当前位置:文档之家› Lax pair and Darboux transformation for a variable-coefficient fifth-order Korteweg-de Vrie

Lax pair and Darboux transformation for a variable-coefficient fifth-order Korteweg-de Vrie

Lax pair and Darboux transformation for a variable-coefficient fifth-order Korteweg-de Vrie
Lax pair and Darboux transformation for a variable-coefficient fifth-order Korteweg-de Vrie

音响参数分析及图片大全

音响 扬声器材质与尺寸 低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(也有部分设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。 通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。 挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。 低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种。 纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好。 防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳。 羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力。 PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中。 扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。 音箱: 有源和无源 有源音箱(ActiveSpeaker)又称为“主动式音箱”。通常是指带有功率放大器的音箱,如多媒体电脑音箱、有源超低音箱,以及一些新型的家庭影院有源音箱等。有源音箱由于内置了功放电路,使用者不必考虑与放大器匹配的问题,同时也便于用较低电平的音频信号直接驱动。

运算放大器_参数详解

运算放大器参数详解 技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。 历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:

纯后级功放(660W)招标参数 模板

纯后级功放(660W) (1)设有RCA插口,XLR插口,非常适用大、中、小型公共场合广播使用 (2)设有100V、70V定压输出和4~16Ω定阻输出 (3)输出音量可调节 (4)4、5单元LED工作状态显示:电源“POWER”、信号“SINGNAL”、消顶“CLIP”、保护“PROT”、高温“TEMP”, 便于观察机器工作情况 (5)具有完善的输出短路保护和超温保护功能 (6)散热风扇温控启动 (7)额定输出功率 660W (8)输出方式 4-16 ohms(Ω)定阻输出, 660W 70V(7.4 ohms(Ω)) 100V(15.1 ohms(Ω))定压输出 (9)线路输入 10k ohms(Ω) < 1V ,不平衡 (10)线路输出 10k ohms(Ω) 0.775V (0 dB) ,不平衡 (11)频率响应 60 Hz ~ 15k Hz (± 3 dB) (12)非线性失真THD <0.5% at 1kHz,1/3的额定输出功率 (13)信号噪声比S/N >70 dB (14)阻尼系数 200 (15)电压上升率 15V/uS (16)输出调整率 < 3 dB,从无信号静态工作状态到满负荷工作状态 (17)功能控制音量调节一个,电源开关一个 (18)冷却方式 DC 12V FAN温控风冷方式 (19)指示灯电源:‘POWER’,消顶:‘CLIP’,信号:‘SINGNAL’,保护:‘PROT’,高温:‘TEMP’ (20)保护 AC FUSE×15A AC FUSE×1,负载短路,温度过高 (21)电源线 (3×1.5 mm2)×1.5M (标准) (22)电源 AC 220V ± 10% 50-60Hz (23)电源消耗 485W 620W 880W (24)机器尺寸约89(H)×483(W)×366(D) mm (25)包装箱尺寸约185(H)×520(W)×435(D) mm (26)净重约19.74kg (27)毛重约21.36kg

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

功放参数指标

功放参数指标 关键字:功放参数指标 自从爱迪生在1877年发明留声机至今已有120多年了,由当年机械式录音/重播系统发展到现在的高科技数码系统,其中的进步可谓翻天覆地。不过在这120多年中的音响技术发展却是很不平均的,在发明留声机后的大约60至80年中,音响技术的发展是相当缓慢的不过也取得了一定的成果,例如录放音以电动方式取代了机械方式,开始采用多极真空管等等。使音响技术得以快速发展是在927年,美国贝尔实验室公布了划时代的负反馈(负回输,NFB)技术,声频放大器从此开始步入了一个新纪元。所谓高保真(High Fidelity)放大器,其鼻祖应该是追溯至1947年发表的威廉逊放大器,当时Willianson先生在一篇设计Hi Fi放大器的文章中介绍了一种成功运用负回输技术,使失真降至0.5%的胆机线路,音色之靓在当时堪称前无古人,迅即风靡全世界,成为了Hi Fi史上一个重要的里程碑。在威廉逊放大器面世后4年,即1951年,美国Audio杂志又发表了一篇“超线性放大器”的文章。第二年6月,又发表了一篇将威廉逊放大器超线性放大器相结合的线路设计。由於超线性设计将非线性失真大幅度降低,许多人硌起仿效,再次形成了一个热潮。超线性设计的影响时至今日21世纪仍然存在,可以说威廉逊放大器和超线性放大器标志著负回输技术在音响技术中的成熟。从那时候开始,放大器的设计和种类可谓百花争艳。技术的进步是前70年所望鹿莫及的。 放大器的的规格是衡量其性能的一个重要指标,当然另一个重要指标是以耳朵收货。常听发烧友说音响器材的规格没多大意义,许多测试数据优良的放大器其声音却惨不忍听。这话只说对了一半,首先这优良的数据一般是在产品开发阶段测试原型机时得出的。在大量生产阶段一般来说其性能都会打一定的折扣,视乎器材的档次而定。其次的就是目前的科技虽然使放大器性能获得很大改善,但要对20~20KHz的声频信号作出人耳无法察觉失真的放大,是一件极不容易的事,况且一般放大器的所谓性能规格只是给出寥寥几项数据,其中大多数只是在某些物定条件下测量的。根本不足以反映放大器的基本性能。 用以评定放大器的技术规格的方法分为动态和静态两种,静态规格是指以稳态下弦波进行测量所得的指标。这实际上是属於古典自动控制理论(Classical Control Theory)中的频率分析法。在二十世纪二三十的代便已开始使用。测试项目包括有频率响应,谐波失真,信噪比,互调失真及阻尼系数等。动态规格是指用较复杂的信号例如方波,窄脉冲等所测量得的指标,包括有相位失真,瞬态响应及瞬态互调失真等。动态测试实际上也类似工业自动控制系统中常见的瞬态响应测试,只不过工业测试常用的是阶跃信号(Step Signal)而音响测试则用缩短了的阶跃信号——方波。要大体上反映出放大器的品质,必须综合考虑动态测试和数据。至於人耳试听方面由於含有较多主观因素,在此不打算详加讨论。由於大部份厂商对其产品一般都只是给出少数参数应付了事,故此笔者希望藉此机会对一些较重要的音响器材规格作一番介绍,方便新进发烧友及一些非工程技术人仕对音响技术有更深入的领会。 频率响应 在众多技术指标中,频率响应是最为人们所熟悉的一种规格。一部分放大器而言。理论上只需要做到20至2万周频率响应平直就已足够,但是真正的乐音中含有的泛音(谐波)是有可能超越这个范围的,加上为了改善瞬态反应的表现,所以对放大器要求有更高的频应范围,例如从10 Hz~100 kHz等。习惯上对频率响应范围的规定是:当输出电平在某个低频点下降了3分贝,则该点为下限步率,同样在某个高频点处下降了3分贝,则定为上限频率。这个数分贝点有另外一个名称,叫做半功率点(Half Power Point)。因为当功率下降了一半

功放技术参数的分析

音响技术基础知识 A Vtechnology 艺术团体经常进行巡回演出,音响器材尤其是功率放大器要经过火车、汽车运输,各种地形复杂的道路会带来振动,所以要求功率放大器结构非常结实、抗振特性良好、设计科学、加工工艺精细。在不同城市、乡镇进行的文艺演出还会遇到各种意想不到的复杂情况,如演出剧场或现场的电网电压不稳定,或临时演出由于观众较多,需要加大额定输出功率提高现场演出的响度以满足室外演出的需要等。因此要求功率放大器有适应多种功能的能力,除要求功能全外,更主要的还要有很高水平的音色质量表现,如对美声演唱要求有很宽的频带(频率通带)才能把美声歌曲优美的泛音表现出来,从而丰富声乐音色的艺术表现,而对于音乐中各种乐器的个性色彩的表现又要求功放有极低的本底噪声,即有很高的信噪比和极低的失真度,才能将各种不同乐器的乐音细节明朗地表现出来。这就要求功率放大器有很高水平的技术参数来做保证。 1 技术参数 1.1 功率放大器的额定功率 额定功率指在规定的总谐波条件下功率放大器长期承受额定负载阻抗上的输出功率,是适用的功率。 最大输出功率是在不考虑失真的情况下,给功率放大器输入足够大的信号电平,将音量开至最大时,功率放大器所能输出的最大功率。这是短时间使用的功率。 峰值功率是指功率放大器在处理音乐信号时能够在瞬间输出的最大功率。峰值功率反映功率放大器处理音乐信号的能力,是一个参考功率。 提高功率放大器输出功率的方法有两种方法。一种是降低负载阻抗。输出电压不变的情况下将8 Ω改变成4 Ω,理论上输出功率会增加2倍,但因功率放大器内部直流电源容量和晶体管耗数功率的限制,实际上可提高功率为1.6倍。另一种采用桥式跨接法,双通道立体声可选用桥接方式进行跨接使用。 双通道立体声桥接后理论上是每声道的4倍功率,实际上的输出功率约为3倍。这种模式可选用但并不提倡。电路电桥要求每个双声道放大器的技术指标完全相同,保持0点电位始终保持0电位。如某个电位有点偏离,某个电路稍有点不平衡,一只功率放大器就会驱动另一只功率放大器,两只功率放大器就会产生相位差和电平差,使输出波形产生严重的失真。当不平衡状态严重时,由于相互“倒灌”可导致功率放大器的损坏。所以临时现场扩声的应急时可采用桥式接法,室内固定专业音响系统均不选用。 1.2 频率响应范围 频率响应是指功放对音频信号的各个频率分量的放大能力,他表明功放在通频带宽度内各个频率分量的不均匀程度特性等。 理想的频率特性曲线是平直的,即功放的输出电平在各个频率都比较平直,说明功放对各个频率分量的放大能力是均匀的。如功放的频率特性曲线有波峰波谷,说明功放对某频率放大能力过强(形成波峰),对某频率的放大能力过弱(形成波谷)。如果功放的频率特性有较大的波峰和波谷,放音的音色就会变差,所以一般波峰波谷的存在不准许超过3 dB,严格的指标是±2 dB。 人耳听觉的频率范围是20 Hz~20 kHz,如果频响范围达到这个标准则为高水平。 为完美地表现乐音的表现力,充分地表现出高频泛音的频率空间,要求功放有足够频带的宽度,以表现音色的个性,对频带的上限要有适度的扩张频带,20 kHz以上也要有一定的空间。 对频带的下限扩张可保证次低音的重放。如果功放频带不够宽,则音色会变得干涩、生硬,以致于当一些音色相近的乐器同时演奏时,代表他们各自音色特点的泛音被削波损失,从而造成辨别不出到底是哪种乐器发出的声音。 1.3 阻尼系数 大口径的低音扬声器,因为音圈运动的惯性而不能与音频的驱动信号同步,纸盆的余振使扬声器重放声音混浊不清。尤其是400 Hz以下的频率影响最大。 功放技术参数的分析李鸿宾

功率放大器(功放)知识讲解

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。一套良好的音响系统功放的作用功不可没。 功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。 功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。 分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类 .功放(又称D类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。 按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。 按功放中功放管的类型不同,可以分为胆机和石机。 胆机是使用电子管的功放。 石机是使用晶体管的功放。 按功能不同,可以前置放大器(又称前级)、功率放大器(又称后级)与合并式放大器。 功率放大器简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。

音响的主要参数

音响的主要参数:1、音箱系统 2、有源无源 3、额定功率(W) 4、输出功率 5、阻抗 6、信噪比 7、频率响应 8、失真度 9、扬声器单元1、音箱系统关于.1,就是指加一个低音单元(低音炮),比如2.1音箱,就是在2.0音响的基础上加一个低音单元。单声道就是指只有一个声道,无法准确给声音定位立体声两个独立的声道,耳机还有一般的2.0音箱都是立体声,左右声音是不一样的,以此造成一定的立体感,比如说,一辆画面是一辆车从你左边开到右边,声音先应该是左边响右边低,这样更加真实。 4声道环绕四声道环绕规定了4个发音点:前左、前右,后左、后右,听众则被包围在这中间。同时还建议增加一个低音音箱,以加强对低频信号的回放处理(就是4.1声道音箱系统)。 5.1声道广泛运用于各类传统影院和家庭影院中,一些比较知名的声音录制压缩格式,譬如杜比AC-3(Dolby Digital)、DTS等都是以5.1声音系统为技术蓝本的,其中“.1”声道,则是一个专门设计的超低音声道,这一声道可以产生频响范围20~120Hz 的超低音。其实5.1声音系统来源于4.1环绕,不同之处在于它增加了一个中置单元。这个中置单元负责传送低于80Hz的声音信号,在欣赏影片时有利于加强人声,把对话集中在整个声场的中部,以增加整体效果。 6.1声道 6.1音效系统和5.1音效系统相比多了一个后中置音箱,使得后方声音得到加强 7.1声道相对5.1音效系统,7.1音效系统在保留原先后置音箱的同时增加了两个侧中置音箱,主要负责侧面声音的回放,而原先的后置音箱则可以更加专注于后方声音的回放,因此7.1音效系统可以做到四面都有音箱负责声音的回放,环绕效果进一步增强。 2、有源无源顾名思义就是指有无电源,一般音响都有电源,主要涉及推动的问题。(一般耳机里面推动问题比较明显) 3、额定功率(W)音箱的额定功率一般只能按功率放大器额定功率的75%确定,才能保证功率的匹配及器件的安全。 4、输出功率一般20W可以满足20平米的空间了;功率大了不容易坏啊,还有你放声音大点也不会失真额定功率指音响总的功率,输出则是各音响的详细功率,如例子中的 55W X 2 就是指两个音响分别是55W PS:RMS 是指真有效值功率 THD:Total Harmonic Distortion 5、阻抗不重要在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。线路输入阻抗是指输入线路的阻抗,不是很重要,后面的低音单元阻抗和中高音单元阻抗就是指音响的阻抗了,一般标准阻抗是8Ω,在功放与输出功率相同的情况下,低阻抗的音箱可以获得较大的输出功率,但是阻抗太低了又会造成欠阻尼和低音劣化等现象。所以一般8Ω是比较合理的一个数值。额定阻抗。音箱的额定阻抗不得小于功放的额定负载阻抗。常见的额定阻抗有4欧、6欧、8欧、16欧等。晶体管、集成电路功放机一般不用输出变压器,负载阻抗在4-6欧,故选8欧的音箱为宜 6、信噪比信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如这款音箱的信噪比为80dB,即输出信号功率比噪音功率大80dB。信噪比数值越高,噪音越小。一般不应该低于 70dB,高保真音箱的信噪比应达到110dB以上。 7、频率响应很重要音响系统能够回放的最低有效回放频率与最高有效回放频率之间的范围。一般对于中低端多媒体音响来说这个范围是越大越好。频率响应很重要,标识这这个音响的动态范围,人的听觉范围是20Hz到20KHz,范围越能包括越好,低音要到30Hz一下为好也就是低音炮和卫星箱合起来的范围越包括人听觉范围越好!超出了更好!虽然听不到,但是能感觉到! 8、失真度音箱的失真度是指电声信号转换的失真。当然越小越好,普通多媒体音箱的失真度以小于0.5%为宜,而通常低音炮的失真度普遍较大,小于5%就可以接受了。 9、扬声器单元就是指音箱的具体的几个扬声器

功率放大器技术参数的测量

功放技术参数的测 一.常用测试仪器 信号源:GOOD WILL INSTRUMENT公司(固伟)GFG-8015G 宁波中策电子有限公司X010A 毫伏表:GOOD WILL INSTRUMENT公司(固伟)GFG-417B 宁波中策电子有限公司DF2173B 示波器:IWATSU ELECTRIC公司(日本)SS-7802A 失真仪:宁波中策电子有限公司DF4121A 二.频率响应的测量 术语:增益限制的有效频率范围 是指在振幅允许的范围内功放系统能够重放的频率范围,以及在此范围内信号的变化量,称为频率响应。 在该频率范围内,实际频响与所要求的频响的偏差不得超过规定限度。 1.将各仪器按上图所示方法连接(可不使用示波器),功放输出端接入一额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,从毫伏表读取电压值,使功放输出为 额定输出电压。 并以此为电压参考点。

3.缓慢调节信号源上的频率旋钮,从功放规定的频率下限至频率上限,其输出电压变化范 围不得超过±3dB。 4.若连接示波器,看观测输出电压波形。 三.失真度的测量 理想的放大器应该是把输入的信号放大后,毫无改变的还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。 1.将各仪器按上图所示方法连接,功放输出端接入额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,使功放输出为额定电压。 3.对失真仪进行相对电平(0 dB)校准。 4.测量失真度,读出并记录此测量值。 5.可使用示波器监测输出波形是否异常。 四.输入灵敏度的测量 输入灵敏度:功放在额定负载上,输出额定电压时的输入激励电压称为输入灵敏度。

放大器参数说明

放大器参数说明 工作频率范围(F): 指放大器满足各级指标的工作频率范围。放大器实际的工作频率范 围可能会大于定义的工作频率范围。 功率增益(G): 指放大器输出功率和输入功率的比值,单位常用“dB”。 增益平坦度(ΔG): 指在一定温度下,在整个工作频率范围内,放大器增益变化的范围。 增益平坦度由下式表示(见图1): 图1 ΔG=±(Gmax-Gmin)/2dB ΔG:增益平坦度 G max:增益——频率扫频曲线的幅度最大值 三阶截点(IP3): 测量放大器的非线性特性,最简单的方法是测量1dB压缩点 功率电平P1dB。另一个颇为流行的方法是利用两个相距5到 10MHz的邻近信号,当频率为f1和f2的这两个信号加到一个 放大器时,该放大器的输出不仅包含了这两个信号,而且也 包含了频率为mf1+nf2的互调分量(IM),这里,称m+n为互 调分量的阶数。在中等饱和电平时,通常起支配作用的是最 接近基音频率的三阶分量(见图4)。 因为三阶项直到畸变十分严重的点都起着支配作用,所以常 用三阶截点(IP3)来表征互调畸变(见图3)。三阶截点是 描述放大器线性程度的一个重要指标。三阶截点功率的典型 值比P1dB高10-12dB。IP3可以通过测量IM3得到,计算公式为: IP3=P SCL+IM3/2;

G min:增益——频率扫频曲线的幅度最小值 噪声系数(NF): 噪声系数是指输入端信噪比与放大器输出端信噪比的比值,单位常用“dB”。 噪声系数由下式表示:NF=10lg(输入端信噪比/输出端信噪比) 在放大器的噪声系数比较低(例如NF<1)的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或 NF=T/T0+1 T0-绝对温度(290K) 噪声系数与噪声温度的换算表(见图2) 1分贝压缩点输出功率(P1dB): 放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。这种放大器称之为线性放大器,这两个功率之比就是功率增益G。随着输入功率的继续增大,放大器进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。(见图3)P SCL——单载波功率; 如三阶互调点已知,则基波与三阶互调抑制比与三阶互调点的杂散电平可由下式估计: 基波与三阶互调抑制比=2[IP3-(P IN+G)] 三阶互调杂散电平=3(P IN+G)-2IP3 输入/输出驻波比(VSWR): 微波放大器通常设计或用于50Ω阻抗的微波系统中,输入/ 输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。 用下式表示: VSWR = (1+|Γ|)/(1-|Γ|); 其中Γ= (Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z O:需要的系统阻抗 工作电压/电流: 指放大器工作时需要供给的电源电压和放大器工作时要求供给的电流值。 放大器增益窗的定义: 在本产品手册中,放大器的增益定义采用增益窗的定义方法(不含窄带功率放大器)。增益窗的定义方法是根据放大器允许的最大增益(Gmax),放大器允许的最小增益(Gmin),

LAX R811功放参数

LAX R811 & R807功放参数 LAX推出了全新的R800系列定阻功放,它性能出众、带负载能力强,能够在全频和低频音箱中游刃有余。 R800系列是一款体积较小,重量较轻的超大功率的功率放大器。整流桥堆采用大电流的方桥,能保证电源电流畅通无阻。电源高压部分采用独立屏蔽方式,让电源对信号的干扰减到最低,并保证有更高的用电安全性。 功放管采用性能更好的安森美大功率管,使系统能承受更大的电流,有更好的动态,更高的安全性。每对功率管均经过严格的测试筛选,保证功放的一致性和最小的失真。 前级信号处理采用从主板直接取电的方式,电压更加稳定、干净、充足,使声音更加干净厚实。科学合理的布线布局,使通道间及输入与输出之间的干扰大大减少。具有优质的讯号转换特性,它具有非常小的谐波失真(THD)、互调失真(SMPTE-IMD)、瞬态互调失真。 产品特性: R805参数: 8Ω立体声功率500W 4Ω立体声功率750W 8Ω桥接功率1500W 频响范围(1W@8Ω) 20Hz-20KHz +1/-1dB 总谐波失真THD+N(额定功率,8Ω/1kHz) ≤0.3% 阻尼系数≥280:1 信噪比(20Hz-20KHz满功率) ≥95dB 输入灵敏度(额定功率@8Ω) 1V/1.4V 输入阻抗10kΩ(不平衡)/20kΩ(平衡) 分离度≥60dB 输入共模抑制比≥60dB 转换速率48V/us 压缩比20:1 电压放大倍数(@1V) 44.7/63.1 尺寸(高x宽x挽手到机尾深度) 89mm(2U) x 483mm(19") x468mm 毛重(kg) 20.5Kg R807参数: 8Ω立体声功率700W 4Ω立体声功率1000W 8Ω桥接功率2100W 频响范围(1W@8Ω) 20Hz-20KHz +1/-1dB 总谐波失真THD+N(额定功率,8Ω/1kHz) ≤0.3% 阻尼系数≥280:1 信噪比(20Hz-20KHz满功率) ≥95dB 输入灵敏度(额定功率@8Ω) 1V/1.4V 输入阻抗10kΩ(不平衡)/20kΩ(平衡)

功放参数的解释

一台严格出炉的功放,其技术参数绝不含糊: 一.频响能力(Power Band Width):音域20Hz ~ 80KHz ,而喇叭频响由低音至高音相应要求有20Hz ~ 20KHz 这围的响应能力。但作为信号传输的“瓶颈”的功放的频响则要求更宽,如:7Hz ~ 80KHz Hz,以保证信号的完整。 信噪比(Signal To Noise Ratio ):这是最直接反映功放素质的参数,一般都在80dB的比值以上,高质素的产品往往达105dB以上,追求声底纯净,不容忽视。 二.失真度(THD):这个可结合功放另外两个重要的指标:额定功率(Rms)和最大功率(Peak Power)一齐讨论。一台功放在其Rms功率情况下工作,失真应该比较小,一般达0.5% ~ 0.01%这个围。Peak 功率或桥接时,信号可能产生变形、削波等失真,比值会高:0.5% ~ 1%都是正常的。比值越小,当然越理想. 三.输入灵敏度(Input Sensitivity):这是针对不同厂家,不同品牌的主机、前级音源而设置的调校电平,围由100mv ~ 4V甚至更高,调音时须与音源匹配。 四.输入阻抗(Input Impedance):一般要求功放输入阻抗要高,输出阻抗要低,输入阻抗越高,越有效阻隔各类杂讯,常见值10KΩ或更高。

五.负载能力(Load Impedance):家用功放一般是8Ω/4Ω两种;车用功放、立体声时:2Ω至8Ω;桥接:4Ω至8Ω。但个别特别设计的功放,阻抗可以低至0.1Ω,能力不凡。这个时候,一台功放,则可以并接几十个低音单元,营造理想的声压级。这个场景,恐怕要在音响比赛时才能见到。 六.工作电压:车用一般是10V ~ 15 V正常工作。 七.阻尼系数(Damping Factor):由额定负载(4Ω)输出阻抗计算出来,普遍认为:输出阻抗越小,阻尼系数越高,则该功放越好。事实上高素质的功放,比值大多50以上,个别甚至超500,虽则专家认为:50左右已经足够。我个人经验:系数高,则线材要求可放宽。过高则影响音色,但对低音表现有帮助。 八.转换速率(Slew Rate):单位时间功率放大器最高放大级将较强的信号激励放大为高压,强电流的交流音频的能力,高档机种30V/us以上,个别超50V/us。比值高,转换能力好,音乐的层次、动态结合扬声器能接近原声还原发挥。 1、A类功放(又称甲类功放) A类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两

功率放大器的分类及其参数

功率放大器的分类及其参数 功率放大器(简称:功放)(Power Amplifier)功率放大器,顾名思义,是将功率放大的放大器。进入微弱的信号,如话筒、VCD、微波等等送到前置放大电路,放大成足以推动功率放大器信号幅度,最后后级功率放大电路推动喇叭或其它设备,它最大的功用,是当成输出级(Output Stage)使用。从另一个角度来看,它是在做大信号的电流放大,以达到功率放大的目的。从广义上来说功率放大器不局限于音频放大,很多场合都会用到它,如射频、微波、激光等等。 功率放大器的分类:1、纯甲类功率放大器 纯甲类功率放大器又称为A类功率放大器(Class A),它是一种完全的线性放大形式的放大器。在纯甲类功率放大器工作时,晶体管的正负通道不论有或没有信号都处于常开状态,这就意味着更多的功率消耗为热量。纯甲类功率放大器在汽车音响的应用中比较少见,像意大利的Sinfoni高品质系列才有这类功率放大器。这是因为纯甲类功率放大器的效率非常低,通常只有20-30%,音响发烧友们对它的声音表现津津乐道。 2、乙类功率放大器 乙类功率放大器,也称为B类功率放大器(Class B),它也被称为线性放大器,但是它的工作原理与纯甲类功率放大器完全不同。B类功放在工作时,晶体管的正负通道通常是处于关闭的状态除非有信号输入,也就是说,在正相的信号过来时只有正相通道工作,而负相通道关闭,两个通道绝不会同时工作,因此在没有信号的部分,完全没有功率损失。但是在正负通道开启关闭的时候,常常会产生跨越失真,特别是在低电平的情况下,所以B 类功率放大器不是真正意义上的高保真功率放大器。在实际的应用中,其实早期许多的汽车音响功放都是B类功放,因为它的效率比较高。 3、甲乙类功率放大器

运算放大器常见参数解析

运放常见参数总结 1.输入阻抗和输出阻抗(Input Impedance And Output Impedance) 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R 越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:

功放参数表

产品型号: CA-1000 CA系列功率放大器是特别针对临场环境要求极高的演出扩声场所而量身打造的,其追求的是更快的反映速度、更高的阻尼系数、更高级的保护系统。CA系列有着优良的散热风路设计,紧凑稳固的机械抗震性能,持续稳定的工作能力。性能特点如下: ※软启动系统,使功放及音响系统免受开机瞬间的大电流冲击; ※超强大功率变压器、优质大容量滤波电容,低音强劲和声音保真度高; ※带限幅器的功率输出电路,当输入电压过大时,能自动将输入电压的幅度压缩,避免削波波形的输出而导致扬声器因过载而烧毁; ※完善的保护电路保证设备的安全:包括直流输出保护、过载保护、短路保护、过热保护,并在功放的背板配置了电路熔断保护器; ※120MM的变速风扇配合高效率的散热系统,能迅速带走功放工作时产生的大量热量,保护功率输出器件不至于过热; ※XLR、6.35平衡输入插座,专业的SPEAKON插座和接线柱输出端子,满足工程与流动演出时系统方便快捷的连接要求; ※三种工作模式:双通道(STEREO)、并联(PARALLEL)和桥接(BRIDGE); CA系列适用于大型流动演出、乐队表演、DISCO、夜总会等场所。 产品品牌: ALLEN&HEATH 产品型号: GL2400-24 电源电压: 48 V 功率: 500 W 通道数量: 24 24通道结构; 左右信道/主信道输出; 4个可声像控制编组; 6个辅助发送信道,其中每个信道配备推子前/后切换开关;> 2个立体声信道,每个信道备有话筒与双立体声行输入; 7x4 矩阵; 特有的双功能即主扩声与/或监控听调音; 单通道能被用于左右叠加、或调音师喇叭监听通道; 可通过通道直接输出进行录音; 具有电平微调与共享输入的矩阵外接输入; 立体声输入通道可以独立地分配给左右通道; 立体声通道的话筒输入可以用交换跳线接到矩阵; 4段EQ、2段扫变; 100Hz 高通滤波器;

音频放大器重要参数

音频放大器重要参数- 细数音频放大器的分类、重要参数以及相关介绍 来源:互联网作者:秩名2013年06月07日 16:04 [导读]仔细阅读本专题,来自IDT的资深设计工程师及美国国家半导体、美信等厂商的高工,共同为你揭示音频设计路上你应该掌握的研发难题。 关键词:NCP4894NCP2890音频放大器 机或者其他时尚的便携式多媒体播放器配上优美的旋律,走到哪里都能引来艳羡的目光,特别是在消费者对于音效要求越来越高的今天,好的音效设计就意味着产品成功与否,大红大紫的iPod、iPhone就是对音效重要性的最好证明。而在音效设计过程中,放大器设备又至关重要,无论是传统的A类还是目前炙手可热的D类,不同的选择就意味着产品不同的特性。可是你知道如何为自己的设计选择合适的放大器吗?你知道根据选择放大器种类的不同如何进行五花八门的设计吗?如果在这些问题中你还存在误解,那就请仔细阅读本专题,来自IDT的资深设计工程师及美国国家半导体、美信等厂商的高工,共同为你揭示音频设计路上你应该掌握的研发难题。 一、音频放大器分类 传统的数字语音回放系统包含两个主要过程:1、数字语音数据到模拟语音信号的变换(利用高精度数模转换器DAC)实现;2利用模拟功率放大器进行模拟信号放大,如A类、B 类和AB类放大器。从1980年代早期,许多研究者致力于开发不同类型的数字放大器,这种放大器直接从数字语音数据实现功率放大而不需要进行模拟转换,这样的放大器通常称作数字功率放大器或者D类放大器。 1、A类放大器 A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。放大器可单管工作,也可以推挽工作。由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。电路简单,调试方便。但效率较低,晶体管功耗大,功率的理论最大值仅有25%,且有较大的非线性失真。由于效率比较低现在设计基本上不在再使用。

音响参数

汽车音响功放参数 1、输入灵敏度,是指功放所需最小输入信号电平,它是要求将音源信号放大到足够推动后级功放所需要的必要条件。 2、谐波失真度,这是功放一项极重要的指标,谐波失真是非线性失真的一种,它是放大器在工作时的非线性特征所引起的,失真结果是产生了新的谐波分量,使声音失去原有的音色,严重时声音发破、刺耳。谐波失真还有奇次和偶次之分,奇次谐波会使人烦噪、反感,容易被人感知。有些功放听起来让人感到烦噪,感觉疲劳,就是失真较大所引起的。对功放影响最大的就是失真度,一般高保真要求谐波失真在0.05%以下,越低越好。除了谐波失真外,还有互调失真,交叉失真,削波失真,瞬态失真,相位失真等,它们是影响功放质量的罪魁祸首。考核功效的优劣,首先要看它的失真度,像意大利Sinfoni(诗芬尼)功放的总的谐波失真就在0.01%以下。 3、输出功率,功率问题最令汽车音响从业人员认识不清,在这里需要一一讲解: A、额定输出功率,称为(RMS),指放大器输出的音频信号在总谐波失真范围内,所能输出的最大功率。它一般是交流信号峰值的0.707倍。 B、平均功率,平均功率一般是指各个频率点的平均消耗功率,它与额定输出功率有点类似,但是它一般要参考时间。 C、峰值输出功率,功放所能输出的最大音乐功率称为峰值输出功率,它不考虑失真,通常为(RMS)功率的1.414倍左右。 D、峰值-峰值功率,它是指正电压峰值到负电压的峰值的功率,它是峰值输出功率的四倍。它的出现是厂家出于商业目的,并无实际意义。 4、信噪比,数值越大越好,一般用(S/N)表示,用信号功率Ps与噪声功率Pn 的比值的分贝数表示,S/N=10lgPs/Pn=20lgVs/Vn(db),式中Vs、Vn分别为信号电压与噪声电压。 信噪比与输入信号电平的增加,信噪比也逐渐加大,但当输入信号电平达到某一数值后,信噪比基本保持不变。按目前高保真要求,信噪比应达90dB以上为好,进口高档的功放机往往可达110-120dB,其性能可想而知了。有的信噪比后面有A计权字样,A计权是指将噪声信号通过加权网络后测得的结果,由于人们对于高、低频段的噪声相对来说不太灵敏,所以出现了这样的计权方式。计权噪声更加直观地代表人们实际感受到的噪声信号状况。总之,信噪比越大,表明混在信号里的噪声越小,放音质量越好,便重放音乐清晰,干净而有层次。 5、频率响应,早期俗称功率带宽,指谐波失真不超过规定值时,功放的1/2额定功率频带宽度,即有高低端下跌-3dB的两个频率点之间所包括的频带,称之为功率带宽。 6、阻尼系数,主要是对低频而言,是直接影响低音音质的极重要的技术参数。众所周知,喇叭的口径越大,低音相对就越好,但音盆越大其运动惯性也随之加大,此惯性使它很难与音频信号同步运动,往往表现出的声音混浊不清,尤其在100-400Hz低频,容易造成声染色,使人听起来模糊不清,很不自然。有些改装车的低音喇叭,低频信号强时颤振不止,低音拖尾严重,这就是音盆惯性所引起的。 在功放设计时,工程师对功放采取一些技术措施,如选择多管并联,低内阻(毫欧级)大功率管,提高工作电压,选择优质线材等,极力提高阻尼系数,使它能够针对喇叭惯性运动,产生“电阻尼”作用,使音盆的运动与音频信号同步运动,

相关主题
文本预览
相关文档 最新文档