸性过小。 三、小麦粉面团拉伸仪/面团拉伸仪/拉伸仪组成结构: 1.球形器:球形器和搓条器是为面团拉伸做准备工作的。球形器的主要功能是将拉伸仪形成的部分面团揉成均匀一致的球状面团。 2.搓条器:其功能是将球形器滚成的球形面团揉成均匀一致的圆柱形状的面条,以备醒发使用。 3.醒发箱:主要用作面团拉伸之前的醒发之用。醒发室依靠循环水浴的作用,使其保持在30℃的恒温状态。 4.拉面机构。拉面机构是拉伸仪的重要组成部分。它装在机座右端,依靠拉

实验十二 聚合物拉伸性能测试

实验十二聚合物拉伸性能测试 一、实验目的 (1)熟悉电子力学试验机的原理及使用方法; (2)绘制聚合物的应力-应变曲线,测定其拉伸强度、断裂强度和断裂伸长率。 二、实验原理 拉伸性能是聚合物力学性能中最重要、最基本的性能之一。拉伸性能的好坏,可以通过拉伸试验来检验。 拉伸试验是在规定的试验温度、湿度和速度条件下,对标准试样盐纵轴方向施加静态拉伸负荷,直至试样被拉断为止。用于聚合物应力—应变曲线测定的电子拉力机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘处试样在拉伸形变过程中的应力-应变曲线。从应力-应变曲线上可得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、拉伸弹性模量、断裂伸长率等。通过拉伸试验提供的数据,可对高分子材料的拉伸性能做出评价,从而为质量控制,研究、开发与工程设计及其他项目提供参考。 应力-应变曲线一般分为两个部分:弹性变形区和塑性变形区。在弹性变形区,材料发生可完全恢复的弹性变形,应力与应变呈线性关系,符合胡克定律。在塑性变形区,形变是不可逆的塑性形变,应力和应变增加不再呈正比关系,最后出现断裂。图12-1为典型的聚合物拉伸应力-应变曲线。 图12-1 典型的聚合物拉伸应力—应变曲线 不同的高聚物材料、不同的测定条件,分别呈现不同的应力-应变行为。根据应力-应变曲线的形状,目前可大致归纳为五种类型,如图12-2所示。 (1)软而韧拉伸强度低,弹性模量小,且伸长率也不大,如溶胀的凝胶等。 (2)硬而脆拉伸强度和弹性模量较大,断裂伸长率小,如聚苯乙烯等。 (3)硬而强拉伸强度和弹性模量较大,且有适当的伸长率,如硬聚氯乙烯等。 (4)软而韧断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。 (5)硬而韧弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等。

拉伸性能的测定修改版

拉伸性能的测定 1.原理 沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。 2.术语和定义 2.1标距(L0) 试样中间部分两标线之间的初始距离,以mm为单位。 2.2实验速度(υ) 在实验过程中,实验机夹具分离速度,以mm/min为单位。 2.3拉伸应力tensile stress σ 在试样标距长度任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy 发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最 大应力(见图1中的曲线b和曲线c)。 2.3.2拉伸断裂应力tensile stress at break σB 试样断裂时的拉伸应力(见图1)以MPa为单位。 2.3.3拉伸强度tensile strength σM 在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。 2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx 应变达到规定值x%时的应力以MPa为单位。适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。但在任何情况下x 都必须小于拉伸强度所对应的应变。如土工格栅产品中的2%、5%拉伸力。 此条用于取代92版的“偏置屈服应力” 2.4拉伸应变tensile strain ε 标距原始单位长度的增量用无量纲的比值或百分数(%)表示。 适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称 应变”代替。 2.4.1拉伸屈服应变tensile strain at yield εy 屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%表示。 2.4.2拉伸断裂应变tensile strain at break εB 试样未发生屈服而断裂时与断裂应力相对应的拉伸应变见图1中的曲线a和曲线d用无量纲的比值或百分数(%)表示。

(完整版)高分子材料的拉伸性能

《高分子材料的拉伸性能测试》实验指导书 一、实验目的 1、测试热塑性塑料拉伸性能。 2、掌握高分子材料的应力—应变曲线的绘制。 4、了解塑料抗张强度的实验操作。 二、实验原理 拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下: 1.拉伸强度为: (1) 式中σ--拉伸强度,MPa; P---破坏载荷(或最大载荷),N; b---试样宽度,cm; h---试样厚度,cm. 2.拉伸破坏(或最大载荷处)的伸长率为: (2) 式中ε---试样拉伸破坏(或最大载荷处)伸长率,%; ΔL0-破坏时标距内伸长量,cm; L0---测量的标距,cm, 3.拉伸弹性模量为: (3) 式中E t---拉伸弹性模量,MPa; ΔP—荷载-变形曲线上初始直线段部分载荷量,N; ΔL0—与载荷增量对应的标距内变形量,cm。 4.拉伸应力-应变曲线 如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ = Eε 式中: E-杨氏模量或拉伸模量;σ-应力;ε-应变

聚合物材料由干本身长链分子的大分子结构持点,使其具有多重的运动单元,因此不是理想的弹性体,在外力作用下的力学行为是一个松弛过程,具有明显的粘弹性质。拉伸试验时因试验条件的不同,其拉伸行为有很大差别。起始时,应力增加,应变也增加,在A点之前应力与应变成正比关系,符合胡克定律,呈理想弹性体。A点叫做比例极限点。超过A点后的一段,应力增大,应变仍增加,但二者不再成正比关系,比值逐渐减小;当达到Y点时,其比值为零。Y点叫做屈服点。此时弹性模最近似为零,这是一个重要的材料持征点。对塑料来说,它是使用的极限。如果再继续拉伸,应力保持不变甚至还会下降,而应变可以在一个相当大的范围内增加,直至断裂。断裂点的应力可能比屈服点应力小,也可能比它大。断裂点的应力和应变叫做断裂强度和断裂伸长率。 高分子材料是多种多样的,它们的应力—应变曲线也是多样的并且受外界条件的极大影响。 材料的应力—应变曲线下的面积,表示其反抗外力时所做的功,因此根据应力-应变曲线的形状就可以大致判断出该材料的强度和韧性。

拉伸性能测试

拉伸性能测试(静态) 拉伸性能测试主要确定材料的拉伸强度,为研究、开发、工程设计以及质量控制和标准规范提供数据。在拉伸测试中,薄的薄膜会遇到一定困难。拉伸试样的切边必须没有划痕或裂缝,避免薄膜从这些地方开始过早破裂。 对于更薄的薄膜,夹头表面是个问题。必须避免夹头发滑、夹头处试样破裂。任何防止夹头处试样发滑和破裂,而且不干扰试样测试部分的技术如在表面上使用薄的橡胶涂层或使用纱布等都可以接受。 从拉伸性能测试中可以得到拉伸模量、断裂伸长率、屈服应力和应变、拉伸强度和拉伸断裂能等材料性能。ASTM D 638 (通用)[4]和ASTM D 882 [5](薄膜)中给出了塑料的拉伸性能(静态)。 拉伸强度 拉伸强度是用最大载荷除以试样的初始截面面积得到的,表示为单位面积上的力(通常用MPa为单位)。 屈服强度 屈服强度是屈服点处的载荷除以试样的初始截面面积得到的.用单位面积上的力(单位MPa)表示,通常有三位有效数字。 拉伸弹性模量 拉伸弹性模量(简称为弹性模量,E)是刚性指数,而拉伸断裂能(TEB,或韧性)是断裂点处试样单位体积所吸收的总能量。拉伸弹性模量计算如下:在载荷-拉伸曲线上初始线性部分画一条切线,在切线上任选一点,用拉伸力除以相应的应变即得(单位为MPa),实验报告通常有三位有效数字。正割模量(应力-应变间没有初始线性比值时)定义为指定应变处的值。将应力-应变曲线下单位体积能积分得到TEB,或者将吸收的总能量除以试样原有厚度处的体积积分。TEB表示为单位体积的能量(单位为MJ/m3),实验报告通常有两位有效数字。 拉伸断裂强度 拉伸断裂强度的计算与拉伸强度一样,但要用断裂载荷,而不是最大载荷。应该注意的是,在大多数情况中,拉伸强度和拉伸断裂强度值相等。 断裂伸长率 断裂伸长率是断裂点的拉伸除以初始长度值。实验报告通常有两位有效数字。 屈服伸长率 屈服伸长率是屈服点处的拉伸除以试样的初始长度值,实验报告通常有两位有效数字。 塑料薄膜的包装产率 有一种专门的ASTM测试方法(ASTMD 4321[6])测定塑料薄膜的“包装产率”,以试样单位质量上的面积表示。在这种测试中,定义并得到标称产率(用户和供应商之间达成的目标产率值)、包装产率(按标准计算的产率)、标称厚度(用户和供应商之间达成的薄膜厚度目标值)、标称密度和测量密度等值。对于加工厂商来说包装产率值很重要,因为它决定了某种应用中一定质量的薄膜可以得到的实际包装数量。

高分子材料拉伸性能实验

高分子材料拉伸性能实验 1. 实验目的 了解高分子材料的拉伸强度、模量及断裂伸长率的意义和测试方法,通过应力-应变曲线,判断不同高分子材料的性能特征。 2. 实验原理 拉伸强度是用规定的实验温度、湿度和作用力速度,在试样的两端以拉力将试样拉至断裂时所需的负荷力,同时可得到断裂伸长率和拉伸弹性模量。 将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力-应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。 3. 实验材料 实验原料:GPPS、PP、PC。 (1)拉伸样条:哑铃型样条,测试标准:ASTM D638。样条如下:

4. 实验设备 万能材料实验机及夹具 5. 实验条件 不同的材料由于尺寸效应不同,故应尽量减少缺陷和结构不均匀性对测定结果的影响,按表2选用国家标准规定的拉伸试样类型以及相应的实验速度。 表 2 拉伸试样类型以及相应的实验速度 ①Ⅲ试样仅用来测试拉伸强度 实验速度为以下九种: A: 1mm/min ±50% B: 2mm/min ±20% C: 5mm/min ±20% D: 10mm/min ±20% E: 20mm/min ±10% F: 50mm/min ±10% G: 100mm/min ±10% H: 200mm/min ±10% I: 500mm/min ±10% 6.实验步骤 (1)实验环境:温度23℃,相对湿度50%,气压86~106KPa。 (2)测量试样中间平行部分的宽度和厚度,精确到0.01mm,每个试样测量三点,取算术平均值。

小麦粉面团拉伸仪分析拉伸比值与阻力、延伸性具有什么关系

小麦粉面团拉伸仪分析拉伸比值与阻力、延伸性具有什么关系 我国小麦具有较大面积的种植,小麦粉被应用的范围也非常广泛,比如我们身边的面包、面条、包子都有用到小麦粉,在我们身边无处不在,如此可以看出小麦粉的重要性,越重要的东西,人们对它的质量要求就越高,而小麦粉面团拉伸仪就是为检测小麦粉品质而研发生产的。下面内容分析面团的拉伸比值与阻力、延伸性具有什么关系? 拉伸曲线面积可直观反映拉伸能量,一般来说,拉伸曲线面积值低于50平方厘米以下的小麦粉其烘培特性就较差;反之能量越大表明小麦粉筋力越强,烘培质量越好。面团的延伸度、拉伸阻力是判断面团延伸性的重要指标,面团的拉伸阻力大说明面团弹性好、韧性大、筋力强,而面团延伸度大说明在发酵过程中面团的面筋网络形成状态好,不易破裂。将面团延伸性和拉伸阻力2个指标综合起来判断小麦粉质量的指标,称为拉伸比,拉伸比值小,则阻力小,延伸性大,这样的面团发酵时会迅速变软和流散,而拉伸比值过大,则意味着阻力大,弹性强,延伸性小,发酵时面团膨胀会受阻,起发不好,面团坚硬。 小麦粉面团拉伸仪的应用非常广泛,受到很多人的欢迎,该仪器可用来检测小麦粉的质量,也有很多专业人士,使用它对小麦粉流变学特性进行研究,它是农业检测仪器中不可缺少的重要仪器之一。 托普云农拉伸仪/小麦粉面团拉伸仪专门用于面团延伸阻力和延伸长度检测,由球形器、搓条器、拉面机构和数据记录和处理系统组成。由计算机对所采集到的数据进行分析,并绘制延伸图,计算出面团延伸性、延伸阻力、曲线面积、拉力比等指标,主要测定面粉筋力强度和面粉改良剂改良效果的检测仪器,高性能高精密度称重传感器测定面团抗拉伸阻力。

材料在拉伸与压缩时的力学性能-3

§2-3 材料在拉伸与压缩时的力学性能 材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。 此处介绍用常温静载试验来测定材料的力学性能。 1. 试件和设备 标准试件:圆截面试件,如图2-14:标距l 与直径的比例分为,d d l 10=,; d l 5=板试件(矩形截面):标距l 与横截面面积的比例分为,A A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。 详细介绍见材料力学试验部分。国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验 方法和各项要求。 2. 低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢, 如A 3钢、16Mn 钢。 1)拉伸图(P —ΔL ),如图2-15所示。 弹性阶段(oa ) 屈服(流动)阶段(bc ) 强化阶段(ce )由于P —ΔL 曲线与试样 的尺寸有关,为了消除试件尺寸的影响,可采用 应力应变曲线,即εσ?曲线来代替P —ΔL 曲 线。进而试件内部出现裂纹,名义应力下跌, 至f 点试件断裂。 σ对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。 2)εσ?曲线图,如图2-16所示,其各特征点的含义为: oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的

应力值称为比例极限,用P σ表示。它是应力与应变成正比例的最大极限。当P σσ≤ 则有 εσE = (2-5) 即胡克定律,它表示应力与应变成正比,即有 αε σtan == E E 为弹性模量,单位与σ相同。 当应力超过比例极限增加到b 点时, 关系偏离直线,此时若将应力卸至 零,则应变随之消失(一旦应力超过b 点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限ε?σe σ。 e σ是材料只出现弹性变形的极限值。 bc 段:应力超过弹性极限后继续加载, 会出现一种现象,即应力增加很少或不增 加,应变会很快增加,这种现象叫屈服。开始发生屈服的点所对应的应力叫屈服极限s σ。又称屈服强度。在屈服阶段应力不变而应变不断增加,材料似乎失去了抵抗变形的能力,因此产生了显著的塑性变形(此时若卸载,应变不会完全消失,而存在残余变形)。所以s σ是衡量材料强度的重要指标。 表面磨光的低碳钢试样屈服时,表面将出现与轴线成45°倾角的条纹,这是由于材料内部晶格相对滑移形成的,称为滑移线,如图2-17所示。 ce 段:越过屈服阶段后,如要让试 件继续变形,必须继续加载,材料似乎 强化了,ce 段即强化阶段。应变强化阶 段的最高点(e 点) 所对应的应力称为强度极限b σ。 它表示材料所能承受的最大应力。过e 点后,即应力达到强度极限后,试件局部发生剧烈收缩的现象,称为颈缩,如图2-18所示。 3)延伸率和截面收缩率 为度量材料塑性变形的能力,定义 延伸率为

面团吸水量和揉和性能的测定(粉质仪)

面团吸水量和揉和性能的测定(粉质仪) 一、测定原理 小麦粉在粉质仪中加水揉和,随着面团的形成及衰变,其稠度不断变化,用测力计和记录器测量和自动记录面团揉和时相应于稠度的阻力变化,从加水量及记录揉和性能的粉质曲线计算小麦粉吸水量及评价面团揉和时的形成时间、稳定时间、弱化度等特性,用以评价面团强度。 二、仪器和用具 粉质仪(BRABENDER粉质仪) 天平(感量0.1g) 软塑料刮片 三、操作步骤 1、先开恒温器电源(先开总开关,再开程序开关),再开主机电源,然后打开电脑,进入程序。 2、预热约30分钟,并精确调节恒温器上的温度,确保面钵壁内的水温为30℃,待仪器稳定后,开始实验。 3、将有关信息如面粉水份、样品名称、估计吸水率、降落值等输入电脑。 4、根据电脑提示,称取适量面粉。 5、点击程序上[开始新测试]。 6、按[START]按钮,再点击[确定],再点击[测试开始]。 7、根据电脑提示,加入称量好的面粉。(注意:观察曲线起点是否在20FU 以下,否则可能是面钵未洗净或其他问题) 8、根据估计的加水量,将水快速一次性加入,争取在25S内加完。然后,用面铲将和面钵壁上的面刮净,立即盖上小盖,以防水份散失。 9、观察曲线的最大稠度是否在480-520FU之间,否则调整吸水率,重新测试。 10、实验结束后,根据电脑提示,点击[测试结束。 11、轻轻的取下和面钵及转子,小心洗净擦干。 12、退出程序,关掉主机,再关恒温器程序开关及电源开关。 四、结果表示

1、吸水率:就是面团稠度达到500±20FU(稠密度)时的加水量。 2、形成时间:即在正确加水的前提下面团稠度达到最大值时所用的时间min。此时面团面筋已经充分形成。形成时间越长,表示面粉筋力越强,此外,形成时间与面粉吸水率有直线关系,吸水率越大,面团形成时间越长。 3、稳定时间:曲线上边缘到达曲线中线与离开曲线中线所用的时间min,稳定时间越长,表示面团的筋力越强,搅拌耐力越好,稳定时间短,表示面团形成后,面团不耐搅拌,面筋网络易破坏。 4、弱化度:面团经过10min(或20min)的搅拌稠度下降的程度(以FU为单位)。此值越大,表示面粉筋力越小,即面团过度搅拌后面筋变弱或筋性下降的程度越严重。 5、评价值:是面团以上指标的综合反映。正常情况下,稳定时间越长,面粉筋力越好,评价值就越高。 五、注意事项 1、滴定管、横杆及和面钵盖要有一定的紧度,不可太松,以防脱落或掉下。 2、恒温器内的水不要加得太多,加到下沿即可,并定期进行清洗换水。 3、定期检查转子,看旋转时中心圆圈是否为圆,否则影响测试结果,一定不可将转子碰伤,且转子在每次使用前,要在根部涂极少许凡士林。 4、在每次按装和面钵时要轻一些,并且保证和面钵要洗净擦干,其内的水温为30℃。 5、和面钵底座下面也要常清洗,以防生锈,与主机相连的转轴要定期涂少许机油。 6、输水软管不可打折,因管内有一定压力。 7、待一切准备就绪后,再往滴定管内上水,上水时要将其内所存的水放掉,确保加入和面钵的水温度为30℃,要正确读取所加水的刻度。 8、加水最好一次性加入,若补水必须在最高峰之前。 六、说明 以上内容为海韦力公司技术中心粉质分析室提供,仅供参阅。

食品质构检测之面条拉伸性测试方法详解

食品质构检测之面条拉伸性测试方法详解

面条起源于中国,已有四千多年的制作食用历史。因制作简单,烹制多样,既食用方便又具有浓郁的地方特色,在中国和其他世界各地广泛流传,并将风味发展到了极致。 拉面,是深受人们喜爱的一种面条制品,自1999年“兰州拉面”与“北京全聚德烤鸭”、“天津狗不理包子”并称中式三大快餐之后,拉面已然成为“中华第一面”。拉面制作讲究,和、饧、扯、揉、抻、拉一项不能少,工艺繁琐复杂,其中抻和拉的技术要求非常高,决定了拉面的最终口感,比如弹性、爽滑性等。这除了与制作者的拉抻技术有关,最关键的还在于面条自身的拉伸性能。 目前,面条的拉伸性能的测定往往采用比较成熟的拉伸试验,反映在量化指标上主要有“抗拉强度”“应变率”等。抗拉强度,表示面条在拉力作用下抵抗破坏的最大能力,即面条经过屈服阶段进入强化阶段后随着横向截面尺寸明显缩小在拉断时承受的最大力与面条原横截面积的比值,单位为MPa。“应变率”,指的是面条拉伸断裂前的最大伸长量与面条初始长度的比值,单位为%。 采用拉伸试验检测生面条的拉伸性能,除了能直观了解成型面条的抗拉伸断裂的能力以及延展性,还能根据测试数据及相关试验结果描绘出面粉的流变学特性,找出生产面粉的正常数值范围,是对面粉质量监控的一种有效手段。 对于拉面来说,拉面改良剂是广泛用于拉面制作的一种添加剂,能使面团产生较大的吸水性、延展性和粘性,使拉面光滑爽口。通过对添加改良剂的拉面面条进行拉伸试验,能准确的评价改良剂的改良效果,帮助面粉及面制品企业科研人员正确选择和应用不同性质的改良剂。 当拉伸试验应用于熟面条时,更是一种对其韧性、弹性和断裂性的直观评价方法。 拉伸性能测试方法 测试仪器:XLW(EC)智能电子拉力试验机和拉伸测试装置,济南兰光机电技术有限公司。XLW(EC)智能电子拉力试验机, 集成拉伸、剥离、撕裂、热封等八种独立的测试程序,支持拉压双向试验模式,精度优于0.5级。拉伸测试装置是由两个带有卷轴的拉伸杆组成,其中一个拉伸杆固定在基座上。

面粉拉伸曲线

面粉拉伸曲线 面团在外力作用下发生变形,外力消除后,面团会部分恢复原来状态,表现出塑性和弹性。不同品质的面粉形成的面团变形的程度以及抗变形阻力差异不大,这种物理特性称为面团的延展特性,是面团形成后的流变学特性。硬麦面粉形成吸水率高、弹性好、抗变形阻力大的面团;相反,软麦面粉形成吸水率低、抗变形阻力小、弹性弱的面团。在面粉品质改良中,我们应当清楚不同食品对面团延展性的要求不同,制作面包要求有强力的面团,能保持酵母生成的二氧化碳气体,形成良好的结构和纹理,生产松软可口的面包;制作饼干要求弱力的面团,便于延压成型,保持清稀、美观的花纹、平整的外形和酥脆的口感。 测定面团的延展特性用的仪器是拉伸仪和吹泡示功仪。 拉伸仪图 此试验要借助于粉质仪。见图11-3所示。测定过程如下:将通过粉质仪制备好的面团(50g)先揉球、搓条,醒发45min后,将面条两端固定,中间钩向下拉,直到拉断为止,抗拉伸阻力以曲线的形式记录下来,然后把拉断的面团再揉球、搓条,重复以上操作,分别记录90min、135min的曲线,根据曲线分析面团品质和添加剂的影响作用。根据拉伸曲线可测得一下有关面团性能数据。 ⑴ 延伸性(E) 是以面团从开始拉伸直到断裂时曲线的水平总长度。以mm或cm表示。是面团粘性、横向延展性的标志。 ⑵ 抗延伸阻力 曲线开始后在横坐标上到达5cm位置的 曲线高度,以BU表示。指面团弹性,是面团纵向弹性好坏的标志,即面团横向延伸时阻抗性。 ⑶ 拉伸比值 抗拉伸阻力与延伸性比值。用BU·cm-2表示,即抗拉强度。 ⑷ 最大抗延伸阻力 指曲线最高点的高度,以BU表示。

⑸ 能量 指曲线与底线所围成的面积,以cm2表示。代表面团的强度,可用求积仪测量。曲线面积亦称拉伸时所需的能量,它表示面团筋力或小麦面粉的搭配数据,能量越大,表示面筋筋力越强,面粉烘焙品质越好。 实际上,反映面粉特性最主要的指标是拉伸比值和能量。比值越大,能量越高,说明面粉筋力越强,强度越高。拉伸图即反映麦谷蛋白赋予面团的强度和抗延伸阻力,又反映麦胶蛋白提供的易流动性和延伸所需要的粘合力。 面团比值即抗拉伸强度,它将面团延伸性和抗延伸阻力两个指标综合起来判断面粉品质。比值过小,意味着阻抗性小,延伸性大,这样的面团发酵时会迅速变软和流散,做面包或馒头会出现成品个头不起,甚至塌陷、瓤发粘现象;若比值过大,意味着抗阻过大,弹性强,延伸性小,发酵时面团膨胀会受阻,起发不好,面团过硬,成品体积小,芯干硬。故要求制作面包、馒头的面粉需能量大、比值适中,这样的成品才会体积大,形状好,芯松软而且结构均匀。 拉伸曲线图

塑料的拉伸性能试验方法

塑料的拉伸性能试验方法 第二部分:模压与挤压塑料的测试条件 内容: 前言: 1范围 2引用标准 3原则 4定义 5仪器 6测试试样 7测试试样数量 8条件 9步骤 10结果的计算与表达 11预测 12测试报告 附录A (标准)小试样 附件ZA (标准)国际引用标准 相关欧洲出版 图1 测试试样类型1A 和1B 图A.1 测试试样类型1BA 和1BB 图A.2 测试试样类型5A 和5B 文献列表

标准前言 有PRI/21委员会准备的英国标准,EN ISO 527-2:1996 塑料的拉伸性能的试验方法的第二部分:模压与挤压塑料的测试条件为英文标准。与ISO 出版的ISO 527-2:1993 相一致,同时与代替了BS2782:1976里的320A和320F的方法改成了BS2782:1993的321方法合并。BS2782:1976里的320A和320F的方法在修正后删除。 交叉引用 国际标准相应的英国标准 ISO 293:1986 BS2782 塑料的拉伸试验方法 方法901A :1988 热塑性塑料压塑试样ISO 294:1975 方法901A :1997 热塑性塑料注塑试样 ISO 295:1991 方法902A :1992 塑料-热固性塑料压塑试样 ISO 527-1:1993 方法321:1993 拉伸测试试验的一般原理ISO 2818:1980 方法930A :1997 拉伸测试的试验准备 技术委员会回顾了ISO 37:1997和ISO 1926:1979,同时将它们在此标准中作为标准参考文献,与此标准结合使用。 警告:此英国标准与ISO 527-2 相一致,不需要将所有的预防全部列出,具体要求见1974年的Health and Safety at Work 等,注意所有的预防措施,测试需经专业人员操作。 英国标准不包含所有合同的约定,使用英国标准只是为了正确的应用。 按照英国测试标准不能够免除法律的约束。

相关主题
文本预览
相关文档 最新文档