当前位置:文档之家› (完整版)全站仪的补偿与补偿器原理

(完整版)全站仪的补偿与补偿器原理

(完整版)全站仪的补偿与补偿器原理
(完整版)全站仪的补偿与补偿器原理

全站仪几乎可以用在所有的测量领域。电子全站仪由电源部分、测角系统、测距系统、数据处理部分、通讯接口、及显示屏、键盘等组成。

同电子经纬仪、光学经纬仪相比,全站仪增加了许多特殊部件,因此而使得全站仪具有比其它测角、测距仪器更多的功能,使用也更方便。这些特殊部件构成了全站仪在结构方面独树一帜的特点。

同轴望远镜

全站仪的望远镜实现了视准轴、测距光波的发射、接收光轴同轴化。同轴化的基本原理是:在望远物镜与调焦透镜间设置分光棱镜系统,通过该系统实现望远镜的多功能,即既可瞄准目标,使之成像于十字丝分划板,进行角度测量。同时其测距部分的外光路系统又能使测距部分的光敏二极管发射的调制红外光在经物镜射向反光棱镜后,经同一路径反射回来,再经分光棱镜作用使回光被光电二极管接收;为测距需要在仪器内部另设一内光路系统,通过分光棱镜系统中的光导纤维将由光敏二极管发射的调制红外光传也送给光电二极管接收,进行而由内、外光路调制光的相位差间接计算光的传播时间,计算实测距离。

同轴性使得望远镜一次瞄准即可实现同时测定水平角、垂直角和斜距等全部基本测量要素的测定功能。加之全站仪强大、便捷的数据处理功能,使全站仪使用极其方便。

补偿器的工作原理

竖轴倾斜造成的垂直角、水平角的误差,通过观测的方法是不能消除的。

1、单轴倾斜补偿器。其功能是:仪器竖轴倾斜时能自动改正竖轴倾斜对竖盘读数的影响。为了达到同时补偿水平度盘读数,可以用两个单轴补偿器,安装时使它们位置相互垂直。磁性流体单轴倾斜补偿器原理:将线圈绕在封有磁性流体和气泡的水泡管的中央,并接通电源,传感器在水平状态下,气泡居中央,离左右两端应相等,检测线圈的电压也相等。当向左或向右倾斜时气泡就移动,左右检测线圈产生电势差。根据电势差求得倾斜方向和倾斜角度。

2、双轴倾斜补偿器。其功能是:仪器竖轴倾斜时能自动改正由于竖轴倾斜对竖盘以及水平度盘读树的影响。电子双轴倾斜补偿器原理:从发光二极管发出的光透过玻璃圆水准器,射在气泡上的光被遮掉,在接收基板上装有4只彼此相距90°的接收光敏二极管。当仪器完全整平时,气泡在接收基板的中央;若仪器稍微有一点倾斜时,气泡就相应移动,接收光敏二极管所接收的光能量也就发生变化。通过光能量变化比可以求得倾斜角度。

补偿器的应用

为了改正由于仪器竖轴倾斜造成的测角误差,全站仪生产厂家采用了用补偿器来进行改正的技术。

双轴补偿器的作用是当仪器竖轴发生倾斜时自动改正垂直角度和水平角度的倾斜量,而对于单轴补偿器来说本质上只改正垂直角度倾斜。只有当仪器的竖轴绝对垂直时补偿器的0位也处于绝对垂直位。那么当竖轴发生倾斜时、补偿器的自动改正量才是完全正确的。

另外,我们知道仪器的照准误差是视准轴与横轴不正交所产生的误差;横轴误差是横轴与竖轴不垂直的误差;垂直0点偏移即竖盘指标差是仪器正镜时将视准轴水平放置而垂直角度不等于90°00′00″的误差,而垂直0点偏移与垂直度盘和横轴的垂直关系度有关;也就是说,照准误差、横轴误差、竖盘指标差等三个指标是相互关联和影响的。

通常说的三轴补偿改正很多都是指除了对X轴和Y轴的改正仪器修正垂直角和水平角度读数外,增加照准误差的自动改正。实际上,照准误差利用测量方法可以消除。所以三轴补偿的意义不是很大。

高程测量与水准仪原理及使用方法

第一节水准测量的原理 确定地面点高程的测量工作,称为高程测量。高程测量又是测量三项基本工作之一。根据使用仪器和施测方法的不同,高程测量可分为水准测量、三角高程测量和气压高程测量。用水准仪测量高程,称为水准测量,它是高程测量中最常用、最精密的方法。 水准测量的原理: 水准测量是利用一条水平视线,并借助水准尺,来测定地面两点间的高差,这样就可由已知点的高程推算出未知点的高程。测定待测点高程的方法有高差法和仪高法两种。 1.高差法 如图2-1所示,若已知A点的高程,欲测定B点的高程。在、两点上竖立两根尺子,并在、两点之间安置一架可以得到水平视线的仪器。假设水准仪的水平视线在尺子上的位置读数分别为尺(后视)读数为,尺(前视)读数为,则、两点之间的高程差(简称高差)为 (2-1)于是点的高程为 (2-2) (2-3)这种利用高差计算待测点高程的方法,称高差法。这种尺子称为水准尺,所用的仪器称为水准仪。 图2-1 水准测量原理 2.仪高法 由式2-3可以写为(2-4)如图2-2所示,即

上式中是仪器水平视线的高程,常称为仪器高程或视线高程。仪高法是,计算一次仪高,就可以测算出几个前视点的高程。即放置一次仪器,可以测出数个前视点的高程。 综上所述,高差法和仪高法都是利用水准仪提供的水平视线测定地面点高 程。必须注意 ①前视与后视的概念一定要清楚,不能误解为往前看或往后看所得的水准尺读数。 ②两点间高差是有正负的,计算高程时,高差应连其符号一并运算。在书写 时,注意的下标,是表示点相对于点的高差;则表示是点相 对于点的高差。与的绝对值相等,但符号相反。 图2-2 仪高法水准测量 第二节水准仪使用 水准测量所使用的仪器为水准仪,工具为水准尺和尺垫。 水准仪按其精度可分为DS05、DSl、DS3和DSl0等四个等级。工程测量广泛使用DS3级水准仪,因此,本章着重介绍这类仪器。 一、水准仪的结构 根据水准测量的原理,水准仪的主要作用是提供一条水平视线,并能照准水准尺进行读数。因此,水准仪构成主要有望远镜、水准器及基座三部分。如图2-3所示。

气候补偿器

气候补偿器 设计基础: 室外温度的变化很大程度上决定了建筑物需热量的大小,也决定了能耗的高低。运行参数(供暖水温)应随室外温度的变化时刻进行调整,始终保持供热量与建筑物的需热量相一致,保证室内温度在不同室外温度情况下的相对稳定,实现按需供热,这样才可以保证供暖机组最大限度的节能运行。 产品定义: ACME气候补偿器是根据室外温度的变化及用户设定的不同时间对室内温 度要求,按照设定曲线求出恰当的供水温度进行自动控制,实现供热系统供水温度-室外温度的自动气候补偿,避免产生室温过高而造成能源浪费的一种节能产品;根据系统不同,节能率达10%~25%。 产品特性: 1.全集成电脑控制,主控CPU采用PHILIPS主流工控芯片,计算速度快,运 行稳定; 2.中文液晶实时显示室内、室外温度、供水温度、回水温度及电动阀开度等 运行参数,LED灯显示系统运行状态;触摸键盘操作; 3.分时分温功能模块内嵌,系统默认提供4时段、4条独立运行曲线,以满 足用户在不同时段对室内温度的要求; 4.精确控制供水温度,根据室外温度模糊运算出所需的供暖水温,并运用 PID控制规律实时与实际供水温度比较,调节电动阀开度,精确保证稳 定供水温度,避免发生用户室温过高的现象而浪费能耗; 5.曲线自学习功能,根据历史参数实时修正室外温度--供水温度曲线,使供 暖系统最优化运行; 6.多电动阀控制,模块化设计,系统板载三台电动阀控制,可通过扩充模块 自由增加电动阀数量; 7.支持联机运行的同时可实现独立运行,增加了系统的稳定性和可操作性; 8.支持多种通讯方式:TCP/IP网络、RS232/RS485、无线传输、电话线通讯 及电力线载波通讯等。 技术参数: 1.电源 AC 220V 50Hz 2.水温传感器:三线制PT100 精度1% 3.室外温度变送器:4~20mA 精度0.5% 4.室内温度变送器:4~20mA 精度0.5% 5.电动三通阀:4~20mA控制 4~20mA反馈 AC24V或AC220V供电

波纹补偿器

波纹管(膨胀节/补偿器)功能及工作原理补偿器的功能及工作原理 波纹管补偿器习惯上也叫膨胀节、伸缩节,由构成其工作主体的波纹管 (一种弹性元件)和端管、支架、法兰、导管等附件组成。是用以利用波纹管补偿器的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种补偿元件。可对轴向,横向,和角向位移的的吸收,用于在管道、设备及系统的加热位移、机械位移吸收振动、降低噪音等.在现代工业中用途广泛。 2.补偿器执行标准: 金属波纹管采用GB/T12777-2008并参照美国""EJMA'^标准,优化设计,结构合理,性能稳定,强度大,弹性好、抗疲劳度高等优点,材料采用1Cr18Ni9Ti,OCr19Ni9奥氏体不锈钢,800, 800H, 600, 625,钛材(TA1, TA2),钛合金等材料。两端接管或法兰采用低碳钢或低合金钢。 金属波纹管--- 补偿器选用U 形波,分单层和多层制成,有较大的补偿量, 耐压可高达4Mpa,使用温度----1960C—w450度,结构紧凑,使用成本低,耐腐蚀,弹性好,钢度值低,允许疲劳度寿命1000次,解决了管道热胀冷缩,位移和机械高频振动与管道之间的柔性联接,广泛用于石油、热力、电力、煤气、化工等管路上安装。 3.补偿器连接方式: 补偿器连接方式分为法兰连接和焊接两种。直埋管道补偿器一般采用焊接方式(地沟安装除外) 4.补偿器类型: 补偿器分为轴向型、横向型、角向型三大类型二十多个品种。 轴向型补偿器主要包括:内压式、外压式、复式、平衡式、直埋式补偿器等。 横向型补偿器包括:大拉杆横向补偿器、万向铰链横向型补偿器等。 角向型补偿器包括:铰链补偿器、万向铰链补偿器等。 二.补偿器作用:

JZM型直埋式波纹补偿器

JZM 型直埋式波纹补偿器 https://www.doczj.com/doc/8a15194781.html,/product/bcq/6.html JZM 型直埋式波纹补偿器 安装注意事项: 1为使直埋是波纹补偿器起到补偿作用,直埋式波纹补偿器 两端必须设固定支架,防止管道受内压推力影响外移拉伸 2直埋式波纹补偿器 的一端(指单向补偿的直埋式补偿器死端)要靠近一端的固定支架,用补偿器的活头补偿管道。 3根据补偿量设定两个固定支架的距离,补偿量一般不大于管径。 4试压过程中以补偿器不得出现拉伸现象。 JZM 型直埋式波纹补偿器适用于只有轴向位移的管路中,本产品具有补偿横向位移和轴向与横向合成位移的能力,但因为补偿量较小一般只做为轴向补偿更能发挥其特性,使用寿命更长,更安全可靠。 设计温度:-30℃-+4000℃ 产品代号:TZM 型号标注:TZM 波纹管型式-连接形式 压力-通径-补偿量 通经 波 压力等级Mpa 波纹管 最大外 接管端口尺寸 总长L DN 0.25 0.6 1 1.6 2.5 有效面 径尺寸 数 轴向补偿量mm/刚度N/mm 积cm2 mm mm (mm) 50 8 14/153 12/318 12/318 12/635 11/1310 37 120 φ57x3.5 361 16 27/76 24/158 24/158 24/318 23/655 445 32 52/38 48/79 48/79 48/159 46/328 621 65 8 19/213 18/213 18/213 18/424 15/841 55 159 φ73x4 377 12 30/142 29/142 27/142 27/283 25/421 425 24 60/71 58/107 54/107 54/142 50/211 581 80 8 30/179 30/179 30/358 29/358 27/650 81 162 φ89x4 430 10 54/143 37/143 37/286 37/286 32/325 466 20 108/72 74/72 74/143 74/143 64/163 660 100 6 34/138 34/277 33/417 33/417 32/817 121 180 φ108x4 410 10 56/83 56/166 56/250 54/250 50/409 492 20 112/42 112/83 112/125 108/125 100/205 712 125 5 37/13 6 36/272 36/408 35/408 33/801 180 221 φ133x4 410 9 66/76 65/151 65/227 63/227 60/401 412

ZDC压力补偿器

1/12 Information on available spare parts: https://www.doczj.com/doc/8a15194781.html,/spc Sizes 10 to 32 Component series 2X Maximum operating pressure 350 bar Maximum flow 520 l/min Meter-in pressure compensator, direct operated Type ZDC RE 29224/11.07Replaces: 02.03 Table of contents Features – Sandwich plate valve – Porting pattern to ISO 4401 – Load compensation in channel P → A or P → B by integrated shuttle valve – 2-way design “P“ – 3-way design “PT“ (sizes 10 to 25) – Flow control in interaction with proportional directional valve Content Page Features 1Ordering code 2Symbols 2, 3Function, section 3Technical data 4Characteristic curves 5, 6Unit dimensions 7 to 10Pilot oil supply 11, 12 tb0217

Ordering code Symbols: 2-way design “P“ (① = component side, ② = plate side) Pilot oil supply “internal“ Type ZDC . P-2X/… Pilot oil supply “external“Type ZDC . P-2X/X … Pilot oil supply “external“, port X on component side plugged (size 10 only)Type ZDC 10 P-2X/XL …

最新气候补偿器基础原理

气候补偿器基础原理 通过在供暖系统内加装气候补偿器,解决司炉工人工“看天烧炉”现象,实现水温与室外温度量化控制,达到供暖系统按需供热的目的。 1.1 室外温度与供暖水温的关系 室外温度的变化很大程序上决定了建筑物需热量的大小也决定了能耗的高低,运行参数(供暖水温)应随室外温度的变化时刻进行调整,始终保持供热量与建筑物的需热量相一致,保证室内温度在不同室外温度情况下的相对稳定,实现按需供热,这样才可以保证供暖机组最大限度的节能运行。 1.2气候补偿器产品定义 气候补偿器是根据室外温度的变化及用户设定的不同时间对室内温度要求,按照设定曲线求出恰当的供水温度进行自动控制,实现供热系统供水温度、室外温度的自动气候补偿,避免产生室温过高/低而造成能源浪费。 1.3气候补偿器工作原理 在供暖时段内:当室外温度变化时,为了满足室内温度的相对稳定,供水温度也应相应变化,例:当室外温度降低时,为了维持原有的室内温度,供暖水温应适当提高,此时气候补偿器将自动加大多锅炉机组供应的热水供应量使得供暖水温适当升高,当室外温度上升时,同理应适当降低供暖水温以免产生室内过热现象,此时系统将自动减小锅炉机组热水供应量,以降低锅炉机组的输出负荷,即通过对室外温度采集,自动修正供暖水温设定值(理想值),再通过设定值与实际供水温度进行比较,并以此比较差值为基准对电动阀进行PID调节;同时引入回水温度等外部信号作为反馈值对曲线进行实时修正;达到节能运行的目的。 2.1气候补偿器在间供系统上的应用原理分析 在本系统中,选择是通过在换热器的一次侧加装电动三通阀进行控制,当室外温度升高时,二次理论供水温度将自动降低,控制器将自动减少电动阀开度,即减少一次高温进入换热器的流量,从而实现降低二次供水温度的目的,反之亦然。 2.2气候补偿器在直供系统上应用原理分析 对每一个支管供回水间上安装旁通并加装电动两通阀一台,将采暖水由原先的纯高温水供暖改变为混合水供暖,即锅炉高温供水与系统低温回水混合后进行供暖。

波纹管补偿器的可靠性分析

波纹管补偿器的可靠性分析 时间:2009-10-20 来源:互联网发布评论进入论坛 波纹管补偿器的可靠性是由设计、制造、安装及运行管理等多个环节构成的。可靠性也应该从这几个方面进行考虑。 一、可靠性设计 1. 材料选择对用于供热管网的波纹管的选材,除应考虑工作介质、工作温度和外部环境外,还应考虑应力腐蚀的可能性、水处理剂和管道清洗剂对材料的影响等,并在此基础上结合波纹管材料的焊接、成型以及材料的性能价格比,优选出经济实用的波纹管制作材料。 一般情况下,选用波纹管的材料应满足下列条件:(1)良好的塑性,便于波纹管的加工成形,且能通过随后的处理工艺(冷作硬化、热处理等)获得足够的硬度和强度。(2)高弹性极限、抗拉强度和疲劳强度,保证波纹管正常工作。(3)良好的焊接性能,满足波纹管在制作过程中的焊接工艺要求。(4)较好的耐腐蚀性能,满足波纹管在不同环境下工作要求。大多数生产厂家都采用奥氏体不锈钢,如材料牌号为0Cr18Ni9(相当于304)、00Cr19Ni10(相当于304L)、0Cr17NiMo2(相当于316)、00Cr17Ni4Mo2(相当于316L)。为了提高波纹管的耐蚀性,现供热管网波纹管的用材多选用316或316L,这两种材料用于热力管网应该是性能价格比较为优良的材料。

对于地沟敷设的热力管网,当补偿器所处管道地势较低时,雨水或事故性污水会浸泡波纹管,应考虑选用耐蚀性更强的材料,如铁镍合金、高镍合金等。由于此类材料价格较高,在制造波纹管时,可以考虑仅在与腐蚀性介质接触的表面增加一层耐蚀合金。 2. 疲劳寿命设计由波纹管补偿器的失效类型及原因分析可以看出,波纹管的平面稳定性、周向稳定性及耐腐蚀性能均与其位移量即疲劳寿命相关。过低的疲劳寿命将会导致波纹管稳定性及耐蚀性能下降。根据试验和使用经验,用于供热工程的波纹管疲劳寿命应不小于1000次。 大多数波纹管的失效是由外部环境腐蚀造成的,因此在进行补偿器的结构设计时,可考虑隔绝外部腐蚀介质与波纹管的接触。如对于外压轴向型补偿器可在出口端环与出口管之间增加填料密封装置,其作用相当于套筒补偿器,既可抵挡外部腐蚀介质的侵入,又给波纹管补偿器增加了一道安全屏障,即使波纹管破坏,补偿器还可以起到补偿作用并避免波纹管失效。 二、保证安装质量 波纹管不能承重,应单独吊装;除设计要求预拉伸或冷紧的预变形量外,严禁用使波纹管变形的方法来调整管道的安装偏差;安装过程不允许焊渣飞溅到波纹管表面和受到其他机械性损伤;波纹管所有活动元件不得被外部构件卡死或限制其活动部位正常工作;水压试验用水须干净、无腐蚀性,对奥氏体不锈钢材质应严格控制水中氯离子含量不超过25×10-6,并应及时排尽波纹中的积水等。

BQYP型曲管压力平衡补偿器

BQYP型曲管压力平衡补偿器 一、产品特点: 该膨胀节的两端各有一个工作波纹管,中间有一个平衡波纹管,膨胀节通过受力构件(大拉杆或舌管)来承受内压推力。因此管系只需中间固定支架,此类膨胀节只能吸收轴向位移。 二、安装使用注意事项: 1.此类膨胀节一般应用在架空的直线上,水平安装。 2.膨胀节安装完毕后,所有的小拉杆须拆除。 3.为减少膨胀节对支架的弹性反力,在安装前可对此类膨胀节进行预拉或预压(可通过调整其 上的小拉杆实现)。 三.曲管压力平衡波纹补偿器性能: 1.曲管压力平衡波纹补偿器是按照GB/T12777—99和美国《EJMA》标准辅助计算机优化设计、制造而成,适用于石化、钢铁、电力、有色金属等部门,安装在管道的拐弯处或与设备相连的空间官道上。它能补偿轴向位移、横向位移,而不会对管道系统或其它设备产生内压推力。 2.曲管压力平衡波纹补偿器常用于泵、压缩机、汽轮机及其它对载荷敏感的管道系统。能迅速衰减由于启动、停车等引起系统压力波振动,消除水机,且能吸振降噪,保证设备安全运行。 3.0.2Mpa系列产品可用于介质温度≤150℃,全真空到0.2Mpa压力范围,如电厂的汽机排气管道等;0.6Mpa系列产品可用于介质温度达250℃、工作压力达0.6Mpa,如压缩机的排气 管道或石油化工的工艺管道等。 4.大拉杆,是承受压力载荷的构件,吸收横向位移时相对于撑板要有一定量偏摆,使用时其上的 紧固螺母要旋到位又要避免旋压过紧而影响活动。 5.P58 6.表中所列产品装有内衬筒,介质从弯头流入(见产品示意图),若介质流向与示意图相反,即从通道端流入,弯头流出,则用户应在订货合同或协议中明文说明,以使产品制造时,将内衬筒 掉头焊装。 7.产品中的小拉杆是安装、运输、调整时起作用,不可作为承力件,小拉杆在管道安装完毕后必 须拆除,方可投入运行。 8.如果您所需的产品,其工作温度、工作压力、规格尺寸,弹性力、材料、连接尺寸等另有要求

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

气候补偿产品说明书

目录 1概述 (2) 1.1气候补偿产品分类 (2) 1.2选型表 (2) 2供热气候补偿系统 (4) 2.1HY7215B-L4气候补偿系统 (4) 2.1.1功能简介 (4) 2.1.2工作原理 (5) 2.1.3系统组成 (5) 2.1.4安装方法 (6) 2.1.5成功案例 (6) 2.2燃气锅炉气候补偿系统 (7) 2.2.1功能简介 (7) 2.2.2工作原理 (7) 2.2.3系统组成 (7) 2.2.4安装方法 (8) 2.2.5成功案例 (9) 2.3燃煤锅炉气候补偿系统 (9) 2.3.1功能简介 (9) 2.3.2工作原理 (9) 2.3.3系统组成 (9) 2.3.4安装方法 (11) 2.3.5成功案例 (11) 3中央空调气候补偿系统 (11) 3.1功能简介 (11) 3.2工作原理 (11) 3.3系统组成 (11) 3.4安装方法 (12) 3.5成功案例 (13) 4机房气候补偿节能系统 (13) 4.1功能简介 (13) 4.2工作原理 (13) 4.3系统组成 (13) 4.4安装方法 (14) 4.5成功案例 (15)

1 概述 1.1 气候补偿产品分类 气候补偿是根据室外温度变化情况及用户设定不同时间对室内温度的要求,计算确定出恰当的用户供水温度,并自动控制室外管网热媒流量,实现用户系统供水温度随室外温度自动气候补偿,避免产生室温过高而造成能源浪费。 本公司气候补偿产品分类如下所示: 1.2 选型表 HY7215 气候补偿产品选型表

分时分区阀门调节器 集中控制柜 (*) 要根据其他嵌入式柜进行设计调整。 L4 : 4行中文液晶显示屏 T7:7寸彩色触摸液晶屏T10:10寸彩色触摸液晶屏WM : Wall-Mounted 壁挂式:500*400*200 RM : RackMount 机柜式:2200*1600*800 EM : Embedded 嵌入式:操作台确定 2 供热气候补偿系统 供热气候补偿系统根据不同的现场分为三类:基本型气候补偿系统,主要应用于简单的换热站和锅炉房;燃气锅炉气候补偿系统,主要应用于燃气锅炉房中;燃煤锅炉气候补偿系统,主要应用于燃煤锅炉房中。 2.1 HY7215B-L4气候补偿系统 2.1.1功能简介 ●实时显示现场测量值 ●实时显示,修改设定值及参数值 ●定时打印记录室内、外温度,供回睡温度和计算温度自诊断与现场诊断功能,当控 制器发生故障可分别显示,并可根据用户要求实现多点检测超限报警 ●数据掉电自保护功能 ●手动和自动切换功能

波纹补偿器

波纹补偿器材料及性能 非金属 非金属柔性补偿器:也称非金属膨胀节、非金属织物补偿器,可补偿轴向、横向、角向,具有无推力、简化支座设计、耐腐蚀、耐高温、消声减振等特点,特别适用于热风管道及烟尘管道。 特点: 1、补偿热膨胀:可以补偿多方向,大大优于只能单式补偿的金属补偿器。 2、补偿安装误差:由于管道连接过程中,系统误差再所难免,纤维补偿器较好的补偿了安装误差。 3、消声减振:纤维织物、保温棉体本身具有吸声、隔震动传递的功能,能有效的减少锅炉、风机等系统的噪声和震动。 4、无反推力:由于主体材料为纤维织物,无力的传递。用纤维补偿器可简化设计,避免使用大的支座,节省大量的材料和劳动力。 5、良好的耐高温、耐腐蚀性:选用的氟塑料、有机硅材料具有较好的耐高温和耐腐蚀性能。 6、密封性能好:有比较完善的生产装配系统,纤维补偿器可保证无泄露。 7、体轻、结构简单、安装维修方便。 8、价格低于金属补偿器、质量优于进口产品。 不锈钢 有直筒型、复式、角向型和方型等四种类型。

不锈钢补偿器可补偿轴向、横向、角向、具有无推力、简化支座设计、耐腐蚀、耐高温、消声减振等特点,特别适用于热风管道及烟尘管道。 金属 金属波纹补偿器的可靠性是由设计、制造、安装及运行管理等多个环节构成的。可靠性也应该从这几个方面进行考虑。材料选择对用于供热管网的波纹管的选材,除应考虑工作介质、工作温度和外部环境外,还应考虑应力腐蚀的可能性、水处理剂和管道清洗剂对材料的影响等,并在此基础上结合波纹管材料的焊接、成型以及材料的性能价格比,优选出经济实用的波纹管制作材料。 一般情况下,选用波纹管的材料应满足下列条件: (1)高弹性极限、抗拉强度和疲劳强度,保证波纹管正常工作。

JZW型轴向外压式波纹补偿器

JZW型轴向外压式波纹补偿器 https://www.doczj.com/doc/8a15194781.html, JZW型轴向外压式波纹补偿器 JDZ型轴向内压式波纹补偿器广泛使用水泵进出口,高层楼房的降噪、减震、热力管道的补偿,波纹补偿器用于复杂地形架设管道的沉降补偿和高档建筑风机,中央空调的降噪、减震。波纹补偿器耐热性能好,使用寿命长、承受压力强、补偿最大,能承受轴向复运动,波纹补偿器承受侧向位移和角向位移,属调节和控压力,降噪极佳。波纹补偿器有法兰连接波纹补偿器、焊接式波纹补偿器、拉杆波纹补偿器等。不锈钢波纹补偿器习惯上也叫膨胀节,或伸缩节。由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。属于一种补偿元件。利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。也可用于降噪减振。 波纹补偿器连接方式:分为法兰连接和焊接两种。直埋管道补偿器一般采用焊接方式(地沟安装除外)。 管道的热变形计算: 计算公式:X=a·L·△T x 管道膨胀量 a 为线膨胀系数,取0.0133mm/m L 补偿管线(所需补偿管道固定支座间的距离)长度 △T 为温差(介质温度-安装时环境温度) 补偿器安装和使用要求: 1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。 2、对带内套筒的波纹补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型波纹补偿器的铰链转动平面应与位移转动平面一致。 需要进行“冷紧”的补偿器,预变形所用的辅助构件应在管路安装完毕后方可拆除。 严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响波纹补偿器的正常功能、降低使

补偿器型号大全

补偿器作为现代工业中一种常见的补偿原件,种类也是非常多,对于使用过的人可能比较熟悉,但是对于一些未接触过这种元件的人来说可能仍然很陌生,那么大家是否了解补偿器的大致型号都有哪些吗?下面简单就盛源补偿器跟大家简单说下。 盛源补偿器一般分为以下几种型号: 1、轴向型内压式波纹补偿器(ZN) 举例:0.6TNY500TF 表示:公称通径为Φ500,工作压力为0.6MPa,(6kg/cm2)波数为4个,带导流筒,碳钢法兰波纹补偿器常见型号连接的内压式波纹补偿器。 2、轴向型外压式波纹补偿器(ZW) 举例:0.6TWY500×8JB

表示:公称通径为500mm,工作压力为0.6MPa(6kg/cm2)波数为8个,不锈钢管连接的轴向型外压式波纹补偿器。 注:疏水口的设置按用户要求。 3、轴向复式波纹补偿器(ZF) 举例:0.6FS100×20F 表示:工作压力为0.6MPa,通径DN=100mm,波数为20,法兰连接的复式波纹补偿器。 4、轴向复式拉杆波纹补偿器(FL) 举例:0.6FSL200×12J 表示:工作压力为0.6MPa,通径DN=200mm,波数为12,接管连接的复式拉杆波纹补偿器。 5、直埋式内压波纹补偿器(ZMNY) 举例:1.6ZMS200×6J

表示:工作压力为1.6MPa,公称通径为200mm,波数为6波,接管连接的直埋式>波纹补偿器。 6、万向铰链波纹补偿器(WJ) 举例:0.6WJY500×4F 表示:工作压力为0.6MPa,公称通径为500mm,波数为4,碳钢法兰连接的万向铰链波纹补偿器。 7、直管压力平衡式波纹补偿器(ZP) 举例:0.6ZYP500×8/6-JB 表示公称通径为500,工作压力为0.6MPa,大波纹管为8个波,小波纹管为16个波,连接形式为不锈钢接管连接的直管压力平衡式波纹补偿器。 8、曲管压力平衡式波纹补偿器 示例:0.25QYP700×8/4JB

波纹补偿器型号大全-参数选用及公式计算

轴向型内压式波纹补偿器(HZN) 补偿器由一个波纹管和两个端接管构成,端接管或直接与管道焊接,或焊上法兰再与管道法兰连接。补偿器上的拉杆主要是运输过程中的刚性支承或作为产品预变形调整用,它不是承力件。该类补偿器结构简单,价格低,因而优先选用。 用途:轴向型内压式波纹补偿器(轴向型波纹补偿器)主要用于补偿轴向位移,也可以补偿横向位移或轴向与横向合成位移,具有补偿角位移的能力,但一般不应用它补偿角位移。 型号:DN32-DN8000,压力级别0.1Mpa-2.5Mpa 连接方式:1、法兰连接2、接管连接 产品轴向补偿量:18mm-400mm 一、型号示例 举例:0.6TNY500TF 表示:公称通径为Φ500,工作压力为0.6MPa,(6kg/cm2)波数为4个,带导流筒,碳钢法兰连接的内压式波纹补偿器。 二、使用说明: 轴向型波纹补偿器主要用于补偿轴向位移,也可以补偿横向位移或轴向与横向的合成位移,具有补偿角位移的能力,但一般不应用它来补偿角位移。 三、内压式波纹补偿器对支座作用力的计算:

内压推力:F=100·P·A轴向弹力:Fx=Kx·(f·X) 横向弹力:Fy=Ky·Y 弯矩:My=Fy·L 弯矩:Mθ=Kθ·θ 合成弯矩:M=My+Mθ 式中:Kx:轴向刚度N/mm X:轴向实际位移量mm Ky:横向刚度N/mm Y:横向实际位移量mm Kθ:角向刚度N·m/度θ :角向实际位移量度 P:工作压力MPa A:波纹管有效面积cm2(查样本) L:补偿器中点至支座的距离m 四、应用举例: 某碳钢管道,公称通径500mm,工作压力0.6MPa,介质温度300°C,环境最低温度-10°C,补偿器安装温度20°C,根据管道布局(如图),需安装一内压式波纹补偿器,用以补偿轴向位移X=32mm,横向位移Y=2.8mm,角向位移θ=1.8度,已知L=4m,补偿器疲劳破坏次数按15000次考虑,试计算支座A的受力。 解:(1)根据管道轴向位移X=32mm。 Y=2.8mm。 θ=1.8度。 由样本查得0.6TNY500×6F的轴向位移量X0=84mm, 横向位移量:Y0=14.4mm。角位移量:θ0=±8度。 轴向刚度:Kx=282N/mm。横向刚度:Ky=1528N/mm 。 角向刚度:Kθ=197N·m/度。用下面关系式来判断此补偿器是否满足题示要求: 将上述参数代入上式: (2)对补偿器进行预变形量△X为:

数字水准仪原理

第一章数字水准仪的原理与特点 武汉大学李以赫 §概述 1963年Fennel厂研制出了编码经纬仪, 加上四十年代已经出现的电磁波测距技术、以后的光电技术、计算机技术和精密机械的发展,到八十年代已开始普遍使用电子测角和电子测距技术。然而,到八十年代末,水准测量还在使用传统仪器。这不仅由于水准仪和水准标尺在空间上是分离的,而且两者的距离可以从1米多变化到100米,因此在技术上引起实现数字化读数的困难。 为了现实水准仪读数的数字化,人们进行了近30年尝试。如蔡司厂的RENI 002A己使测微器读数能自动完成,但粗读数还需人工读出并按键输入,与精读数一起存入存储器,因此还算不上真正的数字水准仪。又如利用激光扫平仪和带探测器的水准标尺,可以使读数由标尺自动记录。由于这种仪器的试验结果还不能达到精密几何水准测量的要求,因此也没有解决水准测量读数自动化的难题。 直到1990年徕卡测量系统的前身---威特厂在世界上率先研制出数字水准仪NA2000,可以说,从1990年起,大地测量仪器全面己经完成了从精密光机仪器向光机电测一体化的高科技产品的过渡,攻克了大地测量仪器中水准仪数字化读数的这一最后难关。 到1994年蔡司厂研制出了数字水准仪DINI 10/20,同年拓普康厂也研制出了数字水准仪DL101/102。2002年5月徕卡公司向中国市场投放了DNA 中文数字水准仪,该仪器具有外形美观,大屏幕中文显示,测量数据可存入内存和PC卡中,并具有适合中国测量规范丰富的机载软件,这意味着数字水准仪将真正为中国用户所接受。 数字水准仪具有测量速度快、读数客观、能减轻作业劳动强度、精度高、测量数据便于自动输入计算机和容易实现水准测量内外业一体化的特点,因此它投放市场后很快受到用户青睐。 国外的低精度高程测量盛行使用各种类型的激光定线仪和激光扫平仪,因

RC 29224(477-486)力士乐压力补偿器

ZDC 16..-2X/... ZDC 25..-2X/... ZDC 32..-2X/...

10 16 25 32 P 20 29 20 29 = X 10 = EPS RDE 00 165 X 10 P PT ? = ? =

ZDC... . P 1 2 4 3 6 5 P1 A1 P1 B1 10 bar (3) 2 P2 P1 . 10 bar 2 A-A A,B,P T X Y 150, 30 bar HL, HLP DIN 51 524 1) VDMA 24 568 RE 90 221 HETG 1) HEPG 2) HEES 2) 1) 2) 85 150 325 520 350 250 30 100 NAS 1638 βx ≥ 75 7 -20 +70 15 380

P A, P B 10 16 16 16 P A, P B L /m i n → L /m i n → % → L/min → L/min → p m i n b a r → p m i n b a r → % →1 4 WRZ 10...85...2 4 WRZ 10...50...3 4 WRZ 10...25...4 4 WRZ 10...64...5 4 WRZ 10...32...6 4 WRZ 10...16... 1 4 WRZ 16...100... 2 4 WRZ 16...150...

25 32 32 25 L /m i n → L /m i n → % → L/min → L/min → p m i n b a r → p m i n b a r → % → 1 4 WRZ 25...270... 2 4 WRZ 25...325... 1 4 WRZ 32...360... 2 4 WRZ 32...520...

基于量调节的气候补偿器设计论文

基于量调节的气候补偿器设计 摘要 针对不同地区、不同场合、不同建筑、不同时间、不同要求、不同消费水平等对室温的要求也不尽相同的需要,以微芯单片机为核心设计了一套基于量调节的气候补偿器。采取合理控制室温的方式,分别设置适当的室温设定值,并实行分户分时智能调节,就可大大降低能耗,实现经济运行。 关键词:气候补偿;温度控制;补偿曲线 前言 我国地域广泛,人口众多,房屋建筑规模巨大、保温隔热和气密性能很差,而且,住宅建设正处于快速发展阶段。同时,我国能源紧缺,采暖用能十分巨大,目前的采暖用能约点全国商品能源总消耗的10%,供暖系统热效率低,管网输送效率低,缺乏控制与节能手段,普遍在低负荷、低效率下运行,实际供暖面积平均只有设备能力的40%左右,采暖的高能耗不仅造成资源的消耗,而且还成为大气污染的一个重要因素。而且,用户节能意识差也是浪费的主要原因。我国住宅建筑采暖能耗为相近气候条件的发达国家的3倍左右。建设部于1995年12月修订了―民用建筑节能设计标准(采暖居住建筑部分)JGJ26-95‖,目标是在1980/1981年当地通用设计的基础上节能50%。标准提出的目标应通过以下几方面实现:改善围护结构保温性能,提高门窗密封性;提高管网输送效率;推行温控技术,作到用户室温可以控制调节;推广应用用热计量收费技术,促使用户自觉节能。从而需要一套基于量调节的气候补偿器根据室外及室内的温度的变化自动调整供暖/制冷所需要的供水温度,保证提供用户准确的热值,并能实现补偿曲线选择、自动报警、自动恢复等功能. 控制器是气候补偿器的核心部分,通过对各种控制器的性能价格比进行调查,以PIC16F877单片机最为合适, 在我的毕业设计过程中,得到了齐世清老师的大力支持在此我表示深深的感谢。

如何计算波纹补偿器的补偿量

如何计算波纹补偿器的补偿量? 计算公式:X=a·L·△T x 管道膨胀量a为线膨胀系数,取 0.0133mm/m L补偿管线(所需补偿管道固定支座间的距离)长度△T为温差(介质温度-安装时环境温度) 补偿器安装和使用要求: 1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。 2、对带内套筒的补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型补偿器的铰链转动平面应与位移转动平面一致。 3、需要进行“冷紧”的补偿器, 预变形所用的辅助构件应在管路安装完毕后方可拆除。 4、严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响补偿器的正常功能、降低使用寿命及增加管系、设备、支承构件的载荷。 5、安装过程中,不允许焊渣飞溅到波壳表面,不允许波壳受到其它机械损伤。 6、管系安装完毕后,应尽快拆除波纹补偿器上用作安装运输的黄色辅助定位构件及紧固件,并按设计要求将限位装置调到规定位置, 使管系在环境条件下有充分的补偿能力。 7、补偿器所有活动元件不得被外部构件卡死或限制其活动范围,应保证各活动部位的正常动作。 8、水压试验时,应对装有补偿器管路端部的次固定管架进行加固,使管路不发生移动或转动。对用于气体介质的补偿器及其连接管路, 要注意充水时是否需要增设临时支架。水压试验用水清洗液的96氯离子含量不超过25PPM。 9、水压试验结束后,应尽快排波壳中的积水,并迅速将波壳内表面吹干。10、然弯补偿热伸缩,直线段过长则应设置补偿器。补偿器型式、规格、位置应符合设计要求,并按有、与补偿器波纹管接触的保温材料应不含氯。11、补偿器设置距离:热水供应管道应尽量利用自关规定进行预拉伸。不锈钢波纹补偿器采用的国家标准不锈钢波纹管采用GB/T12777-91, 并参照美国"EJMA"标准,优化设计,结构合理,性能稳定,强度大,弹性好,抗疲劳度高等优点。不锈钢波纹管连接方式分为法兰连接、焊接、丝扣连接、快速接头连接,小口径金属软管一般采用丝扣和快速接头连接,较大口径一般采用法兰连接和焊接接;材料采用OCr19Ni9奥氏体不锈钢,两端接管或法兰采用低碳钢或低合金钢。 不锈钢波纹补偿器一般选用U形波,由单波或按客户要求由多波制成,有较大的补偿量,耐压可高达4Mpa,使用温度:1960C一≤450度,结构紧凑,使用成本低,耐腐蚀,弹性好,钢度值低,允许疲劳度寿命1000次,解决了管道热胀冷缩,位移和机械高频振动与管道之间的柔性联接,广泛用于石油、热力、电力、煤气、化工等管路上安装。此标准中,不锈钢波纹补偿器又可按不同用途归类为:轴向型(ZP)、角向型、

电子水准仪原理

电子水准仪原理 培训讲课人:罗迪辉候讲课时间:4小时 1.1 概述 1963 年Fennel厂研制出了编码经纬仪,加上四十年代已经出现的电磁波测距技术,随着光电技术、计算机技术和精密机械的发展,到八十年代已开始普遍使用电子测角和电子测距技术,然而到八十年代末水准测量还在使用传统仪器。这是由于水准仪和水准标尺不仅在空间上是分离的,而且两者的距离可以以1米多变化到100米,因此在技术上引起数字化读数的困难。 为现实水准仪读数的数字化,人们进行了近30年尝试,如蔡司厂的RENI 002A已使测微器读数能自动完成,但粗度数还需人工读出并按键输入,与精读数一起存入存储器,因此还算不上真正的电子水准仪,又如利用激光扫平仪和带探测的水准标尺,可以使读数由标尺自动记录,由于这种试验结果还不能达到精密几何水准测量的要求,因此也没有解决水准测量读数自动化的难题。 1990年威特厂首先研制出数字水准仪NA2000。可以说,从1990年起,大地测量仪器已经完成了从精密光机仪器向光机电测一体化的高技术产品的过渡,攻克了大地测量仪器中水准仪数字化读数的这一最后难关。 到1994年蔡司厂研制出了电子水准仪DiNi10/20,同年拓普康厂也研制出了电子水准仪DL101/102。这意味着电子水准仪也将普及,并开始了激烈的市场竞争。同时也说明,目前还是几何水准测量的精度高,没有其它方法可以取代。GPS技术只能确定大地高,大地高换算成工程上感兴趣的正,还需要知道高程异常,确定高程异常还少不了精密水准测量。这也是各厂家努力开发电子水准仪的原因之一。最后还说明了拓普康公司具有较高的技术能力,能在世界上第二批研制出电子水准仪。 电子水准仪具有测量速度快、读数客观、能减轻作业劳动强度、精度高、测量数据便于输入计算机和容易实现水准测量内外业一体化的特点,因此它投放市场后很快受到用户青睐。国外的低精度高程测量盛行使用各种类型的激光定线仪和激光扫平仪。因此电子水准仪定位在中精度和高精度水准测量范围,分为两个精度等级,中等精度的标准差为:1.0-1.5mm/Km,高精度的为:0.3--0.4mm/Km。 1.2 电子水准仪的基本原理 电子水准仪又称数字水准仪,它是在自动安平水准仪的基础上发展起来的。它采用条码标尺,各厂家标尺编码的条码图案不相同,不能互换使用。目前照准标尺和调焦仍需目视进行。人工完成照准和调焦之后,标尺条码一方面被成象在望远镜分化板上,供目视观测,另一方面通过望远镜的分光镜,标尺条码又被成象在光电传感器(又称探测器)上,即线阵CCD器件上,供电子读数。因此,如果使用传统水准标尺,电子水准仪又可以象普通自动安平水准仪一样使用。不过这时的测量精度低于电子测量的精度。特别是精密电子水准仪,由于没有光学测微器,当成普通自动安平水准仪使用时,其精度更低。 当前电子水准仪采用了原理上相差较大的三种自动电子读数方法: 1)相关法(徕卡NA3002/3003) 2) 几何法(蔡司DiNi10/20) 3) 相位法(拓普康DL101C/102C) 1.3 相位法原理 拓普康电子水准仪DL101C/102C采用相位法。标尺的条码象经望远镜、调焦镜、补偿器的光学零件和分光镜后,分成两路,一路成象在CCD线阵上,用于进行光电转换,另一路成象在分划板上,供目视观测。DL101标尺上部份条码的图案,其中有三种不同的码条。R表示参考码,其中有三条2mm宽的黑色码条,每两条黑色码条之间是一条1mm宽的黄色码条。以中间的黑码条的中心线为准,每隔30mm就有一组R码条重复出现。在每组R码条左边10mm处有一道黑色的B码

BQYP型曲管压力平衡补偿器

BQYP型曲管压力平衡补偿器 https://www.doczj.com/doc/8a15194781.html, 一、产品特点: 该膨胀节的两端各有一个工作波纹管,中间有一个平衡波纹管,膨胀节通过受力构件(大拉杆或舌管)来承受内压推力。因此管系只需中间固定支架,此类膨胀节只能吸收轴向位移。 二、安装使用注意事项: 1.此类膨胀节一般应用在架空的直线上,水平安装。 2.膨胀节安装完毕后,所有的小拉杆须拆除。 3.为减少膨胀节对支架的弹性反力,在安装前可对此类膨胀节进行预拉或预压(可通过调整其 上的小拉杆实现)。 三.曲管压力平衡波纹补偿器性能: 1.曲管压力平衡波纹补偿器是按照GB/T12777—99和美国《EJMA》标准辅助计算机优化设计、制造而成,适用于石化、钢铁、电力、有色金属等部门,安装在管道的拐弯处或与设备相连的空间官道上。它能补偿轴向位移、横向位移,而不会对管道系统或其它设备产生内压推力。 2.曲管压力平衡波纹补偿器常用于泵、压缩机、汽轮机及其它对载荷敏感的管道系统。能迅速衰减由于启动、停车等引起系统压力波振动,消除水机,且能吸振降噪,保证设备安全运行。 3.0.2Mpa系列产品可用于介质温度≤150℃,全真空到0.2Mpa压力范围,如电厂的汽机排气管道等;0.6Mpa系列产品可用于介质温度达250℃、工作压力达0.6Mpa,如压缩机的排气 管道或石油化工的工艺管道等。 4.大拉杆,是承受压力载荷的构件,吸收横向位移时相对于撑板要有一定量偏摆,使用时其上的 紧固螺母要旋到位又要避免旋压过紧而影响活动。 5.P58 6.表中所列产品装有内衬筒,介质从弯头流入(见产品示意图),若介质流向与示意图相反,即从通道端流入,弯头流出,则用户应在订货合同或协议中明文说明,以使产品制造时,将内衬筒 掉头焊装。 7.产品中的小拉杆是安装、运输、调整时起作用,不可作为承力件,小拉杆在管道安装完毕后必

相关主题
文本预览