当前位置:文档之家› S7-200控制步进电机

S7-200控制步进电机

S7-200控制步进电机
S7-200控制步进电机

步进电机是工业自动化过程当中经常用到的一种控制传动机构,它是通过接受输入脉冲,然后每个脉冲转动一定的步距(角度)来完成对执行机构的控制传动的。使用PLC可以通过特殊功能存储器(SM)或者增加EM253位控模块来控制步进电机,但是使用SM需要熟悉每一位的意义,而且编程烦琐。如果为PLC增加功能扩展模块,无疑会增加产品成本。鉴于这些原因并结合本人的实践经验,本文利用STEP 7-Micro/WIN 位置控制向导来实现应用PLC控制步进电机的运动功能。

1 操作步骤[2]

使用STEP 7——Micro/WIN位置控制向导,为线性脉冲串输出(PTO)操作组态一个内置输出。启动位置控制向导,可以点击浏览条中的向导图标,然后双击PTO/PWM图标,或者选择菜单命令工具→位置控制向导。

(1)在位置控制向导对话框中选择“配置S7-200 PLC内置PTO/PWM操作”。

(2)选择Q0.0或Q0.1,组态作为PTO的输出。

(3)从下拉对话框中选择“线性脉冲串输出(PTO)”。

(4)若想监视PTO产生的脉冲数目,点击复选框选择使用高速计数器。

(5)在对应的编辑框中输入最高电机速度(MAX_SPEED)和电机的启动/停止速度(SS_ SPEED)的数值。

(6)在对应的编辑框中输入加速和减速时间。

(7)在移动包络定义界面,点击新包络按钮允许定义包络,并选择所需的操作模式。

a)对于相对位置包络:

输入目标速度和脉冲数。然后,可以点击“绘制包络”按钮,查看移动的图形描述。

若需要多个步,点击“新步”按钮并按要求输入步信息。

b)对于单速连续转动:

在编辑框中输入目标速度的数值。

若想终止单速连续转动,点击子程序编程复选框,并输入停止事件后的移动脉冲数。(8)根据移动的需要,可以定义多个包络和多个步。

(9)选择完成结束向导。

2 应用实例

本例通过PLC控制步进电机在车轮自动超声探伤中的应用,进一步说明利用STEP 7-Mic ro/WIN 位置控制向导来实现利用PLC控制步进电机的具体操作过程。

车轮自动超声探伤系统是利用车轮在探伤架上的转动,通过超声波来实现对车轮内部缺陷的检测,其中车轮的转动是由步进电机通过减速箱来实现驱动的。整个系统机械部分的运动由下位机(PLC)来控制,如图1。

图1 机械系统运动原理图2 上位机与下位机的通信

为了保证探伤的准确性,一般需要两组探头同时检测分别对车轮的踏面以及内侧面。当这两组探头分别接触到车轮的踏面和内侧面后,PLC会收到这两组探头的行程开关发出的探头到位信号,此时由下位机向上位机(工控机)上传“准备好”信号。在上位机收到“准备好”信号后,可以向下位机发送“探伤开始”的信号了,下位机收到该信号后,立即向步进电机发送脉冲,车轮开始转动,探伤工作开始了,如图2所示,其中上位机与下位机是采用自由口方式进行通信的。

在这个过程中,利用位置控制向导对步进电机的配置非常重要,合理的配置能够增加探伤系统的灵敏度,不合理的配置会增加探伤工作的困难,甚至有可能烧坏电机。

在该应用中,配置向导的前四个操作步骤中一般采用默认设置即可。在操作步骤(5)中,MAX_SPEED的设置应该在电机力矩的最大范围内,驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定,在这里设为400。对SS_SPEED的设置不能太大,太大就会造成电机失步,但是如果太小就会在电机启动时产生颤抖或者振动,在此设为100。具体应用要根据不同的电机使用说明书来设置。最低电机速度(MIN_SPEED)系统默认等于SS_SPEE D。MAX_SPEED、SS_SPEED和MIN_SPEED的关系如图3所示。

图3 最大、最小和开始/停止速度

在步骤(6)中可以设置加速时间(ACCEL_TIME)和减速时间(DECEL_TIME),如图4所示。在该系统中,探伤主要是在电机匀速转动时工作的,所以加速与减速时间越小越有利于探伤工作,但是时间太小会影响步进电机的使用寿命,在此加速时间设为1000,减速时间设为500。

图4 加速时间和减速时间

在步骤(7)中,由于步进电机本身存在加速与减速时间,所以我们选择建立相对位置包络。并且探伤系统不需要中间变速度,所以只需要输入希望的步0信息。在该系统中,我们希望的目标速度为150(介于MAX_SPEED和MIN_SPEED之间)。假设α为步进电机一步转过的角度,θ为步进电机总共需要转的角度,ψ为步进电机需要的总脉冲数,φ为车轮总共转过的角度,n为减速箱的传动比,于是计算包络总位移(即步进电机需要的总脉冲数)的公式为

ψ=θ/α=nφ/α(1)

由于步进电机存在开始时加速和结束时减速两个无法克服的过程,所以在这两个过程中可能存在漏探或误探,于是在探伤过程中规定,车轮至少应转1.25圈,即450°。在该系统中,n=60,α=0.72°(即每转细分数为500步),因此由公式(1)可以推出ψ=37500。绘制的包络如图5所示。

图5 相对位置模式下的包络

然后选择一个大小合适且未使用的V存储区来保存配置和包络信息,最后向导会根据刚才的配置生成PTO0_CTRL、PTO0_MAN和PTO0_RUN三个项目组件,用户可以在自己编写的程序中调用这些组件。其中:PTO0_CTRL指令是用于在手动模式下初始化步进电机;PTO0_MAN指令是用于手动模式控制线性PTO,在手动模式中,可以使用不同的速度操作PTO,如图6;PTO0_RUN指令用于命令线性PTO操作执行在向导配置中指定的运动包络,如图7。

图6 PTO0_MAN指令应用

图7 PTO0_RUN指令应用

至此,利用位置控制向导对步进电机的配置已经完成。

3 结论

通过上面的例子可以看出,本文介绍的利用STEP 7-Micro/WIN 位置控制向导来实现PLC 对步进电机的控制,操作简单,而且不用增加功能扩展模块,降低了产品成本,是非常值得在PLC应用中尝试的。

步进电机升降速曲线控制方法

步进电机升降速曲线控制方法 在一些控制简单或要求低成本的运动控制系统中,经常用步进电机做执行 元件。步进电机在这种应用场合下最大的优势是:可以开环方式控制而无需反 馈就能对位置和速度进行控制。但也正是因为负载位置对控制电路没有反馈, 步进电机就必须正确响应每次励磁变化。如果励磁频率选择不当,电机不能够 移到新的位置,那么实际的负载位置相对控制器所期待的位置出现永久误差, 即发生失步现象或过冲现象。因此步进电机开环控制系统中,如何防止失步和 过冲是开环控制系统能否正常运行的关键。失步和过冲现象分别出现在步进电 机启动和停止的时候。一般情况下,系统的极限启动频率比较低,而要求的运 行速度往往比较高。如果系统以要求的运行速度直接启动,因为该速度已超过 极限启动频率而不能正常启动,轻则可能发生丢步,重则根本不能启动,产生 堵转。系统运行起来以后,如果达到终点时立即停止发送脉冲串,令其立即停止,则由于系统惯性作用,电机转子会转过平衡位置,如果负载的惯性很大, 会使步进电机转子转到接近终点平衡位置的下一个平衡位置,并在该位置停下。为了克服失步和过冲现象,应在步进电机启停时进行如图1 所示的升降速控制。600)this.width=600”border=0>从图1 可以看出,L2 段为恒速运行,L1 段为升频,L3 段为降频,按照“失步”的定义,如果在L1 及L3 段上升及下降的控制 频率变化大于步进电机的响应频率变化,步进电机就会失步,失步会导致步进 电机停转,经常会影响系统的正常工作,因此,在步进电机变速运行中,必须 进行正确的升降速控制。以下按不同的控制单元,介绍几种常用的步进电机升 降速控制方法。1、运动控制卡作上位控制单元——以MPC01 系列运动卡为例MPC01 系列运动控制卡可以作为PC 机运动控制系统的核心控制单元。卡上的专用运动控制芯片可自动进行升降速计算。其运动控制函数库中也有专门进行

步进电机控制实验

步进电机控制实验 一、实验目的: 了解步进电机工作原理,掌握用单片机的步进电机控制系统的硬件设计方法,熟悉步进电机驱动程序的设计与调试,提高单片机应用系统设计和调试水平。 二、实验容: 编写并调试出一个实验程序按下图所示控制步进电机旋转: 三、工作原理: 步进电机是工业过程控制及仪表中常用的控制元件之一,例如在机械装置中可以用丝杠把角度变为直线位移,也可以用步进电机带螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,用起来非常方便。步进电机还具有快速启停、精确步进和定位等特点,因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。 步进电机实际上是一个数字/角度转换器,三相步进电机的结构原理如图所示。从图中可以看出,电机的定子上有六个等分磁极,A、A′、B、B′、C、C ′,相邻的两个磁极之间夹角为60o,相对的两个磁极组成一相(A-A′,B-B′,C-C′),当某一绕组有电流通过时,该绕组相应的两个磁极形成N极和S极,每个磁极上各有五个均匀分布矩形小齿,电机的转子上有40个矩形小齿均匀地分布的圆周上,相邻两个齿之间夹角为9°。 当某一相绕组通电时,对应的磁极就产生磁场,并与转子形成磁路,如果这时定子的小齿和转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子和定子的齿相互对齐。由此可见,错齿是促使步进电机旋转的原因。 三相步进电机结构示意图 例如在三相三拍控制方式中,若A相通电,B、C相都不通电,在磁场作用下使转子齿和A相的定子齿对齐,我们以此作为初始状态。设与A相磁极中心线对齐的转子的齿为0

步进电动机控制方法

<<技能大赛自动线的安装与调试>>项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

步进电机的速度控制

步进电机的速度控制 步进电机区别于其他控制用途电机的最大特点是,它可接受数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,因而本身就是一个完成数字模拟转化的执行元件。而且它能进行开环位置控制,输入一个脉冲信号就得到一个规定的位置增量。这样的增量位置控制系统与传统的直流伺服系统相比,其成本明显降低,几乎不必进行系统调整。因此,步进电机广泛应用于数控机床、机器人、遥控、航天等领域,特别是微型计算机和微电子技术的发展,使步进电机获得更为广泛的应用。 步进电机的速度特性 步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。由于步进电机是借助它的同步转矩而启动的,为了不发生失步,启动频率是不高的。特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差10倍之多。 为了充分发挥电机的快速性能,通常使电机在低于启动频率下启动,然后逐步增加脉冲频率直到所希望的速度,所选择的变化速率要保证电机不发生失步,并尽量缩短启动加速时间。为了保证电机的定位精度,在停止以前必须使电机从最高速度逐步减小脉冲率降到能够停止的速度(等于或稍大于启动速度)。因此,步进电机拖动负载高速移动一定距离并精确定位时,一般来说都应包括“启动-加速-高速运行(匀速)-减速-停止”五个阶段,速度特性通常为梯形,如果移动的距离很短则为三角形速度特性,如图1所示。 图1 步进电机的速度曲线 步进电机控制系统结构 PC机在适当的时刻通过对硬件控制电路上的8253计数器0赋初值,设置好加减速过程的频率变化(即速度、加速度变化),以防止失步。例如,在点位控制中设置好速度曲线图,在起动和升速时,使步进电机产生足够的转矩驱动负载,跟上规定的速度和加速度;在减速时,下降特性使负载不产生过冲,停止在规定的位置。硬件控制电路板上的8253产生脉冲方波作为中断信号源,启动细分驱动电路中的固化程序以产生一定频率的脉冲,经功率放大后驱动步进电机运动。步进电机运动方向的改变及启动和停止均由计算机控制硬件控制电路实现。 图2 步进电机控制系统 软件和硬件结合起来一起进行控制,具有电路简单、控制方便等优点。在这种控制中,微机软件占用的存储单元少,程序开发不受定时限制。只要外部中断允许,微机就能在电机的每一步之间自由地执行其他任务,以实现多台步进电机的运动控制。 定时器初值的确定 步进电机的实时控制运用PC机,脉冲方波的产生采用8253定时器,其计数器0工作于方式0以产生脉冲方波,计数器 1工作于方式1起记数作用,8253计数器0的钟频由2MHz晶振提供。设计算机赋给8253计数器0的初值为D1,则产生的脉冲方波频率为f1=f0/D1,周期为T1=1/f1=D1/f0,D1=f0T1=f0/f1。其中,f1为启动频率,f0为晶振频率。步进电机升降速数学模型为使步进电机在运行中不出现失步现象,一般要求其最高运行频率应小于(或等于)步进响应频率fs。在该频率下,步进电机可以任意启动、停止或反转而不发生失步现象。步进电机升降速有两种驱动方式,即三角形与梯形驱动方式(见图1),而三角形驱动方式是梯形驱动的特例,因而我们只要研究梯形方式。电机的加速和减速是通过计算机不断地修改定时器初值来实现的。在电机加速阶段,从启动瞬时开始,每产生一个脉冲,定时器初值减小某一定值,则相应的脉冲周期减小,即脉冲频率增加;在减速阶段,定时器初值不断增加,

步进电机指数规律升降速的单片机控制系统设计

优秀设计 3333学院 毕业设计(论文)说明书 题目步进电机指数规律升降速的 单片机控制系统设计 学生 系别机电工程系 专业班级机械设计制造及自动化机电 学号 指导老师

3333学院 毕业设计(论文)任务书 设计(论文)题目:步进电机指数规律升降速的单片机控制系统设计系:机电工程系专业:机电一体化班级:学号: 学生:指导教师: 接受任务时间 教研室主任(签名)系主任(签名) 1.毕业设计(论文)的主要内容及基本要求 用单片机对步进电机进行三相六拍的控制,通过软硬件设计,实现电机指数规律升降速。 (1) 系统总体方案拟定; (2) 数学模型建立,求控制算法; (3) 硬件设计; (4) 软件设计; 编写设计说明书,完成系统控制硬件图1张 A 2; 2.指定查阅的主要参考文献及说明 (1) 《机电一体化系统设计》 (2) 《计算机控制系统分析与设计》 (3) 《单片机应用设计》 (4) 《电子电工技术》 (5) 《C语言程序设计》 (6) 《机床电气控制》 注:本表在学生接受任务时下达

摘要 从步进电机的矩-频特性可知,启动频率越高,启动转矩越小,带动负载的能力越差。当启动频率较高时,启动时会造成失步,而停止时由于惯性作用又会发生过冲,所以在步进电机控制中必须要采取升降速控制措施。本文根据步进电机的动力学方程和矩-频特性曲线建立系统的数学模型,采用指数规律的升降速算法,以单片机为核心对步进电机进行并行控制。系统的软件设计由C51 语言编程来实现。并设计了检测系统用于对步进电机转速和步数的检测。最后,本系统可以实现以下功能:在显示器的提示下,由键盘输入运行的步数和稳定运行的速度;由各个功能键控制系统的运行,按启动键后,步进电机按照输入的步数进行走步;如在运行期间按停止键,则步进电机停止运行。研究表明,采用指数规律的升降速曲线将大大地提高微机控制步进电机的最高工作频率,大大缩短所需的升降速时间。 关键词:步进电机,单片机,速度控制,C51 语言

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。要解决这个问题,必须采用加减速的办法。就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。这就是我们常说的“加减速”方法。 步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。 所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。加速和减速的原理是一样的。以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。 步电机系统解决方案

加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。使用单片机或者PLC,都能够实现加减速控制。对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。通常,完成步进电机的加减速时间为300ms以上。如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以 步电机系统解决方案

步进电机的简单电路控制

课程设计说明书 课程设计名称:数字电路课程设计 课程设计题目:步进电机简单的控制电路 学院名称:南昌航空大学信息工程学院 专业:班级: 学号:姓名: 评分:教师: 2013 年 9 月 9 日 数字电路课程设计任务书 20 13-20 14 学年第 1 学期第 2 周- 4 周

注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

步进电机是一种原理为利用电子电路的电脉冲信号转变为角位移或线位移的感应电机。通过简单的数字电路来控制它的转速并可以利用数码管来计算其转动的圈数,便可以实现电机的正反向转动,并且在数码管上精确的显示出它转动的圈数,从而广泛应用于实际生活当中。其中涉及到计算机,数字电路,电机,机械,完成了简单的自动化控制流程,将所学知识应用于工程中,增加实践动手能力。 关键词:分频、时序控制、脉冲计数

前言 (1) 第一章设计内容及要求 (1) 第二章系统的组成及工作原理 (2) 第三章单元电路设计 (2) 3.1多谐振荡器 (2) 3.2 步进电机信号控制电路 (3) 3.3转速的测量及显示电路 (4) 第四章调试 (5) 4.1电路排板及制作 (5) 4.2电路的调试 (5) 第五章总结 (6) 附录1:设计原理图 (7) 附录2:PCB电路图 (8) 附录3: 元件清单 (9)

前言 步进电机最早出现于上世纪,源于资本主义的造船工业,是一种可以自由转动的电磁铁,其工作原理和如今的反应式电机差不多,是依靠磁导来产生电磁矩,从而实现转动。 到了80年代之后,微型计算机逐步的应用于工业与生活中,使得步进电机的控制更加的灵活多样,最主要的是利用分立元件或者小型的集成电路来控制,但是对元件的需求量很大,调试也很复杂,出现问题需要花大量的精力来调试,因此,通过计算机软件来控制步进电机是必然的趋势,以提高工作效率。 现在的步进电机主要是由数字电路组成,也是利用集成电路来控制电路,但是大大的提高了其精度,更好的满足工业发展的需要。目前用到最多的是混合式步进电机,并具有很好的发展前景。 步进电机按照工作原理可分为永磁式、磁阻式和永磁感应子式三种。 今后步进电机将会有以下四个方面的发展,为减小其占用的空间从而会往小型方向发展,以更加的适用于工业制造当中;为增加力矩,从而会将圆形改为方形,以提高其工作效率;为体现其优越的控制性能,从而会偏向于一体化设计,以实现电子自动化控制,更加灵活方便;为降低其成本,增加其性能,从而会向三相和五相的方向发展,以充分实现其优越性能。 步进电机以其显着的特点,在电子数字化时代将发挥重大作用,将广泛应用于数控车床、机器人、航空工业和电子领域中,可完成工作量大,任务复杂、精度高的制造业以及代替人类完成不利于身体健康的工业中,为生活带来更多的便利。 第一章设计内容及要求 基本要求:1、利用proteus软件设计步进电机的工作原理图,并进行仿真。 2、调试及实现。 (1)实现步进电机根据输入的脉冲旋转的相应圈数。 (2)可以实现复位,正反转控制,由4个LED代替4个线圈。 (3)实现步进电机的加速、减速功能。

基于单片机步进电机速度控制研究(正式版)

文件编号:TP-AR-L2541 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 基于单片机步进电机速 度控制研究(正式版)

基于单片机步进电机速度控制研究 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 本文对步进机一个全面的介绍,再基于单片机对 步进电机的控制。本文采用硬件控制系统,通过单片 机MC9S12XS128与光电编码器对步进电机进行速度的 控制。最后对步进电机的速度曲线进行研究。 步进电机又称为脉冲电动机或者阶跃电动 机,作为执行元件,是机电一体化的关键产品之一, 广泛应用于各种自动化控制系统之中,比如当今电子 钟表、工业机械手、包装机械和汽车制动元件的测试 中等。步进电机在未来应用前景会往更加小型化、从 圆形电动机往方形电动机和四相、五相往三相电动机

发展。而这便需要对步进电机的控制提出了更高的要求。 1.步进电机综合介绍 1.1.步进电机分类 步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。目前使用最为广泛的为反应式和混合式步进电机。 1.1.1.反应式步进电机 反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。一般为三相,可实现大扭矩的输出,步进角一般为1.5度。它的结构简单,成本低,但噪音大。

基于Proteus的步进电机加减速控制辅助设计方法

表4钎杆改进前后的数据对比 总结点数总单元数 最大应力值(MPa )最小应力值(MPa )最大位移值(mm ) 原始模型3346105225027.150.112986改进模型 3654 10940 549 5.910.096754 4.3其他改进方面 除有限元分析的机械性能有改善之外,改进后的模型在轻量化、经济性上也有些许进步。 原始模型耗费材料的体积为(1.0644054×107)mm 3 ,质量为76.5kg ,改进后耗费材料体积为(1.0066225×107)mm 3 ,质量为72.757kg ,分别减 少5.43%和4.89%,此外,由于去除了上缸套、中缸套、下缸套,减少了合金钢原材料的使用并降低了加工成本,而增加体积较多的上缸体 所使用材料是经济性较好的球墨铸铁,可见,在制造成本上改进后的模型也取得了较好的效果。 5结论 在各项技术指标和基本工作原理不变的前提下,对液压破 碎锤零部件进行改进设计,并利用Pro/E 软件建立其机械本体和控制元件的三维模型,利用ANSYS 软件对液压破碎锤主要易损部件—冲击活塞、钎杆进行应力分析。通过对YC70液压破碎锤的建模和分析,改进后的模型在机械性能、经济性、轻量化等方面都取得了满意的结果,达到了改进的目的。 参考文献 [1]王雪,龚进,邹湘伏.液压冲击器的研究状况和发展趋势[J ].凿岩机械 气动工具,2006(3):19-23. [2]许同乐,夏明堂.液压破碎锤的发展与研究状况[J ].机械工程师,2005 (6):20-21.[3]范思源.液压破碎锤计算机仿真与实验研究[D ]:[硕士学位论文].上海:上海交通大学,2008. [4]杨国平.全液压独立无级调频调能液压冲击器的研究[D ]:[博士学位 论文].长沙:中南大学,2001. [5]谢良喜,陶平.液压破碎锤工作状态下活塞的力学模型与应力分析[J ].工程机械,2007(38):44-46. [6]博弈工作室.ANSYS9.0经典产品基础教程与实例详解[M ].北京:中国 水利水电出版社,2006.基于Proteus 的步进电机加减速控制辅助设计方法* 张利君张吉堂 (中北大学机械工程与自动化学院,太原030051 )Aided design methods for accelerating and decelerating control of step motor based on proteus ZHANG Li-jun ,ZHANG Ji-tang (School of Mechanical Engineering &Automatization ,North University of China ,Taiyuan 030051,China ) 文章编号:1001-3997(2011)05-0043-03 【摘要】研究利用Proteus 中的各种微控制器仿真模块实现步进电机加减速控制算法仿真,并且可以 在Proteus 中完成步进电机控制系统的硬件电路设计, 同时再结合软件程序设计进行仿真,最后通过Proteus 中的虚拟仪器记录分析仿真数据,从而实现了为设计步进电机加减速控制系统提供了一条快速、高效且低成本的设计途径。举例采用单片机AT89C52作为微控制器,通过高级仿真图表导出仿真数据,并利用Matlab 处理这些数据得到了预想的加减速曲线,证明方法在步进电机的加减速控制系统设计中可行性。 关键词:Proteus ;步进电机;加减速;仿真 【Abstract 】It studies the algorithm simulation for stepper motor accelerating and decelerating control by applying various micro-controller simulation module in Proteus software.It could complete the hardware cir -cuit design for control system of the step motor ,and simulate the design program with the software in Proteus . Thus ,the simulation data is recorded and analyzed through virtual instruments in Proteus so as to Provide a fast ,efficient and low-cost design approach for stepper motor accelerating and decelerating control system.For example ,it takes the single-chip computer AT89C52as the micro-controller which shall induct the simulation data through the advanced simulation chart , then the acceleration and deceleration curves expected shall be obtained after processing these data through the Matlab ,which shows us it is feasible to design the control system of the step motor in this method. Key words :Proteus ;Stepper motor ;Acceleration and deceleration ;Simulation 中图分类号:TH16 文献标识码:A *来稿日期:2010-07-04*基金项目:山西省科技攻关项目(20100321056-02) 1引言 步进电机是一种将电脉冲转换为机械角位移的机电执行元件,它的角位移量和输入脉冲的个数严格成正比,在时间上与输 入脉冲同步,非常适合于开环控制系统中,而且价格低廉,因此在工程中得到了广泛的应用。但不同的工程应用场合,其控制要求不同,需要的控制硬件和控制软件也不同,怎样快速地设计出符 ********************************************* Machinery Design &Manufacture 机械设计与制造 第5期 2011年5月 43

步进电机精确驱动

步进电机精确驱动 步进电机的精确控制 步进电机的基本步距角:对F相的步进电机有F个绕组(就是定子中包含的绕组个数),它们被均匀的镶嵌在定子上。步进电机各相轮流接入整步电流后所产生的步距角叫做该步进电机的基本步距角。也就是说相序产生一轮后步进电机并不会转1转。 那么转子转一圈的步数(也就是需要几组时序)是多少呢? 公式A=360/M(A为基本步距角,M为步数)。 根据公式,基本步距角是不能随意取值的。我们往往希望步进电机转一圈为100 步或其倍数,这在2/4 相和 5 相步进电机容易做到,但对于三相步进电机其基本步距角不可能做到转一圈为100 步或200 步,但可以是300 步。有些厂家所标的三相步进电机的步距角为1.2 度或 3 度,相当每圈300 步或120 步,是 3 的整数倍,这种标注很正常。 什么是细分呢?所谓细分,就是驱动器在接到控制发来的每一个脉冲时,只给电机发几分之一个脉冲(用“脉冲”这个词不准确,实际是正弦波一个周期的几分之一)。 我们用297芯片写过步进电机的驱动,其中CW/CWW引脚还记得吗?这个引脚有什么作用呢,当我将他设置为1时,我每输入一个脉冲,其输出产生一组相序,也就是1个步距。同理,当其设置为0时,它只产生一半的相序。 如何找出步进电机的基本步距呢,当然我是看说明书的(哈哈)。如果没有说明书的话可以试试如下的方法: ①用数字万用表找到公共线。其他引线与公共线之间的电阻测量值都相同。 将此线连接到电池的V+。5V或6V就足够测试用了。 ②胶带粘贴到步进电机的输出铀上,并使它垂直于轴端伸出成为一个标志。此标志的作用在于判断电机是否转动。 ③任意挑出一条引线称之为相1。若将此线接地,则电机输出轴将做轻微的转动。现在步进电机被锁定在相1的位置上。 ④取另一根引线并将其接地,仔细观察输出轴上的胶带。如果输出轴向右轻微地旋转,那么此根引线是相2。⑤取另一根线并将其接地,仔细观察输出轴上的胶带。如果输出轴向左轻微地旋转,那么此根引线是相4。如图4所示。 ⑥再取另一根线并将其接地,仔细观察输出轴上胶带的运动状态。如果输出轴不旋转,那么此根引线就是相3。 确定相位之后,找一个参照相,然后挨个给一个脉冲,看看走了多少度。 四相六根和八根线的,如何使用两相四线驱动器?问题解决:1 和2为一相,分别接A和/A;3和4为一相,分别接B和/B。不过在你有了一个步进电机驱动芯片后完全不用考虑这些小问题,只需一个命令搞定。 HF=0; IN1=0; IN2=1;

步进电机控制方法

第四节 步进电机的控制与驱动 步进电机的控制与驱动流程如图4-11所示。主要包括脉冲信号发生器、环形脉冲分配器和功率驱动电路三大部分。 步进脉冲 方向电平 图4-11 步进电机的控制驱动流程 二、步进电机的脉冲分配 环形分配器是步进电机驱动系统中的一个重要组成部分,环形分配器通常分为硬环分和软环分两种。硬环分由数字逻辑电路构成,一般放在驱动器的内部,硬环分的优点是分配脉冲速度快,不占用CPU的时间,缺点是不易实现变拍驱动,增加的硬件电路降低了驱动器的可靠性;软环分由控制系统用软件编程来实现,易于实现变拍驱动,节省了硬件电路,提高了系统的可靠性。 1.采用硬环分时的脉冲分配 采用硬环分时,步进电机的通电节拍由硬件电路来决定,编制软件时可以不考虑。控制器与硬环分电路的连接只需两根信号线:一根方向线,一根脉冲线(或者一根正转脉冲线,一根反转脉冲线)。假定控制器为AT89S52单片机,晶振频率为12MHz,如图4-18:P1.0输出方向信号,P1.1输出脉冲信号。 则控制电机走步的程序如下: (1)电机正转100步 MOV 0FH,#100D ;准备走100步 CONT1: SETB P1.0 ;正转时P1.0=1 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿 MOV 0EH,#4EH ;两脉冲之间延时20000μs(决定电机的转速) MOV 0DH,#20H ;20000的HEX码为4E20 CALL DELAY ;调用延时子程序 DJNZ 0FH,CONT1 ;循环次数减1后,若不为0则继续,循环100次 RET (2)电机反转100步 MOV 0FH,#100D ;准备走100步 CONT2: CLR P1.0 ;反转时P1.0=0 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿

利用单片机实现对步进电机的简单控制

龙源期刊网 https://www.doczj.com/doc/8a13143887.html, 利用单片机实现对步进电机的简单控制 作者:吴云 来源:《计算机光盘软件与应用》2013年第08期 摘要:本文主要介绍了利用LY-51SV2.3开发板实现对步进电机的简单控制,以实现步进电机的正反转、加减速以及开始停止等功能。通过对步进电机的控制,使人们对开发板的应用以及如何编写C语言程序有更深层次的理解。通过本文的介绍,也为下一步更好的利用开发板控制步进电机打下一个基础。 关键词:单片机;步进电机;语言 中图分类号:TP368.1 目前,单片机应用得到了非常广泛的应用,几乎涉及到了社会生活中的各个领域,对于与计算机相关专业的单片机的知识有一个简单的学习了解是必要的,而对于初学者或者教学人员利用开发板进行学习是有效的途径。开发板是学习和实践的最好产品,因为有配套测试好的软件和硬件,这样用户就不必操心组建开发系统的过程。只需要专心研究程序。开发板只不过是个工具,利用这个工具,可以使我们更快的了解并掌握需要的知识。 1设计思路 本次单片机使用STC89C51,通过开发板的5个按键K1-K5分别实现对步进电机的加减速、正反转与停止的控制,在实现正反转的过程中分别由Led指示灯进行指示,并在数码管上显示当前速度的大小值,其最大值不超过18,在整个按键过程中是由键盘扫描函数来控制, 速度的大小值是由显示函数在数码管上显示出来。 2端口、函数与变量定义 #defineKeyPortP3//由P3口连接控制按钮 #defineDataPortP0//定义数据端口程序中遇到DataPort则用P0替换 sbitLATCH1=P2^2;//定义锁存使能端口段锁存 sbitLATCH2=P2^3;//位锁存 sbitA1=P1^0;//定义步进电机连接端口 sbitB1=P1^1;sbitC1=P1^2;sbitD1=P1^3;sbitled=P1^5;sbitled1=P1^7;

步进电机升降速曲线控制系统设计及其应用_王勇

控制工程Control Engineering of China Sep .2008Vol .15,No .5 2008年9月第15卷第5期文章编号:1671-7848(2008)05-0576-04 收稿日期:2007-05-31; 收修定稿日期:2007-08-05 基金项目:国家自然科学基金资助项目(60534010) 作者简介:王 勇(1977-),男,辽宁大连人,博士,主要研究方向为电动机伺服控制等;王 伟(1955-),男,(满族),教授,博士生 导师。 步进电机升降速曲线控制系统设计及其应用 王 勇,王 伟,杨文涛 (大连理工大学信息与控制研究中心,辽宁大连 116023) 摘 要:使用PLC 模块搭建步进电机控制系统时,系统灵活性差、造价高。针对此问题,提出基于AR M7微处理器的步进电机的嵌入式控制系统,并进行了两种步进电机升降速曲线的 设计与实现,给出了这两种曲线在工业定长嵌入式控制系统中的应用对比。实际运行表明,采用提出的升降速曲线策略的步进电机控制系统在未增加成本的情况下,有效抑制了失步和过冲现象,避免了机械柔性冲击,延长了系统寿命,提高了生产效率。关 键 词:步进电机;升降速曲线;嵌入式系统;AR M7微处理器中图分类号:TP 202 文献标识码:A Control System Design of Acceleration and Deceleration Curves of Stepping Motor and Its Application W ANG Yong ,W A NG W ei ,YA NG Wen -tao (Res earch Center of Information and Control ,Dalian Univers it y of Technol ogy ,Dalian 116023,China ) A bstract :The step motor is a kind of electric actuator that transfers electrical pulses into angular displacement .It is wildl y used in all kinds of open -loop control s y stems because of its no cumulative error and easy control .To the problem that PLC used in the control of step motor has disadvantages of high price and being unhandy in the system structure ,an ARM7processor based embedded control s y stem is proposed for step motor and two kinds of acceleration and deceleration curves are designed and implemented .An application comparison is given in the industrial constant length control .The results show that the proposed methods improve the out -of -step and overshoot performance of step motor s ystem and prolong the system life without more cost . Key words :step motor ;acceleration deceleration curve ;embedded system ;ARM7processor 1 引 言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。通常的步进电机控制系统设计是使用PLC 模块搭建系统。这种设计方案简单,硬件可选范围广,并且软件编程容易,直接通过梯形图编程即可完成相应功能。但PLC 系统造价高,系统灵活性差,针对某个具体应用场合,很难选择出一套完全与应用吻合的系统,往往造成系统资源浪费。并且在某些特殊应用的情况下,有些技术细节很难实现。 针对上述问题,本文提出基于AR M7微处理器的步进电机的嵌入式控制系统。在简要介绍使用ARM7对步进电机实现控制的基础上,进行了两种 步进电机升降速曲线,即分段线性加速[1] 和S 型曲 线加速[2] 的设计与实现,并且给出这两种曲线在工业定长系统中的应用对比。 2 升降速曲线控制系统结构 升降速曲线控制系统结构,如图1所示。 图1 升降速曲线控制系统结构 Fig .1 Control system frame for acceleration deceleration curve ARM 系列微处理器是32位高性能处理器的主要产品之一。其他的类似产品主要有PowerPC ,68K ,MIPS 等系列。而这其中AR M 控制器则是凭 DOI :10.14107/j .cn ki .kzgc .2008.05.003

s7-200PLC对步进电机的快速精确定位控制

正文字体大小:大中小 PLC对步进电机的快速精确定位控制 (2012-09-29 21:01:43) 转载▼ 标签: 分类:PLC plc编程 plc培训 称重传感器 PLC对步进电机的快速精确定位控制 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号时就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),其旋转以固定的角度运行。可以通过控制脉冲个数来控制角位移量以达到准确定位的目的;同时也可以通过控制脉冲频率来控制电机转动的速度和加速度而达到

调速的目的。步进电机作为一种控制用的特种电机,因其没有积累误差(精度为100%)而广泛应用于各种开环控制。 ? 1 定位原理及方案 1.1 步进电机加减速控制原理?步进电机驱动执行机构从一个位置向另一个位置移动时,要经历升速、恒速和减速过程。当步进电机的运行频率低于其本身起动频率时,可以用运行频率直接起动并以此频率运行,需要停止时,可从运行频率直接降到零速。当步进电机运行频率fb>fa(有载起动时的起动频率)时,若直接用fb频率起动会造成步进电机失步甚至堵转。同样在fb频率下突然停止时,由于惯性作用,步进电机会发生过冲,影响定位精度。如果非常缓慢的升降速,步进电机虽然不会产生失步和过冲现象,但影响了执行机构的工作效率。所以对步进电机加减速要保证在不失步和过冲前提下,用最快的速度(或最短的时间)移动到指定位置。 步进电机常用的升降频控制方法有2种:直线升降频和指数曲线升降频指数曲线法具有较强的跟踪能力,但当速度变化较大时平衡性差。直线法平稳性好,适用于速度变化较大的快速定位方式。以恒定的加速度升降,规律简练,用软件实现比较简单,本文即采用此方法。 1.2 定位方案 要保证系统的定位精度,脉冲当量即步进电机转一个步距角所移动的距离不能太大,而且步进电机的升降速要缓慢,以防止产生失步或过冲现象。但这两个因素合在一起带来了一个突出问题:定位时间太长,影响执行机构的工作效率。因此要获得高的定位速度,同时又要保证定位精度,可以把整个定位过程划分为两个阶段:粗定位阶段和精定位阶段。粗定位阶段,采用较大的脉冲当量,如0.1mm/步或1mm/步,甚至更高。精定位阶段,为了保证定位精度,换用较小的脉冲当量,如0.01mm/步。虽然脉冲当量变小,但由于精定位行程很短(可定为全行程的五十分之一左右),并不会影响到定位速度。为了实现此目的,机械方面可通过采用不同变速机构实现。 工业机床控制在工业自动化控制中占有重要位置,定位钻孔是常用工步。设刀具或工作台欲从A点移至C点,已知AC=200mm,把AC划分为AB与BC两段,AB=196mm,BC=4mm,AB段为粗定位行程,采用0.1mm/步的脉冲当量依据直线升降频规律快速移动,BC段为精定位行程,采用0.01mm/步的脉冲当量,以B

步进电机的控制1

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 自动控制原理课程设计报告 设计题目: 单位(二级学院):自动化学院 学生姓名: 专业:自动化 班级: 学号: 指导教师: 设计时间:2010 年 6 月 重庆邮电大学自动化学院制

目录 目录 (2) 一、设计题目 (3) 1题目内容 (3) 2实现目标 (3) 3设计要求 (3) 4 设计安排 (3) 二、设计报告正文 (3) 1步进电机的概论 (4) 2步进电机的驱动控制系统 (6) 3系统设计思路 (10) 4步进电机的控制电路 (13) 三、设计总结 (15) 四、参考文献 (16)

一、设计题目 1题目内容 基于51单片机的步进电机调速设计 2实现目标 1)具有与PC机串口通信的功能; 2)具有与数码管显示或者LED指示灯显示状态(数码管显示的速度并不代表电 机实际速度,只是一个感性的认识) 3设计要求 1)绘制原理图,PCB; 2)完成单片机所有代码编写; 3)设计PC机简易显示界面; 4设计安排 三个人一组,为期一周,小组成员合作,共同完成设计要求。 二、设计报告正文 摘要:步进电机是一种将电脉冲转换成相应角位移或者线位移的电磁机械装置。在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。它具有快速启停能力,在电机的负荷不超过它能提供的动态转矩时,可以通过输入脉冲来控制它在一瞬间的启动或者停止。由于其精确性以及其良好的性能在实际当中得到了广泛的应用。 本文首先介绍了步进电机的分类、技术指标、步进电机的工作原理以及步进电机

单片机汇编语言步进电机转速控制系统

大连理工大学本科设计报告题目:步进电机转速控制系统设计 课程名称:单片机综合设计 学院(系):电子信息与电气工程学部 专业: 班级: 学号: 学生姓名: 成绩: 2013 年7 月20 日

题目:步进电机转速控制系统设计 1 设计要求 1)利用ZLG7290的键盘控制直流电机(或步进电机的转速、转向); 2)也可以利用ADC模块(与电位器配合),利用电位器控制转速; 3)利用ZLG7290的8位LED数码管显示电机转向、转速参数显示。 2 设计分析及系统方案设计 实验要求使用步进电机作为被控制对象,由ZLG7290做人机对话平台,利用单片机的P1(8位)和P3(部分口线)构造系统。实验最终实现功能、设计思路以及方案设计如以下几个小节所述。 2.1 系统设计实现功能 根据设计要求、现有设备以及知识储备,完成功能如下: ①由按键S1~S8实现转速切换,其中S1~S4正转,S5~S8反转 ②按键S16作为停止键,按下S10后步进电机停止转动,再按S1~S16步进电机按 照按键对应转速以及转向转动 ③按键S10作为复位键,当按下S10后,无论当前处于何种状态,系统恢复至初 始态 ④8为LED数码管显示当前步进电机转速(speed=0/1 1~4),转速前0表示正转, 1表示反转 ⑤若按下停止键,数码管显示当前转速;若按下复位键,数码管显示初始态speed=00 2.2 设计思路 本次的设计是LED显示与步进电机相结合以及若干功能键的组合的一种设计。根据之前学习的按键中断显示实验和定时器实验,使用INT0和INT1,INT0作为按键中断,INT1作为定时器。在主程序中实现LED初始显示、定时器计时初始、按键中断初始。INT0中断调用中断服务子程序实现对按键键值的判断,并根据相应的按键值实现对应步进电机的变化,并显示该按键对应的转速。INT1定时器中断根据INT0的按键键值,对定时器设定相应的初值,实现步进电机按规定的转速转动。对于按键停止,则是利用中断优先级,当INT0的中断优先级高时,系统进入中断,此时INT1停止计时,也就实现了步进电机的停止,当改变定时器与按键中断的优先级时,即把INT0设为低优先级,INT1设为高优先级,步进电机重新开始转动。此时添加一个对INT0位地址的查询,若有按键即正/反转的4档转速所对应的按键,步进电机开始重新转动。对于复位功能,则同样是利用按键键值的判断,在对应键值下控制电机初始化。

相关主题
文本预览
相关文档 最新文档