当前位置:文档之家› 舟山地区出口海产品重金属污染风险及应对研究

舟山地区出口海产品重金属污染风险及应对研究

舟山地区出口海产品重金属污染风险及应对研究
舟山地区出口海产品重金属污染风险及应对研究

我国重金属污染研究现状

我国重金属污染研究现状 摘要:随着经济全球化的迅速发展,含重金属的污染物进入生态环境,对人类的健康带来了严重威胁,我国重金属污染突显,国内在重金属污染研究领域也展开研究,本文描述了我国在重金属污染研究中的具体采样、测定、评价方法,以及这些方法在我国的应用。 关键词:重金属污染;重金属污染物采样、重金属含量测定、污染评价 前言 重金属污染时指由重金属及其化合物引起的环境污染,重金属污染在环境中难以降解,能在动物和植物体内积累,通过食物链逐步富集,浓度成千上万甚至上百万倍的增加,最后进入人体造成危害,是危害人类最大的污染物之一。国际上,许多废弃物都因含有重金属元素被列到国家危险废物名录,近些年随着我国工农业生产的快速发展,我国出现了重金属污染频发、常发的状况。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海、河南大沙河等5起砷污染事件,2009年环保部共接报陕西凤翔等十二起重金属、类金属污染事件。这些事件致使四千零三十五人血铅超标、一百八十二人镉超标,引发三十二起群体性事件。由于重金属污染事件在我国频繁发生,使得我国开始重视重金属污染的研究。 重金属污染物是一类典型的优先控制污染物。环境中的重金属污染与危害决定于重金属在环境中的含量分布、化学特征、环境化学行为、迁移转化及重金属对生物的毒性。人类活动极大的加速了重金属的生物地球化学循环,使环境系统中的重金属呈增加趋势,加大了重金属对人类的健康风险,当进入环境中的重金属容量超过其在环境中的容量时,即导致重金属污染的产生,重金属污染物为持久性污染物,一旦进入环境,就将在环境中持久存留。由于重金属对人类和生物可观察危害出现之前,其在环境中的累积过程已经发生,而且一旦发生危害,就很难加以消除。因此,在过去二十多年中人们就通过不同途径引入重金属对生态环境的污染做了广泛研究。

数学建模A题 城市表层土壤重金属污染分析(基础教资)

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他 公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正 文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反 竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆交通大学 参赛队员 (打印并签名) :1. 陈训教 2. 范雷 3. 陈芮 指导教师或指导教师组负责人 (打印并签名):胡小虎 日期:2011 年9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染做出了详细的分析,对于本题中所提出的问题一,我们利用MATLAB软件对所给的数值进行空间作图,然后分别作出了八种重金属元素的空间分布特征,然后,我们利用综合指数(内梅罗指数)评价的方法,对五个区域进行了综合评价,得出结果令人满意。对于问题二,我们根据第一问和题目所给的数据进行综合分析,得出了重金属污染的主要原因来自于交通区含铅为主的大量排放,和工业区污水的大量排放等等。对于问题三,我们通过对问题一中的八张重金属元素空间分布的图可以看出,发现大多数金属都呈中心发散性传播,同时经过分析,我们发现,如果考虑大气传播和固态传播,很难得出结论,在交通区,由于是汽车尾气造成的传播,发现重金属的传播无规律可循等,所以,我们考虑液态形式的传播,以针对地表水污染物的物理运动过程,以偏微分方程为建模基础,通过和假设和模型参数的估计,得出了可能污染源位置,最后,我们对模型进行了稳定性检验即灵敏性分析和拟合检验,发现在参数变化在10%左右,模型的稳定性良好。最后我们全面分析了模型的优缺点,,最后可以用MATLAB软件得出相应的结果。为更好地研究城市地质环境的演变模式,测定污染源范围还应收集该地区的每年生活、工业等重要污染源的垃圾排放量,地下水流动方向以及每年的生物降解量,降雨量对重金属元素扩散的影响。一但有污染证据,我们可以在该污染源附近沿地下水流动方向设定更多采样点,由此,我们可以构造一个三维公式来计算污染物质浓度的浮动就可以模拟三维空间内的重金属分布影响。 关键字:表层土壤重金属污染 MATLAB 内梅罗指数偏微分方程稳定性检验灵敏性分析地质演变生物降解量

土壤重金属污染

土壤重金属污染 摘要:随着现代工业的发展,工业排出的污染物越来越多,土壤的重金属污染就是一个例子,土壤污染对人类的身心都造成了巨大的危害。本文主要就土壤重金属的概念、来源种类、特点危害、采样检测、防治修复等方面都做了一定的阐述。 With the development of modern industry, industrial discharge pollutants is more and more, soil heavy metal pollution is one example, soil pollution has caused great harm on human body and mind . This paper discusses the concept, origin of soil heavy metal types and characteristics, sampling testing and prevention harm repair all aspects were discussed as well。 关键词:土壤污染,重金属,危害 据报道,目前我国受镉、砷、铬、铅等重金属污染耕地面积近 2000 万公顷,约占总耕地面积的 1/5,其中工业“三废”污染耕地 1000 万公顷,污水灌溉的农田面积已达 330 多万公顷。例如:某省曾对 47 个县和郊区的 259 万公顷耕地(占全省耕地面积的五分之二)进行过调查。其结果表明,75% 的县已受到不同程度的重金属污染的潜在威胁,而且污染趋势仍在加重。 一土壤重金属污染的定义 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。但是由于不同的重金属在土壤中的毒性差别很大,所以在环境科学中人们通常关注锌、铜、钴、镍、锡、钒、汞、镉、铅、铬、钴等。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。由于土壤中铁和锰含量较高,因而一般不太注意它们的污染问题,但在强还原条件下,铁和锰所引起的毒害亦应引起足够的重视。 土壤重金属污染是指由于人类活动将重金属带入到土壤中,致使土壤中重金属含量明显高于背景含量、并可能造成现存的或潜在的土壤质量退化、生态与环境恶化的现象。[1] 如下图为土壤环境质量标准值(GB15618—1995)单位: mg/kg

01-土壤重金属污染及生态风险评价

土壤重金属污染及生态风险评价 摘要:本文主要就我国目前土壤重金属污染及生态风险评价的现状、方法以及如何构建更加系统、全面和标准化的土壤重金属污染及生态风险评价机制作了一些探讨。 关键词:土壤;重金属污染;生态风险;评价;土壤修复 近30年来,随着我国社会经济的高速发展和高强度的工业活动,因重金属污染退化的土壤数量日益增加、范围不断扩大,土壤质量恶化加剧,危害更加严重,已经影响到全面建设小康社会和实现可持续发展的战略目标,未来15年将面临着更为严峻的挑战。我国的土壤重金属污染形势日趋严峻,必须采取有效的措施控制和预防,这就要求首先要建立起科学合理的土壤重金属污染及生态风险评价机制,通过科学的评价针对性的构建预防和控制土壤重金属污染的策略和方法。 一、我国土壤重金属污染现状 据国土资源部统计发现,目前我国耕地面积约有10%以上受重金属污染,且多数集中在经济相对发达地区。而根据我国农业部调查数据显示,在我国约140万公顷的污灌区中,受重金属污染的土地面积占污灌区面积的64.8%,其中轻度污染46.7%,中度污染9.7%,严重污染8.4%。华南部分城市50%的耕地遭受镉、砷、汞等有毒重金属污染;长三角地区有些城市大片农田受多种重金属污染, 10%的土壤基本丧失生产力。数据显示,我国土壤重金属污染形势十分严峻,已对我国的农业生产和人的健康带来严重威胁。 目前我国土壤重金属污染的原因主要有两个。一方面是在我国城市产业结构调整“退二进三”后,早期的城市工业区开始衰退并失去利用价值,逐渐成为被废弃、闲置或利用率很低的用地,而原有工业生产中大量的重金属废弃物被遗留进入土壤,成为潜在的环境风险场地。第二则是大量的制造和化工企业违规排放含有铅、镉、铬、汞和类金属砷等生物毒性显著的重金属污水汇流入河从而污染周边土地。 土壤重金属污染的危害十分严重,首先会影响植物根和叶的发育,其次,经由被重金属污染土壤种植的农作物或蔬菜被人食用后,会破坏人体神经系统、免疫系统、骨骼系统等,给人类的身体健康带来重大疾病和危害。 土壤重金属污染经由水环境直接毒害植物体,并最终通过食物链危害人类健康,其治理和恢复非常迫切及难度很大。 二、我国土壤重金属污染及生态风险评价应用 2.1应用现状 目前我国的土壤重金属测定方法主要有物理化学法(如化学试剂提取法、扩散梯度膜(DGT)法、同位素稀释(ID)法)、生物学评价法和模型评价法等。生物学测定法是近年来发展较快,普遍应用的一种金属生物有效性的测定方法,也是一种最直观、最常规的标准方法,主要分为植物、微生物、动物检测法。模型评价法主要是应用生物有效性/毒性的预测模型来评价重金属的生物有效性,是当前比较新兴的研究方法。 从土壤重金属污染生态风险评价方面看,主要是针对土壤重金属污染和由此带来的土壤安全和作物的健康问题,国内学者提出了一些评价标准、手段和方法。如将土壤背景同土壤临界含量联系起来为标准进行土壤污染的评价和分析,土壤临界值主要通过地球化学法和生态环境效应法进行制定。此外还有以区域中清洁土壤对照点含量为评价标准,但由于各地区土壤中元素含量差别很大,用这

土壤中重金属环境污染元素的来源及作物效应

第23卷第2期2005年5月 贵州师范大学学报(自然科学版) Journa l of Guizhou Nor m al University(Natural Sciences) Vo.l23.No.2 M ay2005 文章编号:1004)5570(2005)02-0113-08 土壤中重金属环境污染元素的来源及作物效应 王济1,王世杰2 (1.贵州师范大学地理与生物科学学院,中科院地化所环境地球化学国家重点实验室,中科院研究生院贵州贵阳550002; 2.中科院地化所环境地球化学国家重点实验室,贵州贵阳550002) 摘要:主要介绍我国5土壤环境质量标准6中规定含量的8种重金属环境污染元素(汞、镉、铅、铬、砷、锌、铜、镍)的污染来源及作物效应。土壤中重金属的主要来源是成土母质,矿山开采的三废污染,大气中重金属的沉降,农药、化肥、塑料薄膜等的使用等。重金属在作物中的分布规律一般是根>茎>叶>籽实。 关键词:土壤;重金属;环境;污染;来源;作物效应 中图分类号:X53文献标识码:A The sources and crops effect of heavy m eta l ele m en ts of con ta m i na ti on i n soil WANG Ji1,WANG S h i2ji e2 (1.Gu iz hou Nor ma lUn i ve rs i ty,The State Key Laboratory of Enviro nmenta lGeochem istry,Institute of Geochem i stry,Graduate School of Ch i nese A cade m y of Sc i ences,Guiyang,Gu i zho u550002,Ch i na; 2.The S tate Key Laboratory of Environ m en tal Geoche m istry,Instit ute of Geoche m istry, Chinese A cade m y of Sc i ences,Guiyang,Gu i zho u550002,Ch i na) Abstr act:Th is paper has intr oduced t h e source and crops eff ect of heavymetal e le ments of conta m i n a2 ti o n(H g,Cd,Pb,Cr,A s,Z n,Cu,N i)li m ited by Environmental Qua lity Standar d f or Soils (GB1561821995).The ma i n source is f ro m mother2materi a l of soi.l The heavy meta ls polluti o n also can be related w ith the produce ofm iner,sedi m en tation of heavy me tals in at m osphere,use of agro2 che m icals etc.The distri b uti o na l or der in crops i s root>ste m>leaf>f rui.t K ey w ord s:soi;l heavy meta;l environmen;t pollution;source,crop e f fect 土壤中重金属污染元素主要包括汞、镉、铅、铬及类金属元素砷等生物毒性显著的元素,以及有一定毒性的锌、铜、镍等[1]。因此我们将汞、镉、铅、铬、砷、锌、铜、镍合称为重金属环境污染元素。人类活动将重金属加入到土壤中,致使土壤中重金属含量明显高于原有含量,并造成生态环境质量恶化的现象称为土壤重金属污染[2]。重金属污染物在土壤中移动性很小,不易随水淋滤,不被微生物降解[3,4]。它们一方面对农作物、农产品和地下水等许多方面产生重大影响,并通过食物链危害人体健康;另一方面因大多数重金属在土壤中相对稳定且难以迁出土体,对土壤理化性质及土壤生物学特性(尤其是土壤微生物)和微生物群落结构产生明显不良影响,从而影响土壤生态结构和功能的稳定性[2,5]。 113 收稿日期:2005-01-04 基金项目:贵州省高校发展专项资金(黔教科2004111),贵州师范大学校科研启动费资助项目。作者简介:王济(1975-)男,博士,研究方向:土壤与环境。

土壤重金属污染现状及其治理方法

论文课题土壤重金属污染现状及其治理方法 小组组长12549025 李思远 小组成员12549026 李康 12549028 王鑫 12549030 吴义超 土壤重金属污染现状及其治理方法随着社会的快速发展,土壤重金属污染日益严重。针对此,涌现了许多修复技术,而生物修复前景广阔,正日益受到重视。 现代工农业等快速发展的同时,土壤重金属污染的形势也越来越严峻。其治理方法很多,而生物修复以其无可比拟的优势正受到关注,应用前景广阔。但生物修复仍存在许多问题待解决,如超积累植物吸收重金属的机理还未研究清楚。所有这些,都阻碍了生物修复的大规模应用。 土壤重金属污染是指土壤中重金属过量累积引起的污染。污染土壤的重金属包括生物毒性显著的元素如Cd、Pb、Hg、Cr、As,以及有一定毒性的元素如Cu、Zn、Ni。这类污染范围广、持续时间长、污染隐蔽、无法被生物降解,将导致土壤退化,农作物产量和质量下降,并通过径流、淋失作用污染地表水和地下水。过量重金属将对植物生理功能产生不良影响,使其营养失调。汞、砷能抑制土壤中硝化、氨化细菌活动,阻碍氮素供应。重金属可通过食物链富集并生成毒性更强的甲基化合物,毒害食物链生物,最终在人体内积累,危害人类健康。 1现状 1.1国内

国家环境保护部抽样监测30万公顷基本农田保护区土壤,发现有3.6万公顷土壤重金属超标,超标率达12.1%。 据国土资源部消息,目前全国耕地面积的10%以上已受重金属污染,约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆积占地和毁田200万亩,其中多数集中在经济相对发达地区。 据我国农业部调查数据,在全国约140万公顷的污灌区中,受重金属污染的土地面积占污灌区面积的64.8%,其中轻度污染46.7%,中度污染9.7%,严重污染8.4%。 华南部分城市50%的耕地遭受镉、砷、汞等有毒重金属污染;长三角地区有些城市大片农田受多种重金属污染, 10%的土壤基本丧失生产力。 2005年,长三角等地土壤重金属污染严重的情况,曾见诸报端,并引发舆论普遍关注和争议。土壤污染立法迫在眉睫。 对浙北、浙东和浙中的236.5万公顷农用地调查发现,不适合种农作物的农用地面积为47.2万公顷,占20%;浙北、浙中、浙东沿海三个区域中,属轻度、中度与重度重金属污染的面积分别占38.12%、9.04%、1.61%,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。 第九届亚太烟草和健康大会中一项名为《中国销售的香烟:设计、烟度排放与重金属》的研究报告称:13个中国品牌国产香烟中铅、砷、镉等重金属成分含量严重超标,其含量最高超过拿大产香烟3倍以上! 2009年8月,陕西凤翔县发现大量儿童血铅含量严重超标,后确认是附近的陕西东岭冶炼公司的铅排放所导致。 1.2国外 英国早期开采煤炭、铁矿、铜矿遗留下的土壤重金属污染经过300年依然存在。1996到1999年间,英格兰和威尔士尝试挖出污染土壤并移至别处,但并未根本解决问题。从20世纪中叶开始,英国陆续制定相关的污染控制和管理的法律法规,并进行土壤改良剂和场地污染修复研究。 日本的土地重金属污染在上世纪六七十年代非常严重。其经济的快速增长导致了全国各地出现许多严重环境污染事件,被称为四大公害的痛痛病、水俣病、第二水俣病、四日市病,就有三起和重金属污染有关。 荷兰在工业化初期土地污染问题严重。从20世纪80年代中期开始,加强土壤的环境管理,完善了土壤环境管理的法律及相关标准。国土面积4.15万平方

流域水环境重金属污染风险防控理论技术与应用

拟推荐2017年度国家科技进步奖项目 一、项目名称 流域水环境重金属污染风险防控理论技术与应用 二、推荐单位意见 该项目围绕流域重金属污染控制的关键理论技术问题,以流域水体污染控制和水质改善为目标,以清洁生产、源头控制、过程强化去除、水质改善和风险管理为主线,开展了持续系统的理论创新、技术突破和工程实践,实用性强,经济社会效果好,为促进我国重金属污染治理和风险防控技术进步起到了积极作用。该项目历时18年,研发的以清洁生产、过程与风险防控为突破口的关键技术及成套设备达到国际先进水平,解决了源头减排和强化去除等关键技术难题,在技术创造性、新颖性、实用性和功能综合性等方面取得了原创性突破。 该项目成果在国家和多个地方重金属治理工程建设中得到应用,为国家和地方重金属污染防治规划、标准和政策提供重要科技支撑。核心技术推动了全国重点金属(锰、镉、锌、铜、汞、银、铬等)的污染削减,促进了工业、环保和矿业等部门/行业的流域水环境保护工作,研究成果具有国际影响,并产生了社会经济和环境效益。 推荐该项目申报2017年度国家科学技术进步一等奖。

三、项目简介 针对国家重大需求重金属污染防治的关键瓶颈问题,选择流域风险防控为突破点,以源头控制-过程削减-应急处置为主线,在创造性、新颖性、实用性和工程应用方面取得原创性突破,主要创新如下: (1)发展和完善了流域水环境重金属风险防控理论方法体系,在重金属迁移转化、生物有效性和食物链传递等方面取得了重要进展,创建了流域污染负荷估算、来源解析、过程模拟和风险评估等系列新模型与新方法,解决了关键理论难题。 (2)开发和完善了流域水环境重金属风险防控技术系统,攻克了电解锰锌行业清洁生产、资源回收利用、矿山源头治理、强化去除、掩蔽钝化和应急处置等核心技术,在流域系统过程防控新技术、新工艺和新结构方面取得原创性突破。 (3)研发了以源头控制、过程与风险防控为突破口的成套设备,发明了重金属污染移动削减、自动收集、强化去除与原位钝化投料等控污装置,实现了重金属污染协同防控技术和新材料的重要突破。 (4)通过自主研发和系统集成提出的流域水体重金属风险防控技术模式,以及开发的整装成套技术及其设备,在我国重点流域、电解锰锌行业和突发水污染事故处理处置工程得到了应用,实用性强、效果好,为我国流域环境质量改善提供了工程经验和成功案例。 四、客观评价 技术查新报告 教育部技术查新报告(编号:201636000G020103)表明:未见基

重金属污染风险评价

题目:海洋重金属污染现状及风险评价手段 2016年10月28日

目录 目录 (2) 摘要............................................................................................................................ 错误!未定义书签。Abstract .. (3) 1.引言 (4) 2.重金属来源 (4) 3.海洋重金属污染现状 (5) 4.海洋重金属污染危害 (5) 5.评价方法 (6) 5.1生物监测评价方法 (6) 5.2水质直接评价方法 (6) 5.2.1单项指数法 (6) 5.2.2模糊数学法 (7) 5.3沉积物评价方法 (7) 5.3.1地累积指数法 (7) 5.3.2潜在生态风险指数法 (7) 5.3.3综合污染指数法 (8) 5.3.4内梅罗综合指数法 (8) 5.3.5污染负荷指数法 (8) 5.3.6沉积物富集系数法 (8) 5.3.7次生相与原生相比值法 (9) 5.3.8沉积物质量基准法 (9) 6.研究进展 (9) 7.研究展望 (10) 8.致谢 (11)

海洋重金属污染现状及风险评价手段 摘要:近年来,我国海洋经济发展迅速,海洋环境问题凸显,其中,海洋重金属污染问题已引起各界的高度关注,本文总结了海洋重金属污染的途径、现状及危害,以及国内外关于海洋重金属的风险评价包括的三个方面。一是生物监测的评价方法,二是水质直接评价方法,三是沉积物评价方法。并提出关于海洋重金属风险评价的展望。 关键词:海洋、重金属、风险评价 The Status and Risk Assessment Methods of Heavy Metal Pollution in the Sea Abstract:in recent years, China's rapid development of marine economy, marine environmental problems highlighted, among them, pay close attention to marine heavy metal pollution problem has attracted from all walks of life, this paper summarizes the approaches of marine heavy metal pollution, current situation and harm, including three aspects at home and abroad on Marine heavy metal risk assessment. One is to evaluate the biological monitoring method the two is the direct evaluation method of water quality, sediment is three evaluation methods. And put forward the prospects about marine risk assessment of heavy metals. Key words: marine;heavy metal;risk assessment.

土壤重金属污染现状及其治理方法

土壤重金属污染现状及其治理方法摘要随着社会的快速发展,土壤重金属污染日益严重。针对此,涌现了许多修复技术,而生物修复前景广阔,正日益受到重视。 关键词土壤重金属污染生物修复超积累植物 Abstract: With the rapid development of the society, the heavy metal pollution of the soil is growing worse and worse. Facing this situation, there have been many repairing technologies. The Bioremediation has a broad prospect and is at a premium. Keywords:heavy metal pollution of the soil;Bioremediation;hyper accumulator 现代工农业等快速发展的同时,土壤重金属污染的形势也越来越严峻。其治理方法很多,而生物修复以其无可比拟的优势正受到关注,应用前景广阔。但生物修复仍存在许多问题待解决,如超积累植物吸收重金属的机理还未研究清楚。所有这些,都阻碍了生物修复的大规模应用。 土壤重金属污染是指土壤中重金属过量累积引起的污染。污染土壤的重金属包括生物毒性显著的元素如Cd、Pb、Hg、Cr、As,以及有一定毒性的元素如Cu、Zn、Ni。这类污染范围广、持续时间长、污染隐蔽、无法被生物降解,将导致土壤退化,农作物产量和质量下降,并通过径流、淋失作用污染地表水和地下水。过量重金属将对植物生理功能产生不良影响,使其营养失调。汞、砷能抑制土壤中硝化、氨化细菌活动,阻碍氮素供应。重金属可通过食物链富集并生成毒性更强的甲基化合物,毒害食物链生物,最终在人体内积累,危害人类健康。 1现状 1.1国内 国家环境保护部抽样监测30万公顷基本农田保护区土壤,发现有3.6万公顷土壤重金属超标,超标率达12.1%。 据国土资源部消息,目前全国耕地面积的10%以上已受重金属污染,约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆积占地和毁田200万亩,其中多数集中在经济相对发达地区。 据我国农业部调查数据,在全国约140万公顷的污灌区中,受重金属污染的

北海市海产品重金属污染调查

北海市海产品重金属污染调查 了解北海市海产品中重金属污染状况,评价其食用安全风险。方法对本市销售量较大的海产鱼类、软体类和甲壳类共3类18种海产品,计113份样品进行采样检测,依据国家食品卫生标准,采用生物质量指数法进行评价。结果海产品中3种重金属以镉的合格率最低,仅为54.0%,铅也有超标样品,而汞的合格率为100%,差异有统计学意义(P<0.01)。分类中以软体类的重金属污染最严重,其中达到重度镉污染水平的占83.3%,轻度铅污染水平的占55.6%,铅污染和重度铅污染水平的占16.7%;其次为甲壳类,达到重度镉污染水平的占45.7%,轻度铅污染水平以上的占28.3%,差异均有统计学意义(P<0.01)。而海水鱼类的污染相对较少,占77.4%的铅污染和64.5%的镉污染均在正常背景值水平。结论海产品中软体类的重金属风险最大,尤其是镉的风险应引起足够的重视,属于污染危害大的海产品种类,应开展深入的污染控制研究和加强必要的监管。 为了解北海市海产品中重金属污染状况,评价其食用安全风险,对北海市主要食用海产品重金属元素铅、镉、汞进行了监测调查,现将结果报告如下。 1 材料与方法 1.1 样品来源对本市城区范围各主要农贸市场、超市、批发市场出售的海产品,按照采样规范,随机抽取具有代表性的样品。 1.2 样品类别和数量对本市销售量较大的黄鱼、马胶鱼等海产鱼类,红螺、车螺等软体类和明虾、花蟹等甲壳类共3类18种海产品,计113份样品。 1.3 检测项目与方法样品采集后在4 h内取可食部分制成肉糜,采用湿式消化法对待测定样品进行无机消化前处理。检验铅采用GB/T5009.12-2003《食品中铅的测定》石墨炉原子吸收光谱法;镉采用GB/T5009.15-2003《食品中镉的测定》石墨炉原子吸收光谱法;汞采用GB/T5009.17-2003《食品中汞及有机汞的测定》氢化物原子荧光法。 1.4 评价依据及方法依据国家食品卫生标准《食品中污染物限量》(GB2762-2005),铅限量为0.5 mg/kg,镉限量为0.1 mg/kg,汞(参照甲基汞)限量为1.0 mg/kg。采用生物质量指数法进行评价。 生物质量评价方法:Pi=Ci/Csi。式中Pi为第i种污染物的生物质量指数,Ci为第i种污染物的实测值,Csi为第i种污染物的标准值。 生物体污染状况评价标准:污染指数Pi<0.2为正常背景值水平, Pi在0.2~0.6为微污染—轻污染水平,Pi在0.6~1.0为污染水平,Pi在>1.0为重污染水平(产品残留超标)。 1.5 质量控制:现场监测采样器材、采样过程严格按照国家有关标准和要求进行,实验室所用仪器、器械和标准品进行了检验前的校准,每个检测样品都进行了平行样的测定,按检测样品的平均值出具检验数据,对超标样品进行了重复测定确证后再报发检验结果。 2 结果 2.1 总体情况共检测113份海产品,其中铅、镉、汞3种重金属元素检测合格数分别是109份、61份和113份,合格率分别为96.6%、54.0%和100%。3类海产品中海水鱼类镉的合格率最高,软体类的合格率最低,其次是甲壳类,差异有统计学意义(表1)。 3 讨论 人体内重金属元素铅、镉、汞主要来自食物,为此,联合国环境规划署、世界粮农组织及世界卫生组织将铅、镉、汞列为食品安全检测的必测项目。重金属污染是影响食品质量安全的重要因素之一,多数重金属在体内有蓄积性,半衰期较长,对人体能产生急性和慢性作用,可能有致突变、致癌、致畸的潜在危险[1]。 调查结果表明,海产品中3种重金属以镉的合格率最低,仅为54.0%,铅也有超标样品,而

土壤修复技术及优缺点

土壤修复技术及优缺点 The Standardization Office was revised on the afternoon of December 13, 2020

土壤是植物生长繁育的自然基地,是农业的基本生产资料,是人类赖以生存的极其重要的自然资源。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重。土壤重金属污染具有隐蔽性、长期性和不可逆性的特点。土壤中有害重金属积累到一定程度,不仅会导致土壤退化,农作物产量和品质下降,而且还可以通过径流、淋失作用污染地表水和地下水,恶化水文环境,并可能直接毒害植物或通过食物链途径危害人体健康。 不同污染类型的土壤污染,其具体治理措施不完全相同,目前,重金属土壤的修复技术主要有工程措施,物理化学方法,植物修复方法以及微生物修复方法。 工程措施主要包括客土、换土和深耕翻土等措施。通过客土、换土和深耕翻土与污土混合,可以降低土壤中重金属的含量,减少重金属对土壤-植物系统产生的毒害,从而使农产品达到食品卫生标准。深耕翻土用于轻度污染的土壤,而客土和换土则是用于重污染区的常见方法,在这方面日本取得了成功的经验。工程措施是比较经典的土壤重金属污染治理措施,它具有彻底、稳定的优点,但实施工程量大、投资费用高,破坏土体结构,引起土壤肥力下降,并且还要对换出的污土进行堆放或处理。 物理化学方法是当前重金属污染土壤修复研究的热点,也是最为成熟工程上应用最为广泛的修复技术,主要包括固化/稳定化技术,土壤淋洗技术,电动修复技术和电热修复技术等。 固化/稳定化技术是通过固态形式在物理上隔离污染物或者将污染物转化成化学性质不活泼的形态,从而降低污染物质的毒害程度。如通过施加水泥等固化土壤重金属的固化修复技术,或向土壤投入无机或有机改良剂,改变土壤的

2011年数学建模获奖论文 A题 城市表层土壤重金属污染分析

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。城市工业、经济的发展,污水排放和汽车尾气排放等均能引起城市表层土壤重金属污染。而重金属污染对城市环境和人类健康造成了严重的威胁,因此对城市表层土壤重金属污染的研究具有重大意义。 对于问题1,先用MATLAB软件对所给数据进行处理,插值拟合得出8种主要重金属元素在该城区的空间分布图;再用内梅罗综合污染指数评价法建立模型进行求解。首先用EXCEL对数据进行分析,得出各区的8种重金属的平均浓度;然后结合MATLAB软件求出各 各种元素之间及其与海拔之间的相关系数矩阵和相关度;然后结合第一问给出的空间分布图和区域散点图,参照主要重金属含量土壤单项污染的指数,分析得出各重金属污染的主要原因主要来自工业区、主干道路区和生活区。 对于问题3,由上述问题的分析可以认为重金属的分布是连续的,物质的扩散从高浓度向低浓度进行。在模型一数据处理基础上建立遍历搜索模型,结合MATLAB软件求出重金属空间分布中的极值点即可能的污染源,得出极值点后再结合《国家土壤环境质量标准》通过MATLAB软件对极值点进行筛选,得出8种重金属元素的主要污染源。 对于问题4,对所建立的模型进行分析,找出了各个模型的优缺点。然后分析影响城市地质演化模型的因素,为更好地研究城市地质环境的演变模式,从动态和多元的角度出发,还应搜集采样点的长期动态数据和岩石、土壤、大气、水和生物等因素的相关信息,分别建立动态动态传播模型和城市地质环境的综合评价预测模型。 关键词:梅罗综合污染指数评价法污染等级相关矩阵遍历搜索模型污染源

重金属的来源及传播

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,目前,全世界平均每年排放Hg约1.5万吨,Cu 340万吨,Pb 500万吨,Mn 1500万吨,Ni 100万吨。据我国农业部进行的全国污灌区调查,在约140万公顷的污水灌区中,遭受重金属污染的土地面积占污水灌区面积的64.8%,其中轻度污染的占46.7%,中度污染的占9.7%,严重污染的占8.4%。 土壤重金属污染具有污染物在土壤中移动性差、滞留时间长、不能被微生物降解的特点,并可经水、植物等介质最终影响人类健康。因此,治理和恢复的难度大。本文在讨论土壤重金属污染物来源和分布的基础上,评述土壤重金属污染修复技术研究进展,旨在为重金属污染土壤的有效修复提供科学的依据。 1 土壤重金属来源与分布 1.1 随着大气沉降进入土壤的重金属 大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进人土壤。据Lisk报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg(O.02~30mg/kg),这类燃料在燃烧时,部分悬浮颗粒和挥发金属随烟尘进入大气,其中1O%~30%沉降在距排放源十几公里的范围内,据估计全世界每年约有1600吨的汞是通过煤和其它石化燃料燃烧而排放到大气中去的。例如比利时每年从大气进入每公顷土壤的重金属量就有Pb 250g、Cd 19g、As 15g、Zn 3750g。 运输,特别是汽车运输对大气和土壤造成严重污染。主要以Pb、Zn、Cd、Cr、Cu等的污染为主。它们来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,据有关材料报导,汽车排放的尾气中含Pb量多达20~50 μg/L,它们成条带状分布,因距离公路、铁路、城市中心的远近及交通量的大小有明显的差异。Вериня等研究发现在公路两侧50m的距离有被污染的痕迹,每月每平方米累积的易溶性污染物在4~40 g。进入环境的强度顺序为:Cu、Pb、Co、Fe和Zn。在宁-杭公路南京段两侧的土壤形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重,污染强弱顺序为:城市-郊区-农村。 1.2 随污水进入土壤的重金属 利用污水灌溉是灌区农业的一项古老的技术,主要是把污水作为灌溉水源来利用。污水按来源和数量可分为城市生活污水、石油化工污水、工业矿山污水和城市混合污水等。生活污水中重金属含量很少,但是,由于我国工业迅速发展,工矿企业污水未经分流处理而排人下水道与生活污水混合排放,从而造成污灌区土壤重金属Hg、Cd、Cr、Pb、Cd等含量逐年增加。淮阳污灌区土壤Hg、Ca、Cr、Pb、As等重金属1995年已超过警戒线。其它灌区部分重金属含量也远远超过当地背景值。 随着污水灌溉而进入土壤的重金属,以不同的方式被土壤截留固定。95%的Hg被土壤矿质胶体和有机质迅速吸附,一般累积在土壤表层,自上而下递减。郑州污水灌区水中Hg的浓度达到O.242mg/kg,而土壤Hg含量O.194 mg/kg就会造成重度污染。污水中的As多以3价或5价状态存在,进入土壤后被铁、铝氢氧化物及硅酸盐粘土矿物吸附,也可以和铁、铝、钙、镁等生成复杂的难溶性砷化合物。而Cd很容易被水中的悬浮物吸附,水中Cd的含量随着距排污口距离的增加而迅速下降,因此污染的范围较少。Pb很容易被土壤有机质和粘土矿物吸附。Pb的迁移性弱,污灌区Pb的累积分布特点是离污染源近土壤含量高,距离远则土壤含量低。污水中Cr有4种形态,一般以3价和6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr,随之被吸附固定。因此,污灌区土壤Cr会逐年累积。 1.3 随固体废弃物进入土壤的重金属

土壤重金属污染及治理修复技术

土壤重金属污染及治理修复技术 摘要:由于冶炼、电镀、制革和电子等工业中三废的排放,以及各种金属矿山开采活动的增多,导致含有很多重金属的物质进入土壤,并由土壤间接进入周围的环境中,给周围环境造成很大的破坏,同时也在危害着人类的健康。本文重点讲述了土壤中重金属的存在形式和转移形式,并系统地介绍了传统的重金属污染修复技术和新型的重金属污染修复技术。 关键词:土壤;重金属污染;治理修复技术 1、土壤中的重金属存在形态和转移形式 重金属物质在土壤介质中的存在形态是衡量其对周围环境影响程度的关键指标,重金属在土壤中的主要存在形态有自由离子形态、可溶化合物形态、可交换离子形态、有机束缚形态或与其它离子形成氧化物硅酸盐氮化物等形态。一般情况下,可以通过重金属形态的探测和提取法将一些交换态和结合态的或者残渣态的金属络合物进行提取和分析,可用于这类技术方法提取的重金属有铅、镉、铜、锌等。[1]目前已知的重金属在土壤中有三种迁移方式,即由于植物对周围金属离子有吸附作用,重金属离子被移入植物体内,并随着食物链进入动物或人体内,也可能会随着植物的枯萎和腐朽再次回到土壤中。一些重金属物质以离子形式存在于地

下水和河流中,并随地下水和河流的四处流动而进行扩散,这就加重了对重金属污染进行治理的难度。最后一种方式就是重金属物质残留在土壤中,随着时间的推移慢慢氧化作用或者进行其他化学作用,在化学作用后与其他物质进行化合,最后将毒害作用减少。 2、传统的土壤重金属污染修复技术 2.1物理化学修复技术 物理化学修复过程即通过各种物理和化学手段从土壤 中除去或者分离含重金属的污染物,比如利用淋洗液将土壤中的固相重金属转移到土壤的液相中,再利用络合或者沉淀的方法使土壤富集,然后将富集液中含重金属的沉淀进行过滤并除去。在进行淋洗时,淋洗剂的选择是非常关键的问题。除此之外,可以用电动修复的方法,就是在固液相的土壤中插入电极,利用重金属导电性的原理,充分在电场的作用下引导并从土壤中移动出。然后进行筛选和过滤。也可以利用重金属与某些非金属阴离子在土壤中化合形成化合物的方法,在土壤中掺入适量的含有非金属阴离子的物质,使重金属阳离子和非金属阴离子不易分解的无害的化合物,或者可直接分离提取的化合物[2]。 2.2农业化学修复技术 农业化学修复技术就是采用大面积种植一些可以对重 金属物质进行有利吸收的农作物,从而利用植物自身的吸收

污水处理厂重金属污染特点及潜在风险

污水处理厂重金属污染特点及潜在风险 1 引言 污泥是污水处理过程中的必然产物,主要由多种菌胶团与其吸附的有机和无机物集合体所组成.随着我国污水处理能力及处理率的快速增长,产生了大量剩余污泥,污泥处置将成为我国一个更加突出的实际环境问题.由于污泥中含有大量的有机质和养分元素,因此,污泥农用有望成为一种具有重要前景的处置方法.然而,污泥中可能同时含有大量病原菌、有机污染物和重金属等污染物质,在农用过程中重金属会释放并进入土壤生态环境,重金属作为一种持久性潜在有毒污染物,一旦进入环境后,因不能被生物降解而长期存在于环境中且不断积累,致使重金属在土地农用过程中可能产生生态危害风险,从而限制其大规模土地利用.因此,对污泥中重金属污染特征进行研究,并评价潜在风险及健康风险应该引起高度重视. 目前,有关污泥中重金属的研究主要集中在污染水平、赋存形态及生态风险方面.例如,刘敬勇等分析了广州市城市污泥中重金属的污染特征,并评价了其生态风险;涂剑成等分析了东北地区污水处理厂污泥重金属浓度及形态,并评价了潜在生态风险;刘晓光等研究了某城市污水处理厂的剩余污泥在厌氧消化过程重金属形态转化,并分析了生物有效性;姚金铃等探讨了我国16家城市污水处理厂的重金属污染状况并与不同重金属标准进行了比较;孙西宁等研究了污泥在好氧堆肥过程中重金属形态的变化,发现堆肥有利于重金属形态的稳定.然而,关于污泥重金属健康风险的研究较少,健康风险评价主要集中在气体颗粒物及水体等方面.因此,本研究在分析重金属形态及潜在风险评价的基础上,进一步分析污泥中重金属的健康风险,以更好地评价污泥重金属污染情况,为污泥农用等资源化利用提供参考. 2 材料与方法 2.1 污泥样品的采集与预处理 污泥取自北京市某污水处理厂污泥脱水车间,为均匀反映污泥重金属含量情况,连续取样7 d并分别标记为S1~S7.每次取样500 g于聚乙烯自封袋取回,样品在通风阴凉处自然风干后混匀,用四分法多次筛选后取30 g 污泥样品,研磨过150 μm尼龙筛(100目),装入密封袋标号备用. 2.2 样品处理与测试 2.2.1 含量分析 称取样品0.2 g,置于聚四氟乙烯消解罐中,滴加2~3滴去离子水润湿,加6 mL硝酸、6 mL 氢氟酸及2 mL盐酸,设定微波消解程序消解,消解后在电热板上加热赶酸,冷却加1%硝酸定容至50 mL,于4 ℃下保存待测. 2.2.2 重金属形态分析方法常用的形态分析方法包括Tessier 逐级提取法和BCR逐级提取法,Tessier提取法分级更详细,但BCR提取法重现性相对较好.重金属元素化学形态分析采用欧共体修正的BCR顺序提取法:①酸可提取态:称取0.50 g土壤到50 mL离心管中,加入20 mL 0.11 mol · L-1醋酸(HOAc),室温振荡16 h,在3000 r · min-1的转速下离心20 min,取上清液待测,残渣留存;②可还原态:向上一步的残渣中加0.5 mol · L-1的NH2OH · HCL溶液(盐酸羟胺)20 mL,室温振荡16 h,在3000 r · min-1的转速下离心20 min,取上清液待测,残渣留存;③可氧化态:向上一步的残渣中加30%的H2O2 5 mL,室温反应1 h,偶尔振荡,(85±2)℃下水浴硝化1 h,蒸发至体积少于2 mL,补加5 mL H2O2,重复上述操作,

相关主题
文本预览
相关文档 最新文档