当前位置:文档之家› 磁悬浮轴承的技术进展及发展趋势

磁悬浮轴承的技术进展及发展趋势

磁悬浮轴承的技术进展及发展趋势
磁悬浮轴承的技术进展及发展趋势

磁悬浮轴承的发展现状及应用研究

一、磁悬浮技术概述

磁悬浮,亦作磁浮,是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”,从而使物件不受引力束缚自由浮动,具有无接触、无摩擦、低能耗、低噪声、无需润滑、维护费用低、使用寿命长、高精度以及自动化程度高等优点。磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学等为一体的机电一体化综合性较强的高新技术,其研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统,此后,德国、日本、美国、加拿大、法国、英国等发达国家为提高交通运输能力以适应经济发展需要加快筹划磁悬浮运输系统的开发。随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。至2012年世界上已有三种类型的磁悬浮,一是以德国为代表的常导电式磁悬浮,二是以日本为代表的超导电动磁悬浮,这两种磁悬

浮都需要用电力来产生磁悬浮动力。第三种是中国的永磁悬浮,它利用特殊的永磁材料,不需要任何其他动力支持。

磁悬浮技术应用围及其广泛,涉及工业、民用及军事各个领域,磁悬浮产品涵盖高速精密电主轴、磁悬浮飞轮电池、磁悬浮人工心脏泵,磁悬浮火车、卫星、远程导弹的制导与姿态控制,军事通讯用的UPS,航空发动机的高速转子,潜艇的振动控制与传动噪音,坦克、装甲车的动力储能、磁悬浮冶炼、搬运技术等。当前,国外对磁悬浮技术的研究热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。

二、磁悬浮轴承及其类型

磁悬浮轴承也称电磁轴承或磁力轴承,是利用磁场力将轴承无机械摩擦、无润滑的、悬浮在空间的一种新型高性能轴承,其作为一种新颖的支撑部件,是继油润滑、气润滑之后轴承行业的又一次革命性变化, 被誉为21世纪最有发展前景的高新技术之一。

磁悬浮轴承的原理是磁感应线与磁浮线成垂直,轴芯与磁浮线平行,转子的重量能够固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,固定在特定运转轨道上。

按照磁力的提供方式,磁悬浮轴承可分为三大类:

(一)主动磁浮轴承(Active Magnetic Bearing,简称AMB),轴承磁场是可控的,通过传感器检测转轴的位置,由控制系统对电磁铁电流进行主动控制来实现转轴的稳定悬浮。

(二)被动磁浮轴承(Passive Magnetic Bearing,简称PMB),轴承部分自由度由超导磁体或永磁体来实现被动悬浮支承。

(三)混合磁浮轴承(Hybrid Magnetic Bearing,简称HMB),轴承的机械结构中既包含了可控的电磁铁,又包含了提供偏置磁场的超导磁体或永磁体。

同时,按磁场力的来源分类,可以分为永久磁铁型、电磁铁和永久磁铁混合型以及纯电磁铁型三种;按受控的自由度数可以分为单自由度型、二自由度型和五自由度型;按利用的磁场力类型可分为吸力型和斥力型。

三、国外研究现状

(一)国外研究现状

利用磁力使物体处于无接触悬浮状态的设想由来已久,早在1842年,Earnshow就证明:单靠永久磁体是不能将一个铁磁体在所有6个自由度上都保持在自由稳定的悬浮状态的。然而,真正意义的磁悬浮研究是从本世纪初利用电

磁相吸原理的磁悬浮车辆研究开始的。

目前在国外磁悬浮轴承研究领域比较活跃的科研院校有瑞士联邦理工学院、美国的维吉尼亚大学和马里兰大学、英国的Sussex大学以及日本东京大学和千叶大学等。经过近30年的发展,目前国外磁悬浮轴承已经开始进入工业应用阶段。不仅将磁悬浮轴承应用于航天部门、核工业部门,而且已迅速应用到军事部门和基础工业部门的数百种不同的旋转或往复运动机械上,如卫星惯性飞轮、能量储存飞轮、姿态控制飞轮、火箭引擎透平泵、高速磨床、高速铣车、高速车床、高速电动机、离心机、透平压缩机和真空泵等。

(二)国研究现状

我国在磁悬浮轴承领域的研究工作始于20世纪70年代,起步较晚,目前主要处于实验室研究阶段,产业化方面刚刚起步。以自主开发等方式在磁悬浮轴承方面做过大量研究工作的科研单位主要有清华大学、交通大学、大学、工业大学、大学、大学、国防科技大学、大学、航空航天大学、理工大学等。

清华大学作为我国最早从事磁悬浮轴承研究的单位之一。2004年实现了数控高速磁轴承转速近50000r/min,并且自行研制的磁悬浮轴承已经被应用在WMW高温气冷堆

氨气透平发电项目上。2008年,清华大学与飞旋公司合作研发的基于交叉反馈控制的FS450型分子泵磁悬浮轴承是我国第一个成功应用于磁悬浮轴承技术的产品,这一技术的突破了国外的长期垄断,是继法国、德国、美国、加拿大等少数发达国家之后,我国成为拥有自主知识产权的磁悬浮轴承制造技术的国家。

航空航天大学是目前国磁悬浮轴承研究领域中较活跃的单位之一,也是国电磁悬浮领域中研究成果较多的高校。2009年,研制生产的国第一台自主知识产权的磁悬浮鼓风机,额定转速达到40000r/min,额定功率70kW ,在污水处理厂成功连续运行,并于2010投入量产,其产品不仅可节能15%、降耗80%以上,而且价格也远远低于国外同类产品。

大学磁悬浮轴承工程技术研究中心与中国医学科学院阜外心血管病医院合作, 2009年成功研制出国首台轴流式可控磁悬浮人工心脏泵样机,解决了磁悬浮人工心脏泵开发研究中的基础性难题。

四、磁悬浮轴承的工作原理及技术特点

(一)工作原理

磁悬浮轴承工作的基本原理: 通过位置传感器检测转子的轴偏差信号, 将该信号送入控制器, 通过功率放大器控制

电磁铁中的电流, 从而产生电磁力的变化使转子悬浮于规定的位置。

磁悬浮轴承是一个复杂的机电耦合系统。若要求转子能稳定的悬浮在规定的位置上,就需对它的五个自由度进行控制,这就要求有两个径向轴承和一个轴向轴承,构成一个完整的磁悬浮轴承系统。

磁悬浮轴承由转子、传感器、控制器和执行器四部分组成,它们之间没有机械式的相互接触。电机的定子固定在壳体上,转子则悬浮着旋转。转子悬浮所必须的力由磁场提供。在这种磁悬浮的轴承支撑中,支撑转子的磁悬浮力由电流经电磁调解来控制,使转子可以悬浮并保持在所希望的位置处。通过这种电磁悬浮的轴承支撑使得转子的震动大大减少,甚至能平衡、补偿转子的动平衡,从而真正实现电泵无震动旋转。磁悬浮系统关键组件为:

1.机械系统。机械系统由轴、轴承的定转子、电机的定转子和机座组成。径向轴承电磁铁(定子)采用导磁性能优良的硅钢片制作,轴向推力轴承以及推力盘部分用电工纯铁制做。轴承电磁铁及转子材料除了要有良好的磁性能外,还应足一定的机械性能。

2.控制器。控制器是整个磁悬浮轴承的核心,其性能决

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

磁悬浮轴承

磁悬浮轴承 摘要 一种低能耗永磁偏置悬浮轴承系统,属磁悬浮轴承。包括定子支架1、外磁环2、内磁环5、轴套6、青铜瓦8、青铜瓦19,调整螺杆9、软铁10、轴承室11、端盖22,这种永磁偏置轴承结构简单,承载能力强,刚度大,悬浮力可调,安全可靠,对外磁干扰小,在旋转机械领域拥有广泛的应用前景。

权利要求书 1.一种径向支撑的永磁悬浮轴承装置,用于支撑转子轴7,其特征在于, 主要包括四自由度永磁偏置装置,单自由度磁阻轴承装置,永磁悬浮力调节装置,轴承保护装置以及磁屏蔽装置。包括定子支架1、外磁环2、内磁环5、轴套6、耐磨套8、耐磨套19、调整螺杆9、软铁10、轴承室11、端盖22。其中定子支架1嵌套于轴承室内,用于安装外磁环2以及可滑动软铁10,轴套6固定在转子轴7上,内磁环5安装于轴套6的滑道中,耐磨套19和耐磨套8分别套在轴套6的前后端,端盖22装在轴承室11的前端。 2.按权利要求1所述的四自由度永磁偏置装置,包括外磁环2、内磁环 5、定子支架1,其主要特征为:两磁环沿圆周的方向同心放置,外磁 环2与内磁环5充磁方向相反,即两磁环之间为斥力作用。 3.按权利要求2所述的外磁环2,其特征为:由若干块瓦片型磁铁组成, 磁铁固定在外支架上,不能移动,充磁方向为瓦片厚度方向,磁环下方产生的总磁场强度大于上方产生的总磁场强度。 4.按权利要求2所述的内磁环5,其特征为:由径向充磁的环形磁铁或 由大小形状完全相同的瓦片型磁铁拼合而成的圆环组成,如为瓦片型磁铁拼合而成,充磁方向为瓦片厚度方向,磁环产生的磁密在圆周上均匀分布。 5.按权利要求2所述的定子支架1,其特征为:材料为导磁性材料,结 构与异步电机定子铁心类似,为齿槽结构,支架上半部分齿长,与外磁环2厚度相同,下半部分齿短,依靠上齿对转子磁环的磁吸力来增大轴承系统的悬浮力。

关于磁悬浮电机的应用现状与发展趋势

关于磁悬浮电机的应用现状与发展趋势

————————————————————————————————作者:————————————————————————————————日期:

关于磁悬浮电机的应用现状与发展趋势 李宇佳 (北京交通大学,北京,100000) 摘要:本文概述了磁悬浮电机的原理及优点,重点介绍了磁悬浮风力发电机的结构和工作原理。并简述了磁悬浮电机当前的应用领域。最后本文展望了磁悬浮电机未来的发展方向。 关键词:磁悬浮电机;风力发电机 Developing Trends of Magnetically Levitated Electric Machines and Their Applications Li Yujia (Beijingjiaotong University,Beijing,100000) Abstract:In this paper, the principle and advantages of the agnetically Levitated Electric Machines are summarized. The structure and working principle of the magnetic levitation wind generator are introduced. The current application field of agnetically Levitated Electric Machines is briefly introduced. Finally, the future development direction of tagnetically Levitated Electric Machines is prospected. Key word:lagnetically Levitated Electric;Machines wind power generator 1 引言 传统的a电机是由定子和动子组成,定子与动子之间通过机械轴承联接或存在机 械接触,因此动子运动过程中存在机械摩擦。机械摩擦不仅增加动子的摩擦阻力,使运动部件磨损,产生机械振动和噪声,而且会造成部件发热,使润滑剂性能变差,严重的会使电机气隙不均匀,绕组发热,温升增大,从而降低电机效能,最终缩短电机使用寿命。磁悬浮电机是利用定子和动子励磁磁场之间“同性相斥,异性相吸”的原理使动子悬浮起来,同时产生推进力驱使动子在悬浮状态下运动。因此,定子与动子之间不存在任何机械接触,可以产生较高的加速度和减速度,机械磨损小,机械与电气保护容易,维护、检修和更换方便,适用于恶劣环境、极其洁净无污染环境和特殊需要的领域。磁悬浮电机的研究越来越受到科技工作者的 重视,其发展前景令人鼓舞。 2 磁悬浮轴承电机 为了克服传统旋转电机存在机械轴承和机械摩擦的不足,目前已研制出各种无接触式磁轴承,用来取代机械轴承。典型的磁悬浮轴承如径向磁轴承、径向推力磁轴承和轴向磁悬浮轴承,以及径向自由度可控的电磁悬浮轴承。 2.1 径向磁悬浮轴承 径向磁悬浮轴承是由两个径向磁化同轴空心圆柱组成,磁化方向相反。当两个磁化圆柱轴向重合、径向同心时,圆柱所受径向磁场推力为零。而当两个磁化圆柱发生轴线偏移时,由于圆柱之间气隙磁场极性相同产生不平衡排斥力使圆柱轴线趋于一致。这种径向磁轴承虽然能做到径向自动稳定,但磁轴承轴向不稳定,而且当轴线偏转时,角向稳定性也不好,因此用途有限。 2.2 径向推力磁悬浮轴承 径向推力磁悬浮轴承通常采用两个轴向磁化,而磁化方向相反(也可采用一个轴向磁化,而另一个径向磁化的同轴空心圆柱,但轴向错开一定位置,不仅能保持径向稳定性,而且提高了轴向和角向稳定性。 2.3 电磁悬浮轴承 这种多自由度电磁力控制的磁悬浮轴

磁悬浮轴承简介

磁力轴承简介 磁悬浮轴承又称磁力轴承,是目前世界上公认的高新技术之一。陆地上广泛采用的是主动控制磁悬浮轴承(简称主动磁轴承-AMB),它是利用可控磁场力提供无接触支承、使转子稳定悬浮于空间且其动力学性能可由控制系统调节的一种新型高性能轴承,是一种典型的机电一体化产品。其技术涉及到机械学、电磁学、电子学、材料学、转子动力学、控制理论和计算机科学等。由于磁力轴承具有无接触、无磨损、高速度、高精度、无需润滑和密封等一系列优良品质(能耗是传统机械轴承的5-20%,是空气静压轴承的10-20%;若用于机床,其切除量可提高3-6倍,进给速度提高5-10倍,切屑力降低30%),是本世纪最有发展前途的主导轴承之一。 一、发展历史简述 1972年,法国最早将磁力轴承用于通讯卫星的导向飞轮支承上。美国于1983年在航天飞机的实验室真空泵上采用了磁力轴承。1986年日本在H-1火箭进行的磁浮飞轮空间实验上获得了成功应用。 民用第一个产品是1983年,第五届欧洲机床展上,S2M公司展出了磁悬浮电主轴部件。 二、主要性能参数 目前,磁力轴承可达的技术指标范围至少为: 1)转速:(0~8)×105 r/min

2)直径14~600 mm 3)单个轴承承载力:(0.3~5)×104 N 4)使用温度范围:-253~450 °C 三、应用范围 根据国际上发表的文献统计,磁力轴承可推广应用的领域如下表(此外还可用于飞轮储能、减震器、尖端武器等): 四、应用图解 典型的五自由度磁轴承-转子系统工作原理及其应用参见下页附图。

五、国内发展及应用现状 国内磁力轴承的发展及应用,整体还停留在实验室研究阶段,工业应用很少,水平要落后世界先进水平10-20年。但在某些方面的研究已经接近甚至达到世界先进水平。 国内在磁力轴承研究具有代表性的机构有清华大学和浙江大学(主要致力于磁轴承高频电主轴和阻尼器的研究)、上海交大和上海微电机研究所(惯性器件和仪器)、西安交大(磁力轴承力学特性研究)、哈工大和广州机床研究所(卫星姿态控制飞轮和机床主轴)等数十家。 六、磁力轴承产品图 可购买《磁力轴承研究进展》

关于磁悬浮电机的应用现状与发展趋势

关于磁悬浮电机的应用现状与发展趋势 李宇佳 (北京交通大学,北京,100000) 摘要:本文概述了磁悬浮电机的原理及优点,重点介绍了磁悬浮风力发电机的结构和工作原理。并简述了磁悬浮电机当前的应用领域。最后本文展望了磁悬浮电机未来的发展方向。 关键词:磁悬浮电机;风力发电机 Developing Trends of Magnetically Levitated Electric Machines and Their Applications Li Yujia (Beijingjiaotong University,Beijing,100000) Abstract:In this paper, the principle and advantages of the agnetically Levitated Electric Machines are summarized. The structure and working principle of the magnetic levitation wind generator are introduced. The current application field of agnetically Levitated Electric Machines is briefly introduced. Finally, the future development direction of tagnetically Levitated Electric Machines is prospected. Key word:lagnetically Levitated Electric;Machines wind power generator 1 引言 传统的a电机是由定子和动子组成,定 子与动子之间通过机械轴承联接或存在机 械接触,因此动子运动过程中存在机械摩擦。机械摩擦不仅增加动子的摩擦阻力,使运动部件磨损,产生机械振动和噪声,而且会造成部件发热,使润滑剂性能变差,严重的会使电机气隙不均匀,绕组发热,温升增大,从而降低电机效能,最终缩短电机使用寿命。磁悬浮电机是利用定子和动子励磁磁场之 间“同性相斥,异性相吸”的原理使动子悬浮起来,同时产生推进力驱使动子在悬浮状态下运动。因此,定子与动子之间不存在任何机械接触,可以产生较高的加速度和减速度,机械磨损小,机械与电气保护容易,维护、检修和更换方便,适用于恶劣环境、极其洁净无污染环境和特殊需要的领域。磁悬浮电机的研究越来越受到科技工作者的重视,其发展前景令人鼓舞。 2 磁悬浮轴承电机 为了克服传统旋转电机存在机械轴承和机械摩擦的不足,目前已研制出各种无接触式磁轴承,用来取代机械轴承。典型的磁悬浮轴承如径向磁轴承、径向推力磁轴承和轴向磁悬浮轴承,以及径向自由度可控的电磁悬浮轴承。 2.1 径向磁悬浮轴承 径向磁悬浮轴承是由两个径向磁化同 轴空心圆柱组成,磁化方向相反。当两个磁化圆柱轴向重合、径向同心时,圆柱所受径向磁场推力为零。而当两个磁化圆柱发生轴线偏移时,由于圆柱之间气隙磁场极性相同产生不平衡排斥力使圆柱轴线趋于一致。这种径向磁轴承虽然能做到径向自动稳定,但磁轴承轴向不稳定,而且当轴线偏转时,角向稳定性也不好,因此用途有限。 2.2 径向推力磁悬浮轴承 径向推力磁悬浮轴承通常采用两个轴 向磁化,而磁化方向相反(也可采用一个轴 向磁化,而另一个径向磁化的同轴空心圆柱,但轴向错开一定位置,不仅能保持径向稳定性,而且提高了轴向和角向稳定性。 2.3 电磁悬浮轴承 这种多自由度电磁力控制的磁悬浮轴

磁悬浮轴承的技术进展及发展趋势

磁悬浮轴承的发展现状及应用研究 一、磁悬浮技术概述 磁悬浮,亦作磁浮,是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”,从而使物件不受引力束缚自由浮动,具有无接触、无摩擦、低能耗、低噪声、无需润滑、维护费用低、使用寿命长、高精度以及自动化程度高等优点。磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学等为一体的机电一体化综合性较强的高新技术,其研究源于德国,早在1922年德国工程师赫尔曼〃肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统,此后,德国、日本、美国、加拿大、法国、英国等发达国家为提高交通运输能力以适应经济发展需要加快筹划磁悬浮运输系统的开发。随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。至2012年世界上已有三种类型的磁悬浮,一是以德国为代表的常导电式磁悬浮,二是以日本为代表的超导电动磁悬浮,这两种磁悬浮都需要用电力来产生磁悬浮动力。第三种是中国的永磁悬浮,它利用特殊的永磁材料,不需要任何其他动力支持。 磁悬浮技术应用范围及其广泛,涉及工业、民用及军事各个领域,磁悬浮产品涵盖高速精密电主轴、磁悬浮飞轮电池、磁悬浮人工心脏泵,磁悬浮火车、卫星、远程导弹的制

导与姿态控制,军事通讯用的UPS,航空发动机的高速转子,潜艇的振动控制与传动噪音,坦克、装甲车的动力储能、磁悬浮冶炼、搬运技术等。当前,国内外对磁悬浮技术的研究热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。 二、磁悬浮轴承及其类型 磁悬浮轴承也称电磁轴承或磁力轴承,是利用磁场力将轴承无机械摩擦、无润滑的、悬浮在空间的一种新型高性能轴承,其作为一种新颖的支撑部件,是继油润滑、气润滑之后轴承行业的又一次革命性变化, 被誉为21世纪最有发展前景的高新技术之一。 磁悬浮轴承的原理是磁感应线与磁浮线成垂直,轴芯与磁浮线平行,转子的重量能够固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,固定在特定运转轨道上。 按照磁力的提供方式,磁悬浮轴承可分为三大类 : (一)主动磁浮轴承 (Active Magnetic Bearing,简称 AMB),轴承磁场是可控的,通过传感器检测转轴的位置,由控制系统对电磁铁电流进行主动控制来实现转轴的稳定悬浮。 (二)被动磁浮轴承 (Passive Magnetic Bearing,简称PMB),轴承部分自由度由超导磁体或永磁体来实现被动悬浮支承。 (三)混合磁浮轴承 (Hybrid Magnetic Bearing,简称 HMB),轴承的机械结构中既包含了可控的电磁铁,又包含了提供偏置磁场的超导磁体或永磁体。 同时,按磁场力的来源分类,可以分为永久磁铁型、电

磁悬浮轴承应用及分析

磁悬浮轴承发展及应用 概述 : 磁浮轴承是利用磁力实现无接触的新型轴承,具有无接触、不需要润滑和密封、振动小、使用寿命长、维护费用低等一系列优良品质,属于高技术领域。轴承是机电工业的基础产业之一,其性能的好坏直接影响到机电产品(如超高速超精密加工机床)的科技含量及其在国际上的竞争力。本项目不仅要可以在国内建立生产磁浮轴承的高技术企业,填补国内在这方面的空白,而且可以带动机电行业的很多相关企业进行产品结构调整,形成新的经济增长点。此外,本项目具有重要的国防应用价值,可为我国研制以磁轴承支承的新一代航空发动机储备先进的科学技术。 磁浮轴承的基本原理 磁浮轴承从原理上可分为两种,一种是主动磁浮轴承(active magnetic bearing),简称AMB;另一种是被动磁浮轴承(passive magnetic bearing),简称PMB。由于前者具有较好的性能,它在工业上得到了越来越广泛的应用。这里介绍的是主动磁浮轴承。 磁浮轴承系统主要由被悬浮物体、传感器、控制器和执行器四大部分组成。其中执行器包括电磁铁和功率放大器两部分。下图是一个简单的磁浮轴承系统,电磁铁绕组上的电流为I,它对被悬浮物体产生的吸力和被悬浮物体本身的重力mg相平衡,被悬浮物体处于悬浮的平衡位置,这个位置也称为参考位置。假设在参考位置上,被悬浮物体受到一个向下的扰动,它就会偏离其参考位置向下运动,此时传感器检测出被悬浮物体偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器使流过电磁绕组上的电流变大,因此,电磁铁的吸力也变大了,从而驱动被悬浮物体返回到原来的平衡位置。如果被悬浮物体受到一个相上的扰动并向上运动,此时控制器和功率放大器使流过电磁场铁绕组上的电流变小,因此,电磁铁的吸力也变小了,被悬浮物体也能返回到原来的平衡位置。因此,不论被悬浮物体受到向上或向下的扰动,下图中的球状被悬浮物体始终能处于稳定的平衡状态。

磁悬浮轴承稳定性分析

磁悬浮轴承稳定性分析 磁悬浮轴承(Magnetic Bearing)是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。与传统的滚珠轴承,滑动轴承以及油膜轴承相比,磁轴承不存在机械接触,转子的转速可以运行到很高,具有机械磨损小,能耗低,噪声小、寿命长、无需润滑,无油污染等优点,特别适用于高速、真空、超净等特殊环境。这项技术是20世纪60年代中期在国际上开始研究的一项新的支撑技术。在各个领域都有着广泛的应用。本文主要分析磁悬浮轴承的稳定性问题。文章的第一部分介绍了磁悬浮轴承在国际和国内的发展与研究现状,并分析了磁悬浮轴承的一些特点。文章的第二部分对磁悬浮轴承的稳定性进行了讨论,先论证了永磁轴承无法实现自稳定,然后对电磁轴承的稳定性进行了分析。 关键词:磁悬浮,轴承,电磁轴承,永磁轴承,稳定性 第一章引言 第一节磁悬浮轴承的研究背景 国际上很早就有了利用磁力使物体处于无接触悬浮状态的设想, 但其实现却经历了很长的一段时间。1842 年, Earnshow 证明: 单靠永磁体不能将一个铁磁体在所有 6 个自由度上都保持在自由稳定的悬浮状态.真正意义上的磁悬浮研究开始于20世纪初的利用电磁相吸原理的悬浮车辆研究,1937 年, Kenper 申请了第一个磁悬浮技术专利, 他认为,要使铁磁体实现稳定的磁悬浮, 必须根据物体的悬浮状态不断的调节磁场力的大小,因此必须采用可控电磁铁,这也是以后开展磁悬浮列车和磁悬浮轴承研究的主导思想。 随着现代控制理论和电子技术的飞跃发展, 20世纪 60 年代中期对磁悬浮技术的研究跃上了一个新台阶。日本、英国、德国都相继开展了对磁悬浮列车的研究。资料记载: 1969 年, 法国军部科研实验室(LRBA ) 开始对磁悬浮轴承的研究; 1972 年,第一个磁悬浮轴承用于卫星导向轮的支撑上, 从而揭开了磁悬浮轴承发展的序幕。此后, 磁悬浮轴承很快被应用到了国防、航天等各个领域。1983年11月,美国在搭载在航天飞机上的欧洲空间试验仓里采用了磁悬浮轴承真空

永磁悬浮风力发电机国内外技术发展及专利简介

永磁悬浮风力发电机国内外技术发展及专利简介 供稿人:张蓓文 现行的风力发电机多为螺旋桨式结构,由于结构上的原因,一般都是定向安放,需要4级以上的风力才可以运行发电。对于2级以下的微风状态,基本上很难正常工作,这使得风能的利用和技术推广受到一定限制。随着永磁风力发电机的产生,使发电机的结构得到简化,效能提高,各种损耗也有明显的降低。它具有在额定的低转速下输出功率较大、效率高、温升低、起动阻力矩小、建压转速低等优点。在此基础上,研究人员又引入了磁力传动技术和磁悬浮技术,研制成了更为先进、高效的永磁悬浮风力发电机。 相关专利列举 以“(磁+悬浮)*风*(发电+风电)”及“wind and (turbine or generat) and (magnet and levitat or MAGLEV or breeze)”为检索策略,对中国知识产权局网站及欧洲专利局网站进行检索,现列举检索到的相关专利: 1、磁悬浮永磁风力发电机 申请人:赵克发明人:赵克 摘要: 一种磁悬浮永磁风力发电机,它采用了磁力传动技术和磁悬浮技术,从系统上解决了风力发电机向大功率发展中遇到需启动风力达一定大的难题,同时,通过磁力传动技术和磁悬浮技术的结合,克服了永磁转子风力发电机输出特性偏软的缺点。该磁悬浮永磁风力发电机,它是由原动力传送装置,磁力传动调速装置,磁

轮,磁悬浮永磁发电机等几部分组成的。因其启动风力小的特点,它可广泛用于各种交通工具,工厂,农村,城市住宅小区,高层建筑等领域。 主权项: 一种磁悬浮永磁风力发电机,它包括:原动力传送装置、磁力传动调速装置、磁轮、磁悬浮永磁发电机等几部分。其特征在于:原动力传送装置中的磁轮,与由不同规格大小、不同转速比的磁轮组成的磁力传动调速装置,保持着一定的间隙;同时,磁力传动调速装置中的磁轮,与安装在磁悬浮永磁发电机转轴上的磁轮,也保持着间隙;在转轴与磁悬浮永磁发电机的端盖之间,安装有磁悬浮装置。 2、新型永磁风力发电机 申请人:白晶辉发明人:白晶辉 摘要: 本实用新型公开了一种新型永磁风力发电机,其特征在于发电机部分中的发电机定子绕组,其结构采用双线并绕的形式进行绕制,两个绕组的头尾通过开关器件串联在一起,控制电路B通过D1、D2对由运算放大器IC1组成的电压比较电路进行供电,运算放大器IC1组成的电压比较电路对发电机定子绕组L1和L2上的电压进行检测,并输出信号,通过对开关器件J1、J2的通、断,改变发电机定子绕组L1和L2为串联或并联。 主权项: 一种新型永磁风力发电机,其特征在于发电机部分中的发电机定子绕组,其结构采用双线并绕的形式进行绕制,两个绕组的头尾通过开关器件串联在一起,控制电路B通过D1、D2对由运算放大器IC1组成的电压比较电路进行供电,运算放大器IC1组成的电压比较电路对发电机定子绕组L1和L2上的电压进行检测,并输

磁悬浮技术

磁悬浮技术 磁悬浮技术(英文:electromagnetic levitation,electromagnetic suspension)简称EML技术或EMS技术)是指利用磁力克服重力使物体悬浮的一种技术。 目前的悬浮技术主要包括磁悬浮、光悬浮、声悬浮、气流悬浮、电悬浮、粒子束悬浮等,其中磁悬浮技术比较成熟。 磁悬浮技术实现形式比较多,主要可以分为系统自稳的被动悬浮和系统不能自稳的主动悬浮等。 磁悬浮列车是由无接触的磁力支承、磁力导向和线性驱动系统组成的新型交通工具,主要有超导电动型磁悬浮列车、常导电磁吸力型高速磁悬浮列车以及常导电磁吸力型中低速磁悬浮。 原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2012年,世界上有3种类型磁悬浮技术,即日本的超导电动磁悬浮、德国的常导电磁悬浮和中国的永磁悬浮。永磁悬浮技术是中国大连拥

有核心及相关技术发明专利的原始创新技术。据技术人员介绍,日本和德国的磁悬浮列车在不通电的情况下,车体与槽轨是接触在一起的,而利用永磁悬浮技术制造出的磁悬浮列车在任何情况下,车体和轨道之间都是不接触的。中国永磁悬浮与国外磁悬浮相比有五大方面的优势:一是悬浮力强。二是经济性好。三是节能性强。四是安全性好。五是平衡性稳定。 前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴承系统为基础的振动控制理论的研究,将其应用于汽轮机转子的振动和故障分析中;通过调整磁悬浮轴承的刚度来改变汽轮机转子结构设计的思想,从而改善转子运行的动态特性,避免共振,提高机组运行的可靠性等,这些都将为解决电力工程中的技术难题提供崭新的思路。

动力磁悬浮轴承的研究现状及关键技术

动,有力地推动了纳米电磁致动器的发展。毫无疑问,在某些场合它仍有很大的应用价值。然而,其 位移精度是众多因素(如驱动力和作用时间等)共同作用的结果,任何一个因素的不利变化都会导致位移精度下降。特别是在大驱动力和变载荷情况下,上述影响就更为显著,成为其进一步发展的严重障碍。 本文介绍的电磁-压电组合式纳米致动器,最大的优点就是成功地将位移精度与驱动力分开处理,使其在大驱动力、变载荷和高稳定性纳米驱动方面具有明显的优势。初步的研究已揭示出该组合式纳米致动器具有良好的前景,进一步的研究工作正在进行之中。有理由相信,在不久的将来会有更多更好的纳米组合式致动器出现。 参考文献: [1] 姚健,尤政.21世纪的科技前沿——纳米技术.中国 机械工程,1995,6(3):14~16 [2] 杨辉,吴明根.现代超精密加工技术,航空精密制造 技术,1997,33(1):1~8 [3] 江小宁,周兆英,李勇等.微驱动技术.中国仪器仪 表,1993(2):10~12,14 [4] W AN G W an jun ,L lene Bu sch -V ishn ial .A H igh P recisi on M icropo sitoner Based on M agneto stric 2ti on p rinci p le ,R ev .Sci .In strum ,1992,63(1): 249~254 [5] Douglas P E Sm ith ,Sco tt A E lrod .M agnetically driven m icropo siti oners .R ev .Sci .In strum .,1985,56(10):1970~1971 [6] D avydov D N ,D eltou r R ,Ho rii N .C ryogen ic Scan 2 n ing T unnelingM icro scopeW ith a M agnetic Coarse A pp roach ,R ev .Sci .In strum ,1993,64(11):3153~3156 [7] 颜国正,赵国光,余承业.微小型任意行程电磁冲击 式纳米级步距驱动装置及其控制技术的研究.仪器仪表学报,1996,17(4):391~396 [8] B lackfo rd B L ,Jericho M H .A H amm er -A cti on M icropo siti oner fo r Scann ing P robe M icro scopes .R ev .Sci .In strum ,1997,68(1):133~135(编辑 华 恒) 作者简介:杨圣,男,1962年生。中国科学技术大学(合肥市  230026)九系副教授、博士。研究方向为精密仪器与精密工程。获 北京市科技进步三等奖1项。参编教材1部,发表论文20余篇。刘东伟,男,1978年生。南京航空航天大学(南京市210016)机电工程学院硕士研究生。 文章编号:1004-132 (2001)11-1319-04 动力磁悬浮轴承的研究现状及关键技术 曾 励 副教授 曾 励 陈 飞 宋爱平 黄民双 摘要:提出一种新型的机电一体化产品——具有电机功能的动力磁悬浮 轴承,阐述了它的研究现状和工作原理,分析了它的应用特点,并介绍了动力磁悬浮轴承理论研究的关键技术。 关键词:动力磁悬浮轴承;旋转偏磁磁通;旋转控制磁通;旋转机械;无轴 承电机 中图分类号:TH 703.3;TM 32 文献标识码:A 1 动力磁悬浮轴承的提出及特点 实现旋转机械高速、大负荷运转的关键是支承转子的轴承和驱动电机的性能。采用传统的支承及驱动方式,必须对支承转子及驱动电机的各机械轴承进行油雾或油液润滑,需要有经验和技术的人员进行调整,而且非常麻烦。这种支承驱动 收稿日期:1999—10—26 基金项目:江苏省教育基金资助项目(00KJB 460009) 方式,轴向尺寸过大,可靠性差,而且由于共振频 率低,无法得到高速和超高速的转动。如果能研制出一种具有电机功能的动力磁悬浮轴承,就可以将旋转机械的驱动电机去掉,由动力磁悬浮轴承支承转子并直接驱动其转动,使结构小型化,并真正实现高速、大负荷运转。 动力磁悬浮轴承(pow er m agnetic bearing ,P -M B )在原理上是以普通的磁悬浮轴承为基础,使其电磁铁提供的磁场不仅要产生支承转子的径向力,而且还要产生驱动转子的扭矩,是集电动机 ? 9131?动力磁悬浮轴承的研究现状及关键技术——曾 励 陈 飞 宋爱平等

ZEITLOS磁悬浮与高速电机技术简文

Leap in the development of the organic combination of the German ZEITLOS maglev technology and high speed motor will bring 德国ZEITLOS磁悬浮技术与高速电机有机结合将 带来飞跃式发展 ——赛特勒斯轴承科技(北京)有限公司技术篇 高速电机的现状: 高速加工技术越来越受到人们的关注,它不仅可获得更大的生产率,而且还可获得很高的加工质量,并可降低生产成本,因而被认为是21世纪最有发展前途的先进制造技术之一。在先进工业国家,此项技术已广泛应用于航空、航天及模具行业。床的高速化是目前机床的发展趋势。 而传统的电机是由定子和动子组成,定子与动子之间通过机械轴承联接或存在机械接触,因此动子 运动过程中存在机械摩擦。机械摩擦不仅增加动子的摩擦阻力,使运动部件磨损,产生机械振动和噪声, 而且会造成部件发热,使润滑剂性能变差,严重的会使电机气隙不均匀,绕组发热,温升增大,从而降低电机效能,最终缩短电机使用寿命。 德国ZEITLOS磁悬浮电机的应运而生: 为了克服传统旋转电机存在机械轴承和机械摩擦的不足,目前已研制出各种无接触式磁轴承,用来取代机械轴承。德国ZEITLOS磁悬浮电机是利用定子和动子励磁磁场之间“同性相斥,异性相吸”的原 理使动子悬浮起来,同时产生推进力驱使动子在悬浮状态下运动。因此,定子与动子之间不存在任何机 械接触,可以产生较高的加速度和减速度,机械磨损小,机械与电气保护容易,维护、检修和更换方便,适用于恶劣环境、极其洁净无污染环境和特殊需要的领域。磁悬浮电机的研究越来越受到科技工作者的重视,其发展前景令人鼓舞。 ZEITLOS磁悬浮的工作原理: 电磁铁布置成径向轴承和轴向轴承的形式,并提供磁拉力以悬浮起机器的主轴,电磁场的电流由精确地数字式控制器调节,提供磁力随时对外部负载变化以保证主轴良好的居中没这样主轴被无接触抬起而且轴承的刚度和阻尼均可由一个数字控制器调节,这样的特点增强了高速旋转机器的性能。使设备具有高可靠性低能耗的显著特点。 ZEITLOS磁悬浮轴承的特点: ●增加了设备的可靠性 ●显著的降低了能耗和维护成本 ●减少了设备空间尺寸 ●快速启动(无需预热) ●安全可控遥控检测远程诊断

磁悬浮轴承

磁悬浮轴承 3分(内容丰富) 编辑词条 摘要 磁悬浮轴承(Magnetic Bearing) 是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。其原理是磁感应线与磁浮线成垂直,轴芯与磁浮线是平行的,所以转子的重量就固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,在固定运转轨道上。与传统的滚珠轴承、滑动轴承以及油膜轴承相比,磁轴承不存在机械接触,转子可以运行到很高的转速,具有机械磨损小、能耗低、噪声小、寿命长、无需润滑、无油污染等优点,特别适用于高速、真空、超净等特殊环境中。磁悬浮事实上只是一种辅助功能,并非是独立的轴承形式,具体应用还得配合其它的轴承形式,例如磁悬浮+滚珠轴承、磁悬浮+含油轴承、磁悬浮+汽化轴承等等。这项技术并没有得到欧美国家的认可。 编辑摘要 目录-[ 隐藏 ] 1.1概述 2.2工作原理 编辑本段|回到顶部概述 利用磁力使物体处于无接触悬浮状态的 设想由来已久, 但实现起来并不容易。早在 1842 年, Ea rn show 就证明: 单靠永久磁体是 不能将一个铁磁体在所有 6 个自由度上都保

持在自由稳定的悬浮状态的.然而, 真正意义 上的磁悬浮研究是从本世纪初的利用电磁相 吸原理的悬浮车辆研究开始的。 1937 年, Kenp er 申请了第一个磁悬浮 技术专利, 他认为要使铁磁体实现稳定的磁 悬浮, 必须根据物体的悬浮状态不断的调节 磁场力的大小, 即采用可控电磁铁才能实现, 这一思想成为以后开展磁悬浮列车和磁悬浮 轴承研究的主导思想。伴随着现代控制理论 和电子技术的飞跃发展, 本世纪 60 年代中期 对磁悬浮技术的研究跃上了一个新台阶。英 国、日本、德国都相继开展了对磁悬浮列车的 研究。磁悬浮轴承的研究是磁悬浮技术发展 并向应用方向转化的一个重要实例。据有关 资料记载: 1969 年, 法国军部科研实验室 (L RBA ) 开始对磁悬浮轴承的研究; 1972 年, 将第一个磁悬浮轴承用于卫星导向轮的支撑 上, 从而揭开了磁悬浮轴承发展的序幕。此 后, 磁悬浮轴承很快被应用到国防、航天等各 个领域。美国在 1983 年 11 月搭载于航天飞 机上的欧洲空间试验仓里采用了磁悬浮轴承 真空泵; 日本将磁悬浮轴承列为 80 年代新的 加工技术之一, 1984 年, S2M 公司与日本精 工电子工业公司联合成立了日本电磁轴承公 司, 在日本生产、销售涡轮分子泵和机床电磁 主轴等。经过 30 多年的发展, 磁悬浮轴承在 国外的应用场合进一步扩大, 从应用角度看, 在高速旋转和相关高精度的应用场合磁悬浮 轴承具有极大的优势并已逐渐成为应用研究 的主流。 编辑本段|回到顶部工作原理 磁悬浮轴承是一个复杂的机电耦合系 统。在早期的研究过程中, 它由机械系统和 控

分子泵用磁悬浮轴承研究

分子泵用磁悬浮轴承 摘要:磁悬浮轴承以其无摩擦、不需润滑的特点,成为解决真空分子泵油污染、多角度安装等多种问题的最佳方案之一。真空分子泵的行业标准和工业需求,对磁悬浮轴承的设计提出了较高的要求。针对分子泵的特点,设计了5自由度主动控制的磁悬浮轴承,通过系统辨识获得了准确的系统模型,通过对系统模态的抑制,达到了良好的控制效果。经过实验测量,采用磁悬浮轴承支承的分子泵的性能完全达到了工业要求。 关键词:磁悬浮;磁轴承;分子泵 Magnetic bearing for molecular pump Abstract: The magnetic bearing has been one of best solutions for molecular pumps to solve the problems of oil pollution and installation in any orientation since its contactless and oil-free properties. The industry standard and demands of molecular pumps require high design level of magnetic bearing. The magnetic bearings have achieved good performance by 5-axis active control, identifying accurate models and reducing vibration levels. The experiment results show molecular pumps with magnetic bearings completely meet the industry requirements Key words: magnetic suspension, active magnetic bearing, molecular pump 0 引言 分子泵是利用高速旋转的转子把动量传输给气体分子,使之获得定向速度,从而被压缩、被驱向排气口后为前级抽走的一种真空泵[1]。其应用领域包括分析、半导体工业、光学、玻璃工业、涂层技术、真空冶炼、检漏技术、科研设备、照明用具行业等。为解决生产中传统分子泵润滑油蒸汽返流和滚珠轴承引起的振动问题,1976年德国LEYBOLD公司首先开发出了磁悬浮涡轮分子泵[2]。其径向采用永磁悬浮轴承,轴向采用电磁悬浮轴承,即单自由度主动控制,称为1轴磁悬浮分子泵。之后相继出现了3轴磁悬浮分子泵和5轴磁悬浮分子泵。目前工业生应用中5轴磁悬浮分子泵占有主流地位。除LEYBOLD公司外,德国PFEIFFER公司,法国ALCATEL公司,英国BOCEDWARDS公司,日本岛津公司等都有成熟的磁悬浮分子泵产品。目前,世界上有超过60000台的磁悬浮分子泵运行在工业现场。 为追赶与国外的技术差距,提高国内装备水平,开发自主知识产权的磁悬浮分子泵产品具有重要的产业和社会意义。 1 分子泵对磁悬浮轴承的要求 分子泵的转子需要高速旋转,因而要求磁悬浮轴承转子能够达到较高的转速,某些情况需要超临界运行。受材料和加工条件的限制,国产分子泵转子叶轮允许的最高转速一般在30000rpm以内。以CXF1800型分子泵为例,其额定转速为27000rpm,文中未作特殊说明均针对为此型号分子泵配套的FS450型磁悬浮轴承。 分子泵转子的高速旋转必然产生振动,这对于真空应用设备是有危害的,但是国家标准中并没有给出分子泵振动的定量指标[3],国内真空行业对泵体振动的要求一般为小于0.1um。 1

磁悬浮轴承的优点及原理

磁悬浮轴承的优点及原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1基本原理 从原理上磁悬浮轴承可以分为两种,一种是主动型磁悬浮轴承;另一种是被动型磁悬浮轴承。因为前者具有良好的控制性能,所以它越来越广泛地应用在工业上。主动型磁悬浮轴承基本原理如下图所示,通过传感器检测出转子的位移信号,将该信号送人控制器,控制器按照设定的控制策略处理后经功率放大器产生控制电流,驱动电磁铁线圈产生相应的电磁力,实现转子悬浮。 图主动型磁悬浮轴承系统原理图 2磁悬浮轴承的优点 与传统的机械轴承相比,磁悬浮轴承具有以下与传统的机械轴承相比,磁悬浮轴承具有以下优点:

(1)无接触、无磨损、无润滑:磁悬浮轴承工作时,处于悬浮状态,相对运动表面之间无接触,不产生机械摩擦和接触疲劳,解决了机组部件损耗和更换问题。同时省掉了润滑系统等一系列装置,即节省了空间又不存在前述装置对环境的污染问题。 (2)低振动、低噪声、低功耗:磁悬浮轴承转子避免了传统轴承在运行时的接触碰撞弓丨起的大幅振动以及高分贝噪声,提高了稳定性,降低了维护费用,延长了其使用寿命,同时悬浮磁悬浮轴承的低功耗,仅是传统机械轴承功耗的6%~25%。在转速为 10000r/min时,其功耗只有机械轴承的15%左。 (3)高转速、高精度、高可靠性:允许转子高速旋转,其转速主要受材料强度的限制,可以在超临界,每分钟数十万转的工况下工作,而且转子的回转精度已经达到微米级甚至更高,这是普通机械轴承远远达不到的转速和精度,而且电子元器件的可靠性在很大程度上高于传统的机械零部件。 (4)可控性、可在线工况监测、可测试诊断:我们可以对磁悬浮轴承的静态和动态性能进行在线控制。事实上,其本身系统就实现了集工况监测、故障诊断和在线调节的一体化。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

磁悬浮轴承的H_控制_LMI方法_刘雨

第25卷 第4期 2008年8月 黑龙江大学自然科学学报J OURNAL OF NATURAL SC IENCE O F HE I LONG JI ANG UN IVERS I TY V o l 125N o 14A ugust ,2008 磁悬浮轴承的H ]控制B L M I 方法 刘 雨, 段广仁 (哈尔滨工业大学控制理论与制导技术研究中心,哈尔滨150001) 摘 要:研究了具有参数不确定性的主动磁悬浮系统的控制问题。对系统模型的参数不确定 性进行了分析,并把其归结为标准的H ]设计问题。综合考虑系统的稳定性和调节时间等指标,采用具有闭环区域极点约束的最优H ]状态反馈控制器设计方法,使用线性矩阵不等式(LM I)方法对其进行求解。仿真结果表明,闭环系统在所考虑的参数不确定范围内具有鲁棒稳定性和良好的时域性能指标。 关键词:磁悬浮轴承;H ]控制;闭环极点约束;线性矩阵不等式 中图分类号:TP13文献标志码:A 文章编号:1001-7011(2008)04-0437-05 收稿日期:2008-03-12 基金项目:国家自然科学基金重大国际合作项目(60710002);长江学者创新团队发展计划资助项目;黑龙江省重点基金资助项目(ZJ C603)作者简介:刘 雨(1983-),男,硕士,主要研究方向:磁悬浮轴承系统控制,E -m ai:l freerly @gma i .l co m 通讯作者:段广仁(1962-),男,教授,博士,博士生导师,长江学者特聘教授1 引 言 磁悬浮轴承与传统轴承相比有其独特的优点,其不存在机械接触,机械磨损小、能耗低、噪声小、寿命长、无需润滑、无油污染,特别适用高速、真空、超净等特殊环境。由于以上特点,磁悬浮轴承在民用和国防领域都有着广泛的应用。本文所研究的主动磁轴承,即有源磁轴承,它的磁场是可控的,其磁力由交流线圈产生的磁场提供,通过改变线圈的电流即可控制磁力的大小,这是目前研究和应用最为广泛的一种磁悬浮轴承技术。 磁悬浮轴承系统是一种复杂的非线性系统,并且开环是极不稳定的,因此,对控制方法的研究一直是磁悬浮技术中的热点问题。文献[1]对磁悬浮轴承状态空间描述的模型进行了二次稳定的H ]控制器设计,文献[2]对储能飞轮的磁轴承进行了鲁棒控制器的设计,文献[3]对磁浮轴承的鲁棒控制问题进行了较全面的分析和讨论。 结合文献[4-5]等的理论研究成果,本文针对磁悬浮轴承的一种较为成熟的线性化模型进行研究,分析了建模过程和系统运行所导致的模型参数不确定性,根据具有闭环极点约束的H ]控制理论进行控制器设计,最后,应用线性矩阵不等式的方法进行求解,得到了易于在工程实际中应用的控制参数,对磁浮轴承后续的现场调试有很好的理论指导意义。 2 问题描述 主动式单自由度磁悬浮轴承系统的二阶线性化模型为 [6]G (s)= k i m s 2-k x (1) 其中,m 是磁浮轴承转子的质量或等效质量; k x =L 0A 0N 2i 20x 30 为磁力轴承位移-力刚度;k i =L 0A 0N 2i 0x 20 为磁力轴承的电流-力刚度。

相关主题
文本预览
相关文档 最新文档