当前位置:文档之家› 压力测量及仪表分类有哪几种

压力测量及仪表分类有哪几种

压力测量及仪表分类有哪几种
压力测量及仪表分类有哪几种

压力测量及仪表分类有哪几种?

答:压力是指均匀垂直作用在单位面积上的力。通常在工业生产中是指流体压力。目前,我国颁布的法定计量单位规定:压力的单位为帕斯卡简称帕,记作Pa(牛/米2)原来通用的压力单位为千克每平方厘米,记作kgf/cm2,在工程上使用千克每平方厘米,记作kg/cm 2。用于液柱的计量单位为毫米汞柱及毫米水柱,记作mmHg及mmH

。以下各压力单位换算关系为:

2o

1帕=牛顿/米2(Pa)1mmHg=133.322帕(Pa)1mmH2o=9.80665帕(Pa)因1牛(顿)=0.102千克力(即Kgf)

1千帕=103帕(Kpa) 1兆帕=106帕(MPa)

压力测量是利用压力表或真空表对被测量进行计量。一般工业仪表所

指示的压力值,多数为表压,记作P表。所谓表压就是绝对压力(记作P绝)与大气压力(记作P气)之差。表压即为相对压力。

其表达式为P表=P绝-P气

被测值如果低于大气压力,就称为负压,工业生产中通称的真空度,以毫米汞柱(mmHg)或毫米水柱(mmH2o)为单位。绝对压力、表压力、大气压力和真空度(负压力)的关系如图所示:

↑↑

|表|

|压|

绝|力|

对||大气压力线

压|——|————————————

力|负|

|压|

|力|

↓↓绝对压力零线

按工作性质不同。压力表可分为标准表和工作表。

按构造不同,压力表又分为弹簧管式(单圈式和多圈式),液体压力式(又分单管式、U型管式、多管式等)、波纹管式、膜片式、膜盒式等。

按压力测量范围不同,压力表可分为:高压表(0~1000kgf/cm2)、中压表(0~600kgf/cm2)低压表(0~60kgf/cm2)。真空压力表(

-760mmHg~0~25kg/cm2)、真空表(—760cmHg~0)。

根据用途,又分为普通表(0~1000kgf/cm2)、微压表(0~250mmH2o)、专用表(船用表、氨用表、氧用表、氢用表、乙炔表、耐酸表、耐硫表等)、特种表{均压表、防冻表、防震表、防水表、风压表等}、

各种压力表虽结构不同,测量工作过程不太一样。但其工作基本

原理是一样的,就是根据测压元件随压相应形变的特性,从而测的压力变化的。

数字显示压力测量系统设计

数字显示压力测量系统设计 一、数字显示仪表的设计原理 工业生产过程中常用的数字式仪表有数字式温度计、数字式压力计、数字流量计、数字电子秤等。数字式仪表的出现适应了科学技术及自动化生产过程中高速、高准确度测量的需要,它具有模拟仪表无法比拟的优点。数字仪表的主要特点有:准确度高、分辨率高、无主观读数误差、测量速度快、能以数码形式输出结果。同时数字量传输信息,可使得传输距离不受限制。 数字仪表按工作原理可分为:带微处理器的和不带微处理器的。不带微处理器的仪表,通常用运算放大器和中、大规模集成电路来实现;带微处理器的仪表,是借助软件的方式来实现有关功能。 1.传感器输出信号的特点: (1)传感器的输出会受温度的影响,有温度系数变化。 (2)传感器的输出顺着输入的变化而变化,但之间的关系不一定是线性比例关系。 (31传感器的动态范围很宽。 (4)传感器的种类多,输出的形式也多种多样。 (5)传感器的输出阻抗较高,到测量电路时会产生较大的信号衰减。 2.传感器信号的二次变换 根据上述的传感器输出信号的特点来看,传感器输出的信号一般是能直接用于仪器、仪表显示作控制信号用,往往需要通过专门的电子电路对传感器输出信号进行“加工处理”。如将微弱的信号给予放大,经过滤波器将有害的杂波信号滤掉,将非线性的特性曲线线性化,如有必要再加温度补偿电路。这种信号变换一般称为二次变换。完成二次变换的电路称为传感器电子电路,一般也称为测量电路,仪表电子电路或调理电路。

3.传感器二次变换的组成 传感器电子电路主要是模拟电路,它与数字电路一样,是由一些单元电路组成。这些单元电路有:各种信号放大电路、有源及无源滤波电路、绝对值检测电路、峰值保持电路、采样.保持电路、A/D及D/A 变换电路、V/F及F/V变换电路、调制解调电路温度补偿电路及非线性特性化补偿电路等。 4.传感器信号的调理电路 信号调理是指测量系统的组成部分,它的输入时传感器的输出信号,输出为适合传输、显示、记录或者能更好的满足后续标准设备或装置要求的信号。信号调理电路通常具有放大、电平移动、阻抗匹配、滤波、解调功能。 传感器输出信号通常可以分为模拟量和数字量两类。对模拟量信号进行调整匹配时,传感器的信号调理环节相对复杂些,通常需要放大电路、调制与解调电路、滤波电路、采样保持电路、A/D及AD/A 转换电路等。而对于数字量信号进行调理匹配时,通常只需使信号通过比较器电路及整形电路,控制計数器技术即可。 5.DVM的概述 模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差。数字电压表(DVM),以其功能齐全、精度高、灵敏度高、显示直观等突出优点深受用户欢迎。DVM应用单片机控制,组成智能仪表;与计算机接口,组成自动测试系统。目前,DVM多组成多功能式的,因此又称数字多用表。 DVM是将模拟电压变换为数字显示的测量仪器,这就要求将模拟量变换成数字量。这实质上是个量化过程,即将连续的无穷多个模拟量用有限个数字表示的过程,完成这种变换的核心部件是A/D转换器,最后用电子计数器计数显示,因此,DVM的基本组成是A/D 转换器和电子计数器。 二、压力测量数显系统设计 测量系统的整机电路包括:P3000S-102A压力传感器、恒流源、

压力测量仪表原理及结构

压力表工作原理及结构 用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。垂直均匀地作用于单位面积上的力称为压力,又称压强。压力表可以指示、记录压力值并可附加报警或控制装臵。仪表所测压力包括绝对压力、大气压力、正压力(习惯上称表压)、负压 (习惯上称真空)和差压。 图1各种压力间的关系表示各种压力间的关系。工程技术上所测量的多为表压。压力的国际单位为帕(Pa)。压力的其他单位还有:工程大气压(kgf/cm2)、巴(bar)、毫米水柱(mmH2O)、毫米汞柱(mmHg)(即托)等。 压力是工业生产中的重要参数。如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。 弹性式压力测量仪表利用各种不同形状的弹性元件在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽(-0.1~1500兆帕),是压力测量仪表中应用最多的一种。 一、压力表 1.1、压力表的工作原理 弹簧管压力表又称为波登管压力表。压力表中的弹簧的自由端是封闭的,它通过拉杆带动扇形齿轮转动。测压时,弹簧管在被测压力作用下产生变形,因而弹簧管自由端产生位移,位移量与被测压力的大小成正比,使指针偏转,在度盘上指示出压力值。如果表壳内通有大气,压力表测出的压力为正压或负压;如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。弹簧管压力表带有隔离装臵时,尚可测量温度较高或腐蚀性、粘稠状、易结晶和粉尘状介质的压力。在精确度较高(如0.25级以上)的弹性式压力测

最新5温度测量仪表汇总

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、 概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷 热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温 标(℃)、华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉- 32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 测温仪 接触非接触式 膨胀压力表热电阻热电偶Pt10、B 、S 、K 、液体膨胀固体膨胀水银温度计 双金属温度光学高温辐射高温比色高温

工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量 小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、铂的纯度:是用电阻比R100/R0来表示;R100是铂在标准大气压下, 水的沸点时阻值;R0是铂在水三相点的电阻值。 2、连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可 从减小一、二次仪表间连接导线因环境温度变化而引起的测量误 差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t=R0〔1+∝0(t-t0)〕; R0—温度为t0时的电阻值;∝0—温度为t0时的电阻温度系数。 热电阻测量的温度的变化,通过测量电路(平衡电桥)转换成相应的电压信号,经放大器放大后,指示或记录被测介质的温度。 第三节热电偶 热电偶温度计使用范围广,可以完成-100~1600℃范围内的温度测量,且便于远距离传送与集中检测。 一、测温原理: E AB(T,T0)=E AB(T,0)-E AB(T0,0)

各种压力测量表计图例

膜片和膜盒 diaphragm and diaphragm capsule 压力测量仪表中的测压弹性元件。由金属或非金属材料制成、周边固定而受力后中心可移动的、具有一定型面的薄片称为膜片。按型面的形状不同膜片可分为平膜片、波纹膜片和球形膜片。型面平坦无波纹的膜片为平膜片;型面具有同心环形波纹的膜片为波纹膜片。将两个膜片的外边缘密封而构成的盒体称为膜盒(见图)。 在压力、轴向力作用下,膜片、膜盒均能产生位移。膜片、膜盒主要用作压力测量仪表的测量元件。膜盒用于测量微小压力。膜片用于测量不超过数兆帕的低压;也可用作隔离元件。在相同的条件下,平膜片位移最小,波纹膜片次之,膜盒最大。如需更大位移,可将数个膜盒串联成膜盒组。 弹簧管 bourdon tube 一端封闭的特种成型管,当管内和管外承受不同压力时,则在其弹性极限内产生变形。弹簧管是压力测量仪表中的一种压力检出元件。它是用弹性材料制作的、弯成C形、螺旋形和盘簧形等形状的中空管。 最早的弹簧管弯成C形,因为法国人E.波登所发明,故又称波登管,现代仍大量应用。它的自由端可移动,开口端固定。管中通入流体,在流体压力作用下,弹簧管发生变形,自由端产生线位移或角位移。 弹簧管的测量范围可由数十千帕至一吉帕以上。常见的截面形状有椭圆形、扁形、圆形(见图)。其中扁管适用于低压,圆管适用于高压,盘成螺旋形弹簧管可用于要求弹簧管有较大位移的仪表中。

波纹管 bellows 压力测量仪表中的一种测压弹性元件。它是具有多个横向波纹的圆柱形薄壁折皱的壳体,波纹管具有弹性,在压力、轴向力、横向力或弯矩作用下能产生位移。波纹管在仪器仪表中应用广泛,主要用途是作为压力测量仪表的测量元件,将压力转换成位移或力。波纹管管壁较薄,灵敏度较高,测量范围为数十帕至数十 兆帕。 另外,波纹管也可以用作密封隔离元件,将两种介质分隔开来或防止有害流体进入设备的测量部分。它还可以用作补偿元件,利用其体积的可变性补偿仪器的温度误差。有时也用作为两个零件的弹性联接接头等。波纹管按构成材料可分为金属波纹管、非金属波纹管两种;按结构可分为单层和多层。 单层波纹管(见图)应用较多。多层波纹管强度高,耐久性好,应力小,用在重要的测量中。波纹管的材料一般为青铜、黄铜、不锈钢、蒙乃尔合金和因康镍 尔合金等。 【电测式压力测量仪表】 这类仪表利用金属或半导体的物理特性直接将压力转换为电压、电流信号或频率信号输出,或是通过电阻应变片等将弹性体的形变转换为电压、电流信号输出。代表性产品有由压电式、压阻式、振频式、电容式和应变式等压力传感器所构成的电测式压力测量仪表。精确度可达0.02级,测量范围从数十帕至700兆帕不 等。 图4为压阻式压力传感器的原理示意。它是利用半导体材料硅受压后电阻率改变与所受压力有一定关系的原理制做的。用集成电路工艺在单晶硅膜片的特定晶向上扩散一组等值应变电阻,将电阻接成电桥形式。当压力发生变化时,单晶硅产生应变,应变使电阻值发生与被测压力成比例的变化,电桥失去平衡,输出 一电压信号至显示仪表显示。

压力测控系统

本章通过一个压力测控系统的综合设计实例,说明单片机应用系统设计的方法和步骤。 12.1 系统要求 设计一压力测控系统,系统的具体要求如下: (1)压力检测 检测来自压力传感器输出的电压信号(0~5V),通过 A/D 转换器进行转换。 (2)工程变换 将转换结果进行工程变换,即将转换结果再转换为压力大小(仅保留整数部分)。 (3)键盘 用于设置压力的报警值和当前时间。 (4)数码 LED显示 用于显示压力报警值的上限和下限,并显示当前压力值。压力值在 0~100之间。 (5)当前压力值超过报警值时,通过蜂鸣器报警,并控制电机执行相应的动作。压力 值低于下限时,合上控制电机正转的继电器,控制电机正转,压力升高,压力值升高到正常 范围后,打开正转继电器,电机停转;压力值高于上限时,合上控制电机反转的继电器,控 制电机反转,压力值下降到正常范围后,打开反转继电器,电机停转。没有超过报警值时, 继电器都打开,电机不转。 (6)上位机监控软件设计 通过计算机显示当前的压力值以及报警值。 12.2 需求分析 需求分析是进行系统设计的基础,主要包括以下几个方面: 1.单片机选型 进行单片机选型时,应尽量了解较多种类单片机的性能指标和所集成的资源。根据系统 的要求,选用合适的单片机。目前许多单片机具有较高的集成度,因此,如果有模拟量检测 的要求时,应尽量选择带有 A/D 转换模块的单片机。并且,应该注意所设计系统的应用场合, 选择适当的芯片等级(军用级、工业级和商用级)。 STC12C5410AD 单片机片内集成了 8 通道 10 位高速模数转换器,并且,具有较多的通 用 I/O 和片上外设 (定时器、 UART等), 因此, 在本系统的设计中, 可以采用 STC12C5410AD 作为系统的检测与控制中心。 2.人机接口的设计选型 系统要求使用键盘设置压力的报警上限值和下限值,使用 LED 进行显示。在此,使用 4 、当前值 个按键作为系统键盘,选用 8 位 LED 显示,用以显示压力的报警值(上限、下限) 和当前时间。 传统的键盘和 LED 显示电路设计,一般采用扫描的方式。即,键盘采用扫描方式,LED 显示采用动态扫描方式。键盘和 LED 设计时,公用其中的某些口线。在本例中,键盘采用扫 描方式,而 LED采用串行-并行转换芯片 74HC595进行显示。 259

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温标(℃)、 华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉-32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、 铂的纯度:是用电阻比R 100/R 0来表示;R 100是铂在标准大气压下,水的沸点 时阻值;R 0是铂在水三相点的电阻值。 2、 连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可从减小一、 二次仪表间连接导线因环境温度变化而引起的测量误差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t =R 0〔1+∝0(t-t 0)〕; R 0—温度为t 0时的电阻值;∝0—温度为t 0时的电阻温度系数。 测温仪表 接触式 非接触式 膨胀式 压力表式 热电阻式: 热电偶式: Pt10、Pt100 B 、S 、K 、E 、T 液体膨胀式: 固体膨胀式: 水银温度计 双金属温度计 光学高温计 辐射高温计 比色高温计

压力测量系统的设计

课程设计报告 题目:压力测量系统的设计 院系:信息与电气工程学院 姓名: 学号:12894040 专业:电气工程及其自动化 指导老师:

目录 1设计内容及要求…………………………………………………………………………2智能电子天平的总体设计分析……………………………………………………………… 2.1 智能电子天平的基本结构 2.2智能电子天平系统的工作原理 2.3 智能电子天平设计的基本思路 3硬件设计………………………………………………………………….. 3.1 总体规划 3.2 主控制器电路 3.3 电源变换电路 3.4 信号放大电路 3.5信号变换电路 3.6 显示电路 4软件设计………………………………………………………………… 4.1 系统应用程序组成 4.2 主程序流程图 4.3 AD采样程序块 4.4 液晶显示程序块 5心得体会………………………………………………………………………………

1设计内容及要求 设计一个智能电子天平,可以同时测量两个物体的重量并进行比较。该系统应具有数码管显示、键盘设定、数据存储等功能。 设计要求:①测量范围:0~5kg ②测量精度:正负0.1kg ③测量通道:2通道(被测物体重量1通道,参照物体重量1通道) ④供电电源:220V AC 2 、智能电子天平设计总体分析 2.1智能电子天平的基本结构 所谓智能电子天平,即可以同时测量两个物体的重量并进行比较的装置。它和电子称的原理类似,都是是利用物体的重力作用来确定物体质量(重量)。智能电子天平可以说是电子称的改进装置,把原有的电子称压力传感器测量端换成两个,相继的数据处理等后续装置做一定的改进即可。 2.2 系统的工作原理 电子天平称重系统的工作原理。首先是通过两个压力传感器分别采集到两个被测物体的重量并将其转换成电压信号。输出电压信号通常很小,需要通过前端信号处理电路进行准确的线性放大。放大后的模拟电压信号分别经A/D转换电路转换成数字量通过两个通道被送入到主控电路的单片机中,单片机通过程序结合按键控制译码显示器,从而显示出某个被测物体的重量或是比较结果。在实际应用中,为提高数据采集的精度并尽量减少外界电气干扰,还需要在传感器与A/D芯片之间加上信号调整电路。 2.3 系统设计基本思路 按照设计的基本要求,系统可分为四大模块,电源转换模块、数据采集模块、控制器模块、显示器模块。其中数据采集模块由压力传感器、信号的前级处理和A/D转换部分组成。转换后的数字信号送给控制器处理,由控制器完成对该数字量的处理,驱动显示模块完成人机间的信息交换。此部分对软件的设计要求比较高,系统的大部分功能都需要软件来控制。 3、硬件电路设计 3.1 总体规划 按照本设计功能的要求,系统由5个部分组成:控制器部分、两个相同的测量部分、

常用温度测量仪表分类

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在 回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工 S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。

微机原理课程设计压力测量系统的设有硬件电路图计样本

序号: 课程设计 ( 微机原理及应用A) 二○一一年七月八日

课程设计任务书及成绩评定 课题名称压力测控系统的设计 I、题目的目的和要求: 设计一个对压力传感器的信号进行检测并在LED数码显示器上显示压力值的系统, 当压力低于30pa时, 黄灯闪烁, 闪烁周期为1秒。当压力高于150pa 时, 红灯闪烁。LED的显示内容为P=XXX。X为测试值。 II、设计进度及完成情况

III、主要参考文献及资料 《微型计算机原理及应用》清华大学出版社郑学坚周斌 《微型计算机技术及应用》清华大学出版社史嘉权 《微机原理与接口技术基础与应用》海洋出版社邓振杰 《微机原理与接口技术实验及课程设计》西南交通大学出版社杨斌《单片机原理及接口技术》清华大学出版社梅丽凤王艳秋 学科部主任( 签字) Ⅵ、成绩评定:

设计成绩: ( 教师填写) 指导老师: ( 签字) 二○一一年七月八 日 一、设计要求 设计一个对压力传感器的信号进行检测并在LED数码显示器上显示压力值的系统, 当压力低于30pa时, 黄灯闪烁, 闪烁周期为1秒。当压力高于150pa时, 红灯闪烁。LED的显示内容为P=XXX。X为测试值。 二.设计思想 压力测试系统的设计, 必然要牵涉到压力的感应与转化, 因此必须要有压力传感与A/D转换器。将自然中的模拟量转化为电压信号, 再转化位数字信号进行处理。一个小型的微机系统, 必须要有8086cpu来进行整体的控制, 将其经过8255与A/D传感器进行连接。这就是这个系统的主要框架。 而具体的应用框架则是在主要的框架上添加。要当压力低于30pa时, 黄灯闪烁。当压力高于150pa时, 红灯闪烁。则应添加8255。模块。经过编程来控制黄灯与红灯的亮灭情况, 考虑到要进行比较, 因此我用了两个比较器进行数据的比较。同时, 由于灯要闪烁, 闪烁周期要一秒, 因此我们考虑到还要加一个8253芯片去控制。但根据个人情况, 这个模块我省略了。而至于LED显示, 且显示内容为三位。我只在程序之中体现, 而在硬件图中没有去

测量仪表及自动化

《测量仪表及自动化》综合复习资料 绪论、第一章概述 1.如何评价测量仪表性能,常用哪些指标来评价仪表性能? 2.名词解释:相对误差、精度、变差、灵敏度、量程、反应时间 3.仪表的变差不能超出仪表的()a、相对误差b、引用误差c、允许误差 4.测量某设备的温度, 温度为400℃, 要求误差不大于4℃,下列哪支温度计最合适?()A 0~ 600℃ 1.5级 B. 0~1500℃0.5级 C. 0~800℃0.5级 D. 0~400℃0.2级 5.仪表的精度级别指的是仪表的( )A 引用误差 B. 最大误差 C.允许误差 D. 引用误差 的最大允许值 6.下列说法正确的是()A 回差在数值上等于不灵敏区B 灵敏度数值越大则仪表越灵敏C 灵敏限数值越大则仪表越灵敏 7.有一个变化范围为320——360kPa的压力,如果用A、B两台压力变送器进行测量,那么在正 常情况下哪一台的测量准确度高些?压力变送器A:1级,0——600kPa。压力变送器B:1级,250——500kPa。 8.一台精度等级为0.5级的测量仪表,量程为0~1000℃。在正常情况下进行校验,其最大绝对误 差为6℃,求该仪表的最大引用误差、允许误差、仪表的精度是否合格。 9.某台差压计的最大差压为1600mmH2O,精度等级为1级,试问该表最大允许的误差是多少? 若校验点为800mmH2O,那么该点差压允许变化的范围是多少? 10.测量范围0~450℃的温度计,校验时某点上的绝对误差为3.5℃,变(回)差为5℃, 其它各点均小 于此值,问此表的实际精度应是多少?若原精度为1.0级,现在该仪表是否合格? 11.自动化仪表按能源分类及其信号形式。 12.单元组合式仪表是什么? 第二章压力测量及变送 13.简述弹簧管压力表原理和游丝的作用。 14.简述电容式差压变送器工作原理,说明变送器的两线制工作机理。 15.简述压力仪表选型原则。

温度测量仪表标准作业指导书

温度测量仪表标准作业指导书 一、目的 细化和量化温度测量仪表设备的安装、故障排除和校验维护,使温度测量设备正确稳定运行。 二、范围 热电偶、热电阻、双金属温度计等温度测量仪表的安装,维护和故障排除作业 三、作业流程图 四、标准作业指导 第一部分:温度测量仪表安装----以热电偶安装为例 1、作业准备 、作业材料 、热电偶测温原理及结构 1)热电偶测温原理 热电偶测温原理是基于赛贝尔效应,即两种不同成分的导体两端相连构成回路,若两连接端温度不同,则在回路内产生热电流,形成热电势。这个回路产生 的热电势由接触电势和温差电势组成。由于导体材料一定,热电偶产生的热电势 实际上是热电偶两端温度的函数,而且只与温度有关。 2)热电偶的结构 常用的热电偶是由热电极(热偶丝)、绝缘材料(绝缘管)和保护套管等部分构成的。 常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶有国家标准的热电势与温度、容许的误差、标准分度表等。我国从1988年1月1日起,热 电偶全部按IEC国标生产,并指定S、R、B、K、E、J、T7种标准化热电偶为我国 统一设计型热电偶。非标准型热电偶则一般用于特殊场合,国家并没有统一制定 严格的标准。

、热电偶的选型 具体选型流程为:型号的选择—分度号的选择—防爆等级的选—精度等级的选择—安装固定形式的选择—保护管材质的选择—长度或插入深度的选择。 在选择热电偶的时候,要根据所要求的使用温度范围、所需精度、使用气氛、测定对象的性能、响应时间和经济效益等综合因素进行参考。 1)选择测量精度和温度测量范围。 使用温度在1300℃~1800℃,要求精度比较高时,一般选用B型热电偶; 要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电 偶;使用温度在1000℃~1300℃要求精度又比较高可用S型热电偶和N型热电 偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型 热电偶;250℃以下及负温测量一般用T型电偶,在低温时T型热电偶稳定而 且精度高。 2)使用环境气氛的选择。 S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用,J型和T型热电偶适合于弱氧化和还原气氛,J型和T型热电偶适合于弱氧化和还原气氛,若使 用气密性比较好的保护管,对气氛的要求就不太严格。 3)选择耐久性及热响应性。 线径大的热电偶耐久性好,但响应较慢一些,对于热容量大的热电偶,响应就慢,测量梯度大的温度时,在温度控制的情况下,控温就差。要求响应时间快又要 求有一定的耐久性,选择铠装热电偶比较合适。 4)测量对象的性质和状态对热电偶的选择。 运动物体、振动物体、高压容器的测温要求机械强度高,有化学污染的气氛要求有保护管,有电气干扰的情况下要求绝缘比较高。 2、热电偶的安装 、介质温度的测量 测量介质温度的热电偶通常采用插入式安装方法,配保护套管和固定装置,保护套管直接与被测介质接触。 、基本安装形式 根据固定装置结构的不同,一般采用以下几种安装形式: 1)固定装置为固定螺纹的热电偶,可将其固定在有内螺纹的插座内,它们之间的垫 片作密封用。 2)固定装置采用活动紧固装置,如无固定装置的热电偶(需另外加工一套活动紧固 装置),其安装形式如图2所示。热电偶安装前缠绕石棉绳,由紧固座和紧固螺

压力测量仪表按工作原理分为液柱式

压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。液压式压力测量仪表常称为液柱式压力计,它是以一定高度的液柱所产生的压力,与被测压力相平衡的原理测量压力的。大多是一根直的或弯成U形的玻璃管,其中充以工作液体。常用的工作液体为蒸馏水、水银和酒精。因玻璃管强度不高,并受读数限制,因此所测压力一般不超过兆帕。 它的特点是。液柱式压力计灵敏度高,因此主要用作实验室中的低压基准仪表,以校验工作用压力测量仪表。由于工作液体的重度在环境温度、重力加速度改变时会发生变化,对测量的结果常需要进行温度和重力加速度等方面的修正。 弹性性式压力测量仪表是利用各种不同形状的弹性元件,在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同,可分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽,是压力测量仪表中应用最多的一种。 负荷式压力测量仪表常称为负荷式压力计,它是直接按压力的定义制作的,常见的有活塞式压力计、浮球式压力计和钟罩式压力计。由于活塞和砝码均可精确加工和测量,因此这类压力计的误差很小,主要作为压力基准仪表使用,测量范围从数十帕至2500兆帕。 电测式压力测量仪表是利用金属或半导体的物理特性,直接将压力转换为电压、电流信号或频率信号输出,或是通过电阻应变片等,将弹性体的形变转换为电压、电流信号输出。代表性产品有压电式、压阻式、振频式、电容式和应变式等压力传感器所构成的电测式压力测量仪表。精确度可达级,测量范围从数十帕至700兆帕不等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

测量仪表及自动化习题

《测量仪表及自动化》 绪论、第一章概述 1.如何评价测量仪表性能,常用哪些指标来评价仪表性能? 2.名词解释:相对误差、精度、变差、灵敏度、量程、反应时间 3.仪表的变差不能超出仪表的() a、相对误差 b、引用误差 c、允许误差 4.测量某设备的温度, 温度为400℃, 要求误差不大于4℃,下列哪支温度计最合适?() A 0~600℃ 1.5级 B. 0~1500℃ 0.5级 C. 0~800℃ 0.5级 D. 0~400℃ 0.2 级 5.仪表的精度级别指的是仪表的( ) A 引用误差 B. 最大误差 C.允许误差 D. 引用误差的最大允许值 6.下列说法正确的是() A 回差在数值上等于不灵敏区 B 灵敏度数值越大则仪表越灵敏 C 灵敏限数值越大则仪表越灵敏 7.有一个变化范围为320——360kPa的压力,如果用A、B两台压力变送器进行测量,那么 在正常情况下哪一台的测量准确度高些?压力变送器A:1级,0——600kPa。压力变送器B:1级,250——500kPa。 8.一台精度等级为0.5级的测量仪表,量程为0~1000℃。在正常情况下进行校验,其最大 绝对误差为6℃,求该仪表的最大引用误差、允许误差、仪表的精度是否合格。 9.某台差压计的最大差压为1600mmH2O,精度等级为1级,试问该表最大允许的误差是多少? 若校验点为800mmH2O,那么该点差压允许变化的范围是多少? 10.测量范围 0~450℃的温度计,校验时某点上的绝对误差为3.5℃,变(回)差为5℃, 其它 各点均小于此值,问此表的实际精度应是多少?若原精度为1.0级,现在该仪表是否合格? 11.自动化仪表按能源分类及其信号形式。 12.单元组合式仪表是什么?

基于单片机的压力测量系统设计

基于单片机的压力测量系统设计 【摘要】压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计是基于AT89C51单片机的测量与显示。是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至12位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据和命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。 【关键词】: 压力;AT89C51单片机;压力传感器;A/D转换器;LED显示;

Design of pressure detecting system based on single-chip 【Abstract】Pressure is one of the important parameters in the process of industrial production. Pressure detection or control is an essential condition to ensure production and the equipment to safely operating, which is of great significance. The single-chip is infiltrating into all fields of our lives, so it is very difficult to find the area in which there is no traces of single-chip microcomputer. In this graduation design, primarily through by using single-chip and dedicated chip, handling of analog signal measured by the sensor to complete intelligent function. This design illustrates external hardware circuit design of intelligent pressure sensor, and conduct software development to the hardware. The design is based on measurement and display of AT89C51 single-chip. This is the pressure sensors will convert the pressure into electrical signals. After using operational amplifier, the signal is amplified, and transferred to the 8-bit A/D converter. Then the analog signal is converted into digital signals which can be identified by single-chip and then converted by single-chip into the information which can be displayed on LED monitor, and finally display output. In the course of show, through the keyboard to input all kinds of data and commands into the computer, the single-chip will locate in a predetermined function step to display required values. The end result of this design is that by downloading software to the hardware, it will get the data which is required to display by debugging. When the input analog signals change, the LED monitor will display different values through the A/D converting. 【Key words】: pressure; AT89C51 single-chip; pressure sensor; A/D converter; LED monitor;

《热工测量及仪表》学生练习题(学习资料)

习题1 1.01 某1.5级测量范围为0~100kPa 的压力表,在50kPa ,80kPa ,100kPa 三点 处校验时,某示值绝对误差分别为-0.8kPa ,+1.2kPa ,+1.0kPa ,试问该表是否合格? 1.02 有2.5级,2.0级,1.5级三块测温仪表,对应得测量范围分别为-100~+500℃, -50~+550℃,0~1000℃,现要测量500℃的温度,要求其测量值的相对误差不超过2.5%,问选用哪块表最合适? 1.03 请指出下列误差属于哪类误差? a) 用一块普通万用表测量同一电压,重复测量十五次后所得结果的误差。 b) 观察者抄写记录时错写了数据造成的误差。 c) 在流量测量中,流体温度,压力偏离设计值造成的流量误差。 n 1 2 3 4 5 6 7 8 P(kPa) 105.30 104.94 105.63 105.24 104.86 104.97 105.35 105.16 n 9 10 11 12 13 14 15 P(kPa) 105.71 105.70 104.36 105.21 105.19 105.21 105.32 1.05对某喷嘴开孔直径d 的尺寸进行15次测量,测量值见下表,试用格拉布斯准则检验并判断该批数据是否含有粗大误差(取显著性水平=0.05), 并求该喷嘴 真实直径 (要求测量结果的置信概率为95%,π=3.14,用t 分布). 序号 1 2 3 4 5 6 7 8 测量值 120.49 120.43 120.40 120.43 120.42 120.30 120.39 120.43 序号 9 10 11 12 13 14 15 测量值 120.40 120.42 120.42 120.41 120.39 120.39 120.40 1.06 通常仪表有哪三个部件组成? 习题3 3.01 叙述热电偶工作原理和基本定律。 3.02 普通工业热电偶由什么组成? 3.03 常用标准热电偶的分度号及特点? 3.04 用铂铑10-铂热电偶测温,在冷端温度30℃时,测得热电势是12.30mv , 求热端温度。(附:铂铑10-铂热电偶分度表(分度号:S,冷端0℃),见教材) 3.05 用镍铬-镍铝标准热电偶在冷端温度30℃时,测得的电势30.2mv ,求该热 电偶热端温度。(附:镍铬-镍铝热电偶分度表。(分度号K ,冷端温端0℃) 见教材附录)。 3.06 用铜,康铜,铂两两相配构成三热电偶,已知:热电势),(铂铜0100 E =

常用温度测量仪表分类

常用温度测量仪表分类文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。 2、热电偶的结构 一般由热电极、绝缘套管、保护管、接线盒组成。普通型热电偶按其安装时的固定形式可分为固定螺纹连接、固定法兰连接、活动法兰连接无固定装置等多种形式。 热电极:一般金属Φ~,昂贵金属Φ~,长度与被测物质有关,一般为 300~2000mm,通常在350mm左右; 绝缘管:隔离热电偶与被测物,一般在室温下要5MΩ左右; 保护套管:避免受被测介质的化学腐蚀和机械损伤; 接线盒:固定接线座,连接补偿导线。 3、非标准型热电偶 ①铠装热电偶 铠装热电偶将热电偶丝用无机物绝缘及金属套管封装,压实成可挠的坚实组合体,惯性小,挠性、机械强度及耐压性能好,结构坚实可耐强烈的振动和冲击,可用于快速测温或热熔量很小的物体的测温部位,还可用于高压设备测温。 ②钨铼系热电偶

Tekscan压力分布测量系统

Tekscan 压力分布测量系统 摘要:介绍一种先进的压力分布测量系统,该系统使用 独特的柔性薄膜网格压力传感器,能够对任何接触面 之间的压力分布进行动态测量,并以直观、形象的二 维、三维彩色图形显示压力分布的轮廓和数值,进而做 出评估。对各种压力分布的测量和分析,在各行各业的研究和发展中都起着极其重要的作用。例如,汽车行业中, 研究座椅的舒适性,需要测量人体对座椅的压力分布; 为提高轮胎的性能,需要测量轮胎与地面的接触轮廓和 压力分布;为确保车门的密封性,需要测量车门密封垫 在关门时的受力分布;医疗领域中,牙科医生要诊断病 人的牙齿咬合状况,需要测量病人上下牙齿间的咬合力 大小和分布,等等。所以,压力分布的测量成为解决这 些问题的首要条件。而解决这些问题的传统办法就是 进行反复的实验,这样不但效率低,而且成本也比较高。 美国Tekscan 公司的压力分布测量系统就是基于 上述情况而开发的,它是一种经济、高效、精确、快速、 直观的压力分布测量工具。 1 系统结构与原理 Tekscan 压力分布测量系统的独特之处在于其专 利技术———柔性薄膜网格传感器。传感器结构如图1 所示。 图1 传感器结构示意图 标准的Tekscan 压力传感器由两片很薄的聚酯薄 膜组成,其中一片薄膜的内表面铺设若干行的带状导 体,另一片薄膜的内表面铺设若干列的带状导体。导 体本身的宽度以及行间距可以根据不同的测量需要而 设计。导体外表涂有特殊的压敏半导体材料涂层。当 两片薄膜合为一体时,大量的横向导体和纵向导体的 交叉点就形成了压力感应点阵列。当外力作用到感应 点上时,半导体的阻值会随外力的变化而成比例变化, 由此来反映感应点的压力值。即压力为零时,阻值最 大,压力越大,阻值越小,从而可以反映出两接触面间 的压力分布情况。 传感器内部导体的宽度、行距、列距决定了每单位 面积内传感点的个数,即间隙分辨率。每个传感点面 积可以小到1. 613 mm2 ,行列距可小到0. 5 mm。不同 的传感器面积和间隙分辨率可满足各种不同的测量要 求。例如,Tekscan 曾提供过面积为1 935 cm2 、传感点 为100 000 个的传感器; Tekscan 开发的牙齿咬合力分 析系统,传感器面积为25. 8 cm2 ,共有1 500 个传感 点;用于座椅压力分布研究的传感器具有4 000 个以 上的感应点,分辨率为1 个感应点/ cm2 。 传感器有不同的形状和规格,其压力测量范围为 0~175 MPa ,精确度为±5 %。

相关主题
文本预览
相关文档 最新文档