当前位置:文档之家› 钢材中微量元素介绍

钢材中微量元素介绍

钢材中微量元素介绍
钢材中微量元素介绍

钢材材质成份解析

一、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳含量超过0.23%时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

二、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-

0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。

三、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

四、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

五、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。

六、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢、耐热钢的重要合金元素。

七、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。

八、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。

九、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。

十、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强

度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。

十一、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。

十二、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。

十三、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。

十四、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。

十五、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。

十六、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。十七、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。

十八、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土。钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能。在犁铧钢中加入稀土,可提高耐磨性。

碳(C)在不锈钢中的作用

碳在奥氏体和铁素体不锈钢中以间隙元素存在于固溶体中,是奥氏体不锈钢中最有效地固溶强化元素;在高碳马氏体不锈钢中,会有共晶碳化物和其他碳化物生成,对硬度及耐磨性非常有利,适合于生产各类刀具。

经固溶处理的奥氏体不锈钢中,碳以固溶体存在,当C>0.03%时,若将钢置于538~815℃的温度范围内,碳可能以碳化物形式在晶界析出,同时形成贫铬(Cr)区(焊接时最易产生的现象),这种现象成为敏化析出(Susceptibility),使不锈钢增加了晶界腐蚀的敏感性;铁素体不锈钢亦会产生铬的碳化物而引起晶界腐蚀现象。

目前的技术手段,只有在奥氏体不锈钢中把碳元素含量将至0.03%以下,或通过加入钛(Ti)或Nb(铌)元素以形成稳定的碳化物,来避免敏化及防止出现贫铬(Cr)区(Poor - Cr Zone)及避免焊接时产生的刀状腐蚀。

名词解释(Terms’Definition)

?间隙元素(interstitial element):是指在金属中熔质原子(碳,氧,氮等原子)填入溶剂金属点阵中的间隙位置,所形成的一种固溶体的一种补充元素,起到稳定其金属原子晶格形式的作用。

?固溶体(solid solution):是金属物在一定结晶构造位置上离子的互相置换,而不改变整个晶体的结构及对称性;固溶体分为三种:替代式固溶体、填隙式固溶体和缺位式固溶。

?敏化析出(sensitization):不锈钢钢中的碳(通常含0.03%)与铬结合,在热处理过程中或在焊接过程中在晶界析出;形成的碳化物使晶界出现贫铬,发生

局部的晶界腐蚀,降低了材料的耐应力腐蚀性。

?贫铬区(Poor - Cr Zone):是指不锈钢中的碳元素与晶界处的铬结合,使晶界处的铬含量降低并析出; .造成不锈钢表面或内部局部铬含量低于平均含量的区域。贫铬区的出现,通常是碳化铬析出的结果。

?刀状腐蚀(Knife Line Attack):简称刀蚀。在含有稳定元素的奥氏体不锈钢中(如1Cr18Ni9Ti,Cr18Ni12Mo3Ti等),焊接热影响区的过热区在腐蚀介质作用下,发生沿熔合线走向的深沟状似刀痕的腐蚀,称为刀状腐蚀。

铬(Cr)在不锈钢中的作用

铬是不锈钢中不可缺少的元素,不锈钢的耐蚀性和抗氧化性都由随着的Cr含量的增加而增加;因为Cr在不锈钢表面形成一层薄的氧化膜,阻碍或防止不锈钢的进一步氧化和腐蚀,在氧化环境中这层膜得到了强化。

在Fe-Cr系中,在所有温度下当Cr含量超过12%,均体现为铁素体;但高温情况下可能产生一下奥氏体组织,其原因是因为含有一定量的C和N元素的缘故。名词解释-------------

间隙相:当非金属原子半径与金属原子半径比值小于0.59时,形成具有简单晶格的间隙化合物,称为间隙相;当比值大于0.59时,形成具有复杂结构的间隙化合物。

中间相:两组元A和B组成合金时,除了可形成以A为基体或以B为基体的固溶体外(端际固溶体)外,还可能形成晶体结构与A,B两组元均不相同的新相。空淬效应:钢在一定条件下淬火时获得淬硬层(马氏体层)深度。它是衡量各个不同钢种接受淬火能力的重要指标之一;淬透性主要取决于其临界冷却速度的大小,而临界冷却速度则主要取决于过冷奥氏体的稳定性。

镍(Ni)在不锈钢中的作用

最近镍价一直上涨,影响了不锈钢价格的波动。但镍对于不锈钢有什么影响?

镍是不锈钢中仅次于铬的重要合金元素。为了耐还原性酸和碱介质的腐蚀,钢中仅含铬是不够的,铬必须加入镍。镍促进不锈钢钝化膜的稳定性,提高不锈钢的热力学稳定性。因此,不锈钢中铬和镍共存,可显著强化不锈钢的不锈性和耐蚀性。镍对不锈钢的高温抗氧性有益,但对高温抗硫化性有害。因为镍与硫作用易形成低熔点硫化物。而低熔点硫化物的形成会显著降低钢的热加工性。

镍与铬组合能显著提高奥氏体不锈钢在苛性介质(例如NaOH)中的耐蚀性,镍还提高18-8不锈钢耐氯化物应力腐蚀的性能。虽然在耐点蚀、耐缝隙腐蚀的PRE 值(Cr+3.3Mo+16N,此值越大,耐点蚀、耐缝隙腐蚀性能越强)中并没有镍的作用在内,但在低铬、钼的通用铬镍奥氏体不锈钢中,镍的作用还是有益的。

镍是奥氏体形成的稳定元素,若含Ni量约为8%时,Fe-Ni系中在室温下为奥氏体组织,具有很好的可成型性,更好地焊接性,优异的韧性。Ni对高温性能,特别是强度,冶金稳定性和保护性氧化膜的稳定性都有明显地提高。

在铁素体不锈钢中,加入Ni可提高韧性及弯曲性能,焊接性能及耐蚀性。在沉

淀硬化不锈钢中,Ni是重要元素。在双相钢中,通过调整Cr和Ni的含量的变化,可改变铁素体的百分比,Ni还可以改善双相钢抗全面腐蚀和抗应力腐蚀性能。

Ni在奥氏体不锈钢中会降低其熔点,平均增加1%的镍含量,就可降低其4.4℃。随着Ni的增加而是δ相减少;但是热加工性,低温塑性和韧性可得到改善,其成型性能(深冲性能增加,加工硬化性能降低,还可增加在硫酸中的钝化(passivation)作用。

镍能显著改善不锈钢的塑、韧性,可使具有脆性转变温度的一些不锈钢的脆性温度下移。镍可提高一些不锈钢的冷成型性和焊接性,降低奥氏体不锈钢的冷加工硬化倾向。镍可提高一些不锈钢的冷成型性和焊接性,降低奥氏体不锈钢的冷加工硬化倾向。此外,Ni的另一方面的作用是表现了在其不锈钢及镍合金指数上不可替代的“王道”;一种足以让不锈钢和镍金属从业者们“HIGH”到极致的“摇头丸”;一种其金融属性已经远远超出其实际价值的“产业利益链”。

锰(Mn)在不锈钢中的作用

锰元素可形成无限固溶体,有着强烈稳定奥氏体不锈钢结构的作用;并且对于铁素体和奥氏体不锈钢均有较强的固溶强化作用,提高了不锈钢的硬度和强度。Mn是不锈钢生产的重要合金元素,在CrNi系不锈钢生产中作为脱氧元素,一般加入1.5%Mn,在Cr-Mn-Ni-N ,Cr-Mn-N系不锈钢中作为重要的合金化元素,一般加入6—20%。和Cr-Ni奥氏体不锈钢相比,Cr-Mn-Ni-N奥氏体不锈钢最大的区别是大量地加入了合金元素Mn、N,从而带来了一系列的性能变化。

在奥氏体中,锰一般以合金形式存在,且含量小于2%;此含量对于不锈钢组织不会造成明显的影响。但是锰元素,在不锈钢生产过程中被视为脱氧作用的残留元素看待。锰元素在120℃以上温度,会随着温度的升高而产生一定的挥发现象。

1、Mn在不锈钢中的有益作用

(1)N在不锈钢中的溶解度公式:N=0.021(Cr+0.9Mn)-0.204wt%。因此,为了提高N的溶解度,Mn元素被大量加入。在节镍奥氏体不锈钢中,Mn是非常重要的合金元素,其主要作用是使氨在钢中的溶解度提高且提高钢的强韧性,是节镍奥氏体必不可少的元素。

(2)Mn是比较弱的奥氏体形成元素,但具有强烈稳定奥氏体的作用。Cr-Ni奥氏体不锈钢中,随着Mn含量增加强度提高。在无Ni的Cr-Mn-N奥氏体不锈钢中低温下会出现韧脆转变现象。

(3)Mn在不锈钢中的另一有益作用是形成MnS抑制钢中硫的有害作用,提高了钢的热敏性,在焊接材料中加入2%以上的锰,可提高奥氏体不锈钢焊缝的抗热裂纹敏感性。

2、Mn的不利影响

(1)Mn对不锈钢的不锈钢耐蚀性的影响,基本上都是负面的。随着锰量的增加,钢的耐点蚀性、耐缝隙腐蚀性能下降。这与锰和硫形成MnS,或随钢中锰量增加,MnS中的铬量降低所引起的MnS夹杂在腐蚀介质中的溶解,常常成为点蚀、缝隙腐蚀源。实验证明,当将18-8不锈钢中的锰量降到约0.1%,此钢的耐点蚀能力将达到含2%Mo的316的水平。

(2) Mn在不锈钢中还促进σ相等脆性相的析出,降低钢的塑、韧性,为锰的高铬、钼不锈钢中的应用带来不利影响。

以Mn, N代Ni的节镍和无镍奥氏体不锈钢,其耐蚀性主要取决于钢的Cr、Ni、

Mo、N等元素的含量,而Mn的作用甚微。目前研制成熟的钢种主要有200系

列以及Arlnco公司的Nitronic系列。还有一些钢种也在广泛研究中。

磷(P)在不锈钢中的作用

磷(P)在不锈钢中的存在不与碳元素形成碳化物,但是易造成不锈钢中的严重偏析现象,一般来说,磷在不锈钢冶炼和后续加工过程中都被认为有害元素,尤其在焊接时,会产生热裂焊缝现象

在奥氏体不锈钢中,磷被允许存在的含量约为0.03%~0.035%;此外,若不锈钢

中因焊接而在焊缝处所产生的铁素体中,其磷元素被允许的最大含量约为0.03%。

磷元素对提高不锈钢的强度及冷作硬化作用强,但却会增加不锈钢的脆性(尤其是低温脆性)。

若磷与铜元素配合,可大大提高低合金钢的耐大气腐蚀的能力。

名词解释:

?偏析现象:合金中各组成元素在结晶时分布不均匀的现象称为偏析。

?低温脆性:材料的冲击吸收功随温度降低而降低,当试验温度低于Tk(韧脆

临界转变温度)时,冲击吸收功明显下降,材料由韧性状态变为脆性状态,这种现象称为低温脆性。金属的低温脆性是由于金属的屈服强度随温度降低而升高造成的。

钢材中各元素对性能性的影响

钢材中各元素对性能性的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和 冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此 用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高 还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀; 此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢 含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就 算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度, 故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅, 强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀 性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具 有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低 钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢 中含锰0.30-0.50%,在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度, 提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点 高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性 能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,

使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求 钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降 低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性 能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改 善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐 磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐 腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍 对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但 由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬 钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高 温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发 生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以 抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化 晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18 镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶

微量元素

一.人类对生物微量元素的认识 1 有一个漫长而又逐步加快的过程。铁是最早发现的人体必需生物微量元素,150年前发现了碘,其后以十年左右发现两个必需生物微量元素的速度前进,至七、八十年代,人们开始进一步重视生物微量元素,同时对生物微量元素在生命过程中的意义、生理功能,代谢过程、缺乏时的表现及防治、过量时的中毒及防治等,有了更详细的了解,到目前为止,已知人体必需生物微量元素有14种,它们是:铁、锌、铜、碘、锰、硒、氟、钼、钴、铬、镍、钒、钖、硅。 随着科学研究的进展,有生物功能的人体微量元素的数目还将增加,而不仅限于目前已知的数目。 2生物无机化学为基础,从微量元素的概念入手,系统讲授常见必需微量元素的生物学功能、吸收、人体需要量、缺乏和过多引起的疾病与防治,有害元素的分布、接触途径、毒性和毒性机制、预防和治疗等。并以专题形式就“微量元素与肿瘤”、“微量元素与抗衰老”、“微量元素与膳食”、“微量元素与化妆品”等热门话题或研究热点进行详细的讲解。要求学生能够系统掌握微量元素的概念、功能、缺乏和过多引起的疾病以及防治、有害元素的危害及与某些疾病的关系,了解微量元素研究的一些最新动态以及与肿瘤、衰老等的可能关系,建立正确的膳食观、养生观和环保意识,对化妆品中微量元素的作用有一定了解。 微量元素的定义 ?宇宙万物都是由物质构成的,构成物质的基本单元是百余种化学元素。人体也是如此,据科学研究,现已证实人体是由蛋白质、脂类、碳水化合物、维生素、水和矿物质(无机盐)。这些化学元素或物质,在人体内现已发现有60多种,如按化学元素的重量百分比计算,氧约占65%、碳约占18%、氢约占10%、氮约占3%,以上4种元素约占人体重量的96%;其余7种元素:钙约占1.94%、磷约占1.15%、钾约占0.34%、硫约占0.23%、钠约占0.13%、氯约占0.12%、镁约占0.04%,这7种加起来,约占人体重量的3.95%,以上两组合计11种,占人体总重量的99.95%,称为人体必需常(宏)量元素;另外还有14种元素,在人体内只占百万分之一(ppm)~万万分之一(ppb),铁、锌、铜、碘、钴、硒、氟、钼、锡、铬、镍、钒、锰、硅。 这十几种元素加在一起,仅占人体重量的0.05%,称之为生物微量元素(biological trace elements )。凡含量占人体重量0.01%以下,即万分之一以下的元素,统称为与人体有关的生物微(痕)量元素。这些微量元素与人的健康、疾病、长寿、智力、美容等相关。 目前对人体必需生物微量元素公认的定义是: 1.它是维持人体生命、发育、繁殖所必需的元素。 2.它是成人的日摄取量在100毫克以下的元素。 二.生物微量元素的功能及对人体的关系 人体是由蛋白质、脂肪、碳水化合物、水、无机盐、生物微量元素、维生素等物质组成的有生命和思维活动的人,这些化学物质或元素,在人体内均占有一定的比例,人体必需的常量元素,主要用于构成人体的机体和起电解质作用,而生物微量元素则是人类生存不可缺少的营养成份,在人体内成为某些激素、核酸、维生素等的活性中心,维持着生命的代谢过程,如缺乏某种生物微量元素,就会引起生理功能及结构异常,发生种种病变及疾病,通常虽不直接危及生命,但为生命活动所必需,故又称为必需微量元素,适量时对身体有益,但过量

微量元素在人体当中的作用

微量元素在人体当中的作用 人体由80 多种微量元素组成,根据人体内的含量不同,可分为宏量元素和微量元素两大类,凡占人体总重量万分之一以上的元素,如:碳、氢、氧、氮、钙、磷、镁、钠等称为宏量元素,凡占人体总量的万分之一以下的称微量元素,如:铁、锌、铜、锰、铬、硒、钴、氟等称为微量元素。 迄今为止人体内共发现有一千多种酶,其中50%一70%需要微量元素参与或激活,在人体有三种主要抗自由基的 酶,也称抗氧化剂,他们分别是超氧化物歧化酶,也称谷胱甘肽过氧化物酶和过氧化氢酶,其中谷胱甘肽过氧化物酶是一种含硒的酶。酶是什么,它是身体里一种生物催化剂,催化效率极强,如每分子过氧化氢酶在1 分钟内能使5 千万分子过氧化氢分解成水和氧。当一个人得了脑血栓或脑梗,大夫首先给他用的就是血浆纤维蛋白酶或白细胞蛋白质溶解酶,他们具有溶解血酸的作用,停止用药一段时间后,体内没有排出的脂质斑块还会聚集在一起,物以类聚,再次堵塞血管,所以说有的人会得一次脑梗,还会得两次乃至三次,其实我们身体中本身就有这两种酶,只是摄入的微量元素缺乏,酶没有被激活。 当我们的衬衫领口脏了,放在洗衣粉里浸泡一下就干净了,因为洗衣粉里含酶。值得注意的是这些微量元素直接或间接由土壤当中获得,由于土地喷洒农药化肥导致微量元素缺乏,再有高产农作物,原来一颗玉米杆接一棒玉米,现在接两棒,而且还特别大,它吸收土地的营养就那么一点点,要供给那么多的玉米粒,每粒上的微量元素就微乎其微。 钙:99%在骨骼和牙齿上,1%在血液,日常生活中,如果钙摄入不足,人体就会出现生理性钙透支,造成血钙水平下降,当血钙水中下降到一定数值时,就会促使甲状旁腺分泌甲状旁腺素,甲状旁腺具有破骨作用,即将骨骼中的钙反抽调出来,藉以维持血钙水平,在缺钙初期,缺钙程度比较轻时,只是发生可逆性生理功能异常。如:心脏出现室性早搏,情绪不稳定,睡眠质量下降等,持续的低血钙,特别是中年以后,人体长期处理负钙平衡状态,导致甲状腺分泌亢进,首当其冲的是骨骼,由于骨钙持续大量释出,导致骨质疏松和骨质增生,另一方面,在甲状腺持续升高的情况下,由于甲状旁腺具有促使细胞膜上钙通道开启而关不住,以及阻抑钙泵使钙功能减弱,造成细胞内钙含量升高,持续升高激发细胞能量耗竭与此同时,代谢废物又得不到及时消除,便会构成自身伤害,致使细胞趋向反常钙化衰亡,导致骨质疏松、骨质增生、股骨头坏死、手足抽、心脏病、高血压、肾结石、结肠癌、老年痴呆、甲亢,甲状腺等106 种疾病。 碳酸饮料中含有极高的磷,会消耗人体的钙,因此经常喝饮料的人要补钙。高血压:缺钙会造成反常的钙内流,导致钙在血管内壁细胞和平滑肌细胞内反常积贮,引起血管收缩,血管外周阻力增大,血压异常升高,持续钙内流,促使血管壁弹性纤维和内皮细胞钙化、变性甚至出现袭痕、断裂,外周阻力进一步增大,血压持续升高,由于血管内壁的损伤,脂类通透性增大,血脂浸入血管壁的损伤处,造成胆固醇,其它脂类物质在血管壁上沉积,血管内皮细胞内损伤,而分泌内皮素和某些激活因子,引起血管壁硬化。 血小板和白细胞在血管壁上粘覆聚集,血管细胞损伤,激活补偿性生理反应,促使血管平滑肌和成纤维细胞反常,增生和内膜下移位,致使动脉管壁增厚,变硬,于是层层叠叠,大大小小动脉硬化形成。 结石:缺钙易得结石,蔬菜中草酸在肠道内与钙结合形成草酸钙,随粪便排出体外,如果钙不足,就会使多余的草酸盐经肠道吸收而进入血液,最终由肾脏排出,如果人体长期处于负衡状态,肾脏细胞不可避免会出现细胞反常钙内流损伤,肾脏回收功能减退,尿钙排出增多,高钙尿液与尿中草酸盐结合,形成大大小小草酸钙结石。 心脏的扩张需要钙,收缩需要镁。镁:具有镇静中枢神经的作用,缺乏会引起各种各样的头痛,尿结石、怕声、怕光、头摇晃、手抖、心脏病。锌:缺乏会引起丘疹、湿疹、记忆力下降、男性能力下降、忧郁。 铁:是人体合成血红蛋白的主要原料之—血红蛋白的功能主要是输送氧到各个组织器官,并把组织代谢中产生的二氧化碳运输到肺部排出体外,铁还是人体内氧化还原反应系统中一引起酶及电子传递的载体,也是过氧化氢酶和细胞色素等重要组成部分。缺乏会引起贫血、脾气急躁、耳聋、口腔炎、脸色差(参与肝脏解毒)铬:缺乏会引起糖尿病、高血压、高血脂症、动脉硬化、脂类代谢紊乱、胆结石。 空腹血糖 3.6—6.3mmol/ 。 餐后不超过8.6mmol/l 。入食后,淀粉物质经口腔和胃的消化,变成水解糖,糖在肠道内吸收进入血液,即为血糖,当含糖高的血液经过胰腺的细胞,受体组织时,刺激胰岛分泌出胰岛素,在铬元素协同下指令细胞把糖存起来,(主要在肝脏)备用。 肝脏有问题,脂肪太多,占用了“库容”糖份存不进去,肝细胞发炎变性,无法存糖,会引起高血糖或低血糖。 I型多是胰腺受损n型胰岛素抵抗川型肥胖者、饮酒、肝细胞脂肪多。 如糖代谢比作一条公路,胰岛素是汽车,糖是货物,细胞是仓库,铬是通向仓库的桥梁,而肠是关闭这条公路大 门,高血压、高血脂、高血粘、冠心病,脑动脉硬化,微循环障碍等疾病与人体胰岛素抵抗有关。如每个分子的胰岛素起作用都用两个原子的铬,人体内的铬一旦被动员,就不会再回收利用,身体只能用10%,其它铬都通过尿而排泄,尿铬高说明铬丢失严重,糖尿病,缺铬越严重,而馀铬又加重胰岛素抵抗,引起糖代谢紊乱,诱发心脏病,80%糖尿病者伴有心脑血管病。 铅:过多容易引起智力低下、易激动、多动、反应迟钝、贫血。叶黄素:保护视力,预防前列腺癌、肺癌,保护心血管。叶

各种化学元素在钢中的作用

本文出自一本很不好买的书,相当全面,偶然整理,希望对大家学习有帮助 —————————————————————— 有几位选手把我给气乐了,话说这段文章来自我爷爷的手抄本(不过现在老人家现在改复印了,挺时髦的),原书我没看到过所以不知道书名(我们有时候还是比较喜欢上世纪的老版书,比较严谨,实验室王老有本金相可是他老人家的宝贝,轻易不示人)。话说我码字是自娱自乐,目标受众也是学材料的同门,你们一帮连论文都没写过的大神忽然跳出来跟我这指责不尊重知识产权,真是好笑。想讨论问题,我欢迎,想骂人,出门左转菜市场。 —————————————————————— 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度29.4Pa。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍3.5%的钢可在-100℃时使用,含镍9%的钢则可在-196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。

微量元素在人类中的作用及来源

元素名称在人体中的作用主要来源 铁1促进发育;2增加对疾病 的抵抗力;;3调节组织呼 吸,防止疲劳;4构成血红 素,预防和治疗因缺铁而 引起的贫血;;5使皮肤恢复 良好的血色。 肝、桃、瘦肉、贝类、坚 果、芦笋、菠菜、燕麦、 蜂蜜、豆类等。 硒食物与环境含硒量丰富的 地区,心血管疾病、肝坏 死、大骨节病、癌症以及 某些因衰老产生的病患, 发病率要低于通常水准。 硒还有增强人体免疫功 能、增强解毒性、抗衰老 性等作用 大米、茶叶、黄油、鱼粉、 龙虾、蘑菇、猪肾、大蒜 等食物虽然含有一定的硒 元素,但吸收率不太理想。 营养学家提倡补充有机 硒,如硒酸酯多糖、硒酵 母、硒蛋、富硒蘑菇、富 硒麦芽、富硒天麻、富硒 茶叶、富硒大米 铜1、铜络合物(如:铜阿 斯匹林和铜色氨酸)可以 显著提高溃疡和伤口的愈 合速度2、铜络合物的抗惊 劂功能3、铜络合物的抗癌 功能4、铜络合物的辐射防 护和辐射恢复5/铜在体内 过多可导致铜在肝、脑、 角膜、肾等组织器官沉积, 造成机体危害。 猪肝、牛肝、肉类、蛋类、 蔬菜、米糠,黑芝麻、核 桃 镁人体细胞内,镁是第二重 要的阳离子(钾第一),其 含量也次于钾。镁具有多 种特殊的生理功能,它能 激活体内多种酶,抑制神 经异常兴奋性,维持核酸 结构的稳定性,参与体内 蛋白质的合成、肌肉收缩 及体温调节。镁影响钾、 钠、钙离子细胞内外移动 的“通道”,并有维持生物 膜电位的作用。 海带、紫菜、芝麻、大豆、 糙米、玉米、小麦、菠菜、 芥菜、黄花菜、黑枣、香 蕉、菠萝等。 锌锌是80 多种酶的组成成 分或激活剂,(1)锌参与海产品、动物肝脏、瘦肉、坚果类(如花生、瓜子、

C、Mn、Si、S、P、Cr、Mo元素在钢中的作用和热处理时的影响

1、铬(Cr) 铬能增加钢的淬透性并有二次硬化作用。可提高高碳钢的硬度和耐磨性而不使钢变脆;含量超过12%时。使钢有良好的高温抗氧化性和耐氧化性介质腐蚀的作用。还增加钢的热强性,铬为不锈耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度。降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构钢中的主要作用是提高淬透性。使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性。有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (1) 对钢的显做组织及热处理的作用 A、铬与铁形成连续固溶体,缩小奥氏体相区城。铬与碳形成多种碳化物,与碳的亲和力大于铁和锰而低于钨、钼等.铬与铁可形成金属间化合物σ相(FeCr) B、铬使珠光体中碳的浓度及奥氏体中碳的极限溶解度减少 C、减缓奥氏体的分解速度,显著提高钢的淬透性.但亦增加钢的回火脆性倾向 (2)对钢的力学性能的作用 A、提高钢的强度和硬度.时加入其他合金元素时,效果较显著 B、显著提高钢的脆性转变温度 C、在含铬量高的Fe-Cr合金中,若有σ相析出,冲击韧性急剧下降 (3)对钢的物理、化学及工艺性能的作用 A、提高钢的耐磨性,经研磨,易获得较高的表面光洁度 B、降低钢的电导率,降低电阻温度系数 C、提高钢的矫顽力和剩余磁感.广泛用于制造永磁钢 D、铬促使钢的表面形成钝化膜,当有一定含量的铭时,显著提高钢的耐腐蚀性能(特别是硝酸)。若有铬的碳化物析出时,使钢的耐腐蚀性能下降 E、提高钢的抗氧化性能 F、铬钢中易形成树枝状偏析,降低钢的塑性 G、由于铬使钢的热导率下降,热加工时要缓慢升温,锻、轧后要缓冷 (4)在钢中的应用 A、合金结构钢中主要利用铬提高淬透性,并可在渗碳表面形成含铬碳化物以提高耐磨性 B、弹簧钢中利用铬和共他合金元素一起提供的综合性能 C、轴承钢中主要利用铬的特殊碳化物对耐磨性的贡献及研磨后表面光沽度高的优点 D、工具钢和高速钢中主要利用铬提高耐磨性的作用,并具有一定的回火稳定性和韧性 E、不锈钢、耐热钢中铬常与锰、氮、镍等联合便用,当需形成奥氏体钢时,稳定铁素体的铬与稳定奥氏体的锰、镍之间须有一定比例,如Cr18Ni9等 F、我国铬资源较少.应尽量节省铬的使用 2、钼(Mo) 钼在钢中能提高淬透性和热强性。防止回火脆性,增加剩磁和矫顽力以及在某些介质中的抗蚀性。 在调质钢中,钼能使较大断面的零件淬深、淬透,提高钢的抗回火性或回火稳定性,使零件可以在较高温度下回火,从而更有效地消除(或降低)残余应力,提高塑性。 在渗碳钢中钼除具有上述作用外,还能在渗碳层中降低碳化物在晶界上形成连续网状的

钢中微量元素的作用

钢中微量微量元素的作用 碳(C):增加钢的强度硬度,可段性,降低韧性,加工性,易产生裂纹,如化合物(碳化铁)在时,含量越多越脆硬。 锰(Mn):锰是良好的脱氧剂合脱硫剂。钢中都含有一定量的锰,它能消除合减弱由于硫引起的钢的热脆性,从而改善钢的热加工性能。锰合铁形成固熔体,提高钢中铁素体和奥氏体的强度和硬度。锰稳定奥氏体组织的能力仅次于镍,也强烈增加钢的淬透性。 硅(Si)硅能溶入铁素体和奥氏体中提高钢的硬度和强度,其作用仅次于磷,较锰,镍,铬,钨,钼,和矾等元素强。但Si超过3%时,将显著降低钢的塑性和韧性。 含硅的钢在氧化气氛中加热时,表面将形成以层SiO2薄膜,从而提高钢在高温时的抗氧化性Si能将底钢的焊接性能。因为与的亲和力Si比Fe强,在焊接时容易形成底熔点的硅酸盐,增加熔渣和熔化金属的流动性,引起喷溅现象,影响焊缝质量。 硅是良好的脱氧剂。用铝脱氧时酌加一定量的硅,能显著提高铝的脱氧能力。 氮(N):氮能部分溶入铁中,有固溶强化和提高淬透性,但不显著。有于氮化物在晶界上析出,能提高晶界高温强度,增加钢的儒变度。与钢中其它元素化合,有沉淀硬化作用,对钢抗蚀性影响不顾显著。 氢(H):对合金有不利的影响,因其会造成焊道的开裂,增加脆硬性。 硫(S):提高硫和锰的含量,可改善钢的切削性能,在易切削钢中硫作为有益元素加入。但硫在钢中的偏析严重恶化钢的质量,在高温下,降低钢的塑性,是一种有害元素。 磷(P):磷在钢中有固溶强化和冷作硬化作用强作为合金元素加入钢中,能提高钢的强度和港的耐大气腐蚀性能,但能降低钢的塑性和韧性,致使钢在冷加工时容易脆裂,也即所谓的“冷脆”现象。磷对焊接性也有不良影响。 磷是有害元素,应严加控制,一般含量不大于0.030%-0.040%。 铬(ge):铬能增加二次硬化作用,可提高高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢具有良好的高温抗氧化性和耐氧化性介质腐蚀作用,还增加钢的热强性。铬能提高碳素钢的轧制状态的强度和硬度降低钢的生长率和段面收缩率。当铬含量超过15%时,强度和硬度将下降伸长率和段面收缩率则相应地有所提高。 镍(Ni):镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性影响不显著。镍可以提高钢对疲劳的抗力和减少钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温钢有极重要的意义。镍加入钢中不仅耐酸,而且也能抗碱,对大气及盐都有抗蚀能力。 钼(Mo):钼在钢中女人女冠提高淬透性和加热性,防止回火脆性,增加某些介质的抗蚀性。 钒(V):钒和碳、氨、氧、有极强的亲和力,与之形成相应的稳定化合物。其主要作用是细化钢的组织和晶粒,降低钢的过热敏感性,提高钢的强度和韧性,当在高温溶入固体时,增加淬透性; 铝(Al):铝主要是用来脱氧和细化晶粒,提高钢在低温下的韧性。含量高时能提高钢的抗氧化性及氧化性酸和H2S气体中的耐蚀性,铝在钢中固溶强化作用大。 在耐热合金中,铝与镍形成化合物,从而提高热强性。 钛(Ti):有钛和碳之间的亲和力远大于铬和碳之间的亲和力,在不修钢中常用钛来固定其中的碳以消除铬在晶界处的贫化,从而消除或减轻钢的晶间腐蚀。 在高铬不修钢中通常须加入约5倍含碳量的钛,不但能提高钢的抗蚀性(主要抗晶间腐蚀)和韧性,还能阻止钢在高温时的晶粒长大倾向和改善钢的焊接性能。 铌(Nb):铌溶入奥氏体时显著提高钢的淬透性。但以碳化物和氧化物微粒形态存在时细化晶粒并降低钢的淬透性,能体高钢的冲击韧性并降低其脆性转变温度。当含量大于含碳量的8倍时,几乎可以固定钢中所有的碳,使钢具有很好的抗氢性能。在奥氏体中钢中可以防止氧化介质对钢的晶间腐蚀由于固定碳和沉淀硬化作用,能提高热强钢的高温性能。 铜(Cu):铜在钢中的突出作用是改善普通底合金钢的抗大气腐蚀性能,特别是和磷配合使用时,加入铜还能提高钢的强度和屈服比,而对焊接性能没有不利的影响。

钢铁中的元素及作用

各种元素在钢铁中的作用 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。 各种元素在钢铁中有什么作用 碳(Carbon) 存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.6%以上的碳,也成为高碳钢。 铬(Chromium) 增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈 锰(Manganese) 重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。 钼(Molybdenum) 碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。 镍(Nickle) 保持强度、抗腐蚀性、和韧性。出现在L-6\AUS-6和AUS-8中。 硅(Silicon) 有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。 钨(Tungsten) 增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。 钒(Vanadium) 增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420V A含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒 按钢的用途分类 一、结构钢 (1)建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。 (2)机械制造用结构钢--是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等 根据含碳量和用途的不同﹐这类钢大致又分为三类﹕ 1. 小于0.25%C为低碳钢﹐其中尤以含碳低于0.10%的08F﹐08Al等﹐由于具有很好的深冲性和焊接性而被广泛地用作深冲件如汽车﹑制罐……等﹐20G则是制造普通锅炉的主要材料﹐此外﹐低碳钢也广泛地作为渗碳钢﹐用于机械制造业﹐ 2. 0.25~0.60%C为中碳钢﹐多在调质状态下使用﹐制作机械制造工业的零件。调质多少22~34HRC,能得到综合机械性能,也便于切削. 3. 大于0.6%C为高碳钢﹐多用于制造弹簧﹑齿轮﹑轧辊等﹐根据含锰量的不同﹐又可

微量元素的功效

1、微量元素与生长发育 铁、铜、锌、锰形成的酶和碘形成的甲状腺素,均有促进生长发育的作用, 缺乏,均引起生长发育的停滞,补充,可以加速生长发育和体重的增长,增强体质。 缺锌:可发生先天性畸形 缺铜:小脑发育不全,大脑萎缩,贫血。 缺碘:先天性可汀病,甲状腺肿,呆小症。 由于微量金属元素在体内缺乏或过量而引起的病症如下表: 1)微量元素不足或过多,都会干扰内分泌的功能。 2)缺锌铜降低脑垂体、肾上腺内分泌 3)缺铬影响胰腺的分泌等等

4)微量元素与感染和免疫 微量元素的含量变化既影响着人体也影响着微生物。机体的铁铜锌等微量元素的不足和过多,均可减弱免疫机制,降低抵抗力,助长 细菌感染。因此,机体需要一个“营养免疫”的适宜的微量元素浓度。 3、微量元素与心血管、血液系统 Zn/Cd比值增大,抑制高血压的发生 Zn/Cu比值增大,诱发冠心病缺Cu可引起咼尿酸血症 Cr、Mn Se可防治动脉粥样硬化 Si可维持动脉内膜完整、通透性、弹性 Li、Sr等可降低心血管疾病的死亡率 Fe、Cu Zn等影响创伤的愈合 4、微量元素与神经系统 缺铁可以引起行为的改变缺碘可以引起中枢神经的系统的病变缺锌儿童智力发 育不良缺铜可以引起大脑皮质萎缩,智力降低缺Li、Co会影响智力的发展铅 镉锰量过多干扰智力的发育 5、微量元素与肿瘤 微量元素不能由人体组织合成,环境中微量元素的分布和含量,直接影响人的摄入量和体内的储存量,不同的摄入量和储存量影响着人的健康状况,同样影响着人的肿瘤的发生和发展,同时具有地理和地域性的分布特征。 6微量元素协同与拮抗作用 锰能促进铜的利用,铜能加速铁的吸收和利用,铁、锰、铜、钻有生血协同作用。 镉能减少锌的吸收和生物学功能,锌能拮抗镉的毒性;铜能拮抗钼的毒性; 硒能拮抗镉的毒性,砷能减弱硒的毒性,而钻能增强硒的毒性。铁和锰既能相互干扰在消化道的吸收过程,又能协同生血效果。

微量元素的重要性

微量元素重要性 微量元素是小于体重0.01%的元素。锰、硒、锌是14种微量元素中三种,体内含量极微。与整体个人重量相比只占10万分之一到百万分之几。但微量元素在人的活动中起到非常重要的生理、生化作用是人体必需的。 但随着人的年龄增长老化,微量元素体内含量逐渐减少,导致出现疾病的发生。锰、硒、锌微量元素对骨关节的健康特别重要。 1 锰是人体内必需的微量元素,对人体健康起着重要的作用。锰在人体内起的作用是多方面的,具体可以归纳为以下几点: 1、可促进骨骼的生长发育。 2、保护细胞中细粒体的完整。 3、保持正常的脑功能。 4、维持正常的糖代谢和脂肪代谢。 5、可改善肌体的造血功能。 锰对人体的重要作用不仅能从人体含正常锰元素的情况下看得出来。从人体缺锰的症状也能侧面反映出来锰对人体的重要性。锰通常摄入量为每天2~5mg,吸收率为5%~10%,如 果少于这个量,就有可能出现锰缺乏症状。锰缺乏症状可影响生殖能力,有可能使后代先天性畸形,骨和软骨的形成不正常及葡萄糖耐量受损。另外,锰的缺乏可引起神经衰弱综合症,影响智力发育。锰缺乏还将导致胰岛素合成和分泌的降低,影响糖代谢。 成年人每日锰供给量为每千克体重0.1毫克。食物中茶叶、坚果、粗粮、干豆含锰最多,蔬菜和干鲜果中锰的含量略高于肉、乳和水产品,鱼肝、鸡肝含锰量比其肉多。一般荤素混杂的膳食,每日可供给5毫克锰,基本可以满足需要。偏食精米、白面、肉、乳过多锰的 含量会降低。当正常人出现体重减轻、性功能低下、头发早白可怀疑锰摄入不足。 另外,核桃、麦牙、赤糖蜜、莴苣、干菜豆、花生、马铃薯、大豆、向日葵籽、小麦、大麦以及肝等食物中也含有丰富的锰元素。 如果人体缺锰,就会影响生长发育。孕妇缺锰导致婴儿缺锰,可出现新生儿运动失调;幼儿及青少年缺锰,可损害生长,并可造成骨骼畸形;成年人缺锰,可出现生殖功能紊乱。虽然大海底下锰含量非常丰富,锰在人体中作用也不小,但人体对锰的需要量还是很微少的,普 通人的膳食中,锰的需要量为每天4-9毫克,其中约一半经肠道吸收。

钢材中各种元素的影响

钢材中各种元素的影响 1、C:钢种含碳量增加,屈服点和抗拉强度增加,但是苏醒和冲击性能降低,当含碳量超过0.23%,刚的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一半不超过0.2%,含碳量高还会降低刚的耐大气腐蚀能力。此外,碳能增加刚的冷脆性和是小敏感性。 2、Si:在炼钢的过程中硅作为还原剂和脱氧剂,所以镇静钢含有0.15——0.3的硅。如果刚中含硅量超过0.5——0.6,硅就算合金元素了。硅能显著提套刚的弹性极限,屈服点和抗拉强度,故广泛用于弹簧钢。在调质结构钢种加入1.0——1.2的硅,强度可提高15——20.硅和钼、钨、铬结合,有提高抗腐蚀行和抗氧化的作用,可制造耐热钢。含硅1-4的低碳钢,具有极高的导磁性,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、Mn :在炼钢的过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.3-0.5.在碳素钢中加入0.7以上是就算锰钢,较一般钢量不但有足够的人性,而且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能。含锰11-14的钢有极高的耐磨行,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、P:在一般情况下,磷是刚中有害的元素,增加刚的冷淬性,使其焊接性能下降,降低塑性,使冷弯性能下降。通常钢中的磷含量要求小于1.145,优质钢要更低些 5、S:硫在通常情况下是有害元素。所以通常要求硫含量小于0.055,优质钢要小于0.04.在钢中加入0.08——0.2的硫,可以改善切削加工性,通常称易切削钢。 6、Cr:在结构钢和工具钢中,铬能显著提高强度,硬度和耐磨性,但同时降低索性和韧性,铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、Ni:镍能提高钢的强度,又能保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力。在高温下有防锈和耐热能力。但由于镍是希求资源,故应尽量采用其他合金元素代替镍铬钢。 8、Mo:钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的轻度和抗蠕变能力。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于回火而引起的淬性。在工具钢中提高红硬性。 9、Ti:钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒;降低时效敏感性和冷脆性。改善焊接性能。 10、V:钒是刚中有两脱氧剂。钢中加0.5的钒可以细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可以提高抗氢腐蚀能力。 11、W:钨熔点高,比重大,是贵重合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢中加钨,可以显著提高红硬性和热强 行,作切削工具及锻模具用。

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

合金元素在钢中的作用

了合金化而加入的合金元素,最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等。现分别说明它们在钢中的作用。 1、硅在钢中的作用: (1)提高钢中固溶体的强度与冷加工硬化程度使钢的韧性与塑性降低。 (2) 硅能显著地提高钢的弹性极限、屈服极限与屈强比,这就是一般弹簧钢。(3)耐腐蚀性。硅的质量分数为15%一20%的高硅铸铁,就是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层SiO2薄膜,从而提高钢在高温时的抗氧化性。 缺点:(4)使钢的焊接性能恶化。 2、锰在钢中的作用 (1)锰提高钢的淬透性。 (2)锰对提高低碳与中碳珠光体钢的强度有显著的作用。 (3)锰对钢的高温瞬时强度有所提高。 锰钢的主要缺点就是,①含锰较高时,有较明显的回火脆性现象;②锰有促进晶粒长大的作用,因此锰钢对过热较敏感t在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服:⑧当锰的质量分数超过1%时,会使钢的焊接性能变坏,④锰会使钢的耐锈蚀性能降低。 3、铬在钢中的作用 (1)铬可提高钢的强度与硬度。 (2)铬可提高钢的高温机械性能。 (3)使钢具有良好的抗腐蚀性与抗氧化性 (4)阻止石墨化 (5)提高淬透性。 缺点:①铬就是显著提高钢的脆性转变温度②铬能促进钢的回火脆性。4、镍在钢中的作用 (1)可提高钢的强度而不显著降低其韧性。 (2)镍可降低钢的脆性转变温度,即可提高钢的低温韧性。 (3)改善钢的加工性与可焊性。 (4)镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱与大气的腐蚀。

5、钼在钢中的作用 (1)钼对铁素体有固溶强化作用。 (2)提高钢热强性 (3)抗氢侵蚀的作用。 (4)提高钢的淬透性。 缺点:钼的主要不良作用就是它能使低合金钼钢发生石墨化的倾向。6、钨在钢中的作用 (1) 提高强度 (2)提高钢的高温强度。 (3)提高钢的抗氢性能。 (4)就是使钢具有热硬性。因此钨就是高速工具钢中的主要合金元素。7、钒在钢中的作用 (1)热强性。 (2)钒能显著地改善普通低碳低合金钢的焊接性能。8、钛在钢中的作用 (1)钛能改善钢的热强性,提高钢的抗蠕变性能及高温持久强度;(金属材料长期在高温条件下受热应力的作用而产生缓慢、连续的塑性变形的现象,叫金属的蠕变) (2)并能提高钢在高温高压氢气中的稳定性。使钢在高压下对氢的稳定性高达600℃以上,在珠光体低合金钢中,钛可阻止钼钢在高温下的石墨化现象。因此,钛就是锅炉高温元件所用的热强钢中的重要合金元素之一。 9、铌在钢中的作用 (1)铌与碳、氮、氧都有极强的结合力,并与之形成相应的极为稳定的化合物,因而能细化晶粒,降低钢的过热敏感性与回火脆性。 (2)有极好的抗氢性能。 (3)铌能提高钢的热强性 10、硼在钢中的作用 ; (1)提高钢的淬透性。 (2)提高钢的高温强度。强化晶界的作用。 11、铝在钢中的作用

植物大中微量元素大汇总(汇编)

植物必需元素的生理作用及缺素症状 根据必须元素在植物体内的移动性,必需元素可分为两类,可移动的,如N、P、K、Mg、Zn、B、Mo,这些元素在植物体内可被再利用,当植物缺乏这些元素时,这些元素从老的部位转移到幼嫩部位,因此缺素症状表现在老叶上。难移动的元素,包括Ca、S、Fe、Mn、Cu,这些元素被利用后,很难移动,当植物缺乏这些元素时,新生的组织由于缺乏这些元素,首先表现出缺素症状。 植物缺素症状的识别 一、大量元素 1.氮(N) 症状植株变态叶根、茎生殖器官打油诗 氮缺乏 生长受抑制,植 株矮小、瘦弱。地 上部受影响较地下 部明显 叶片薄而小,整个叶 片呈黄绿色,严重时 下部老叶几乎呈黄 色,干枯死亡 茎细,多木质。根受抑 制,较细小。分蘖少(禾 本科)或分枝少(双子 叶) 花、果穗发育迟缓。不正 常的早熟。种子少而小, 千粒重低。 植株矮小长势弱,叶色失绿较细小。 叶片变黄无斑点,从下而上逐扩展。 根系细长且稀小,严重下叶枯黄落。 花果少而种子小,产量下降成熟早。 氮过剩1、叶呈深绿色,多汁而柔软,对病虫害及冷害的抵抗能力减弱 2、根的生长虽然旺盛,但细胞少; 3、茎伸长,分蘖增加,抗倒伏性降低 4、籽实成熟推迟 蔬菜缺氮症状蔬菜缺氮时叶绿素含量减少,植株生长发育不良,生长缓慢,从老叶开始失绿,渐渐发黄,并逐步向上发展,直至整株作物失绿而变为黄绿色。缺氮时蛋白质合成受阻,导致细胞小而壁厚,植株矮小瘦弱,花蕾容易脱落,果实小而少,产量低,品质差。 番茄黄瓜辣椒、茄子大白菜包菜 缺氮时果实 小,色淡 果实色浅白绿,靠果柄前一段很细,果实 端部靠花蒂一段突然膨大成畸形果;果实少而小 缺氮时,叶片从下向上 渐渐发黄,株形小; 缺氮时,发棵慢,下部叶子渐渐发 红; 2.磷(P) 症状植株变态叶根、茎生殖器官打油诗 精品文档

10.2生物微量元素与健康

第十章食品、药品与健康 课题2 生物微量元素与健康 【教学目标】 通过已有的生活经验理解化学元素与人体健康的关系,感悟化学知识的重要性。 【教学重点】 1.了解人体元素的组成。 2.了解一些元素对人体健康的作用。 【教学方法】 学生主动参与,师生双向互动。 【教学过程】 【引入】俗话说“民以食为天”,随着生活水平的提高,我们的饮食水平也逐渐提高。吃得好是否就身体好呢? 如果饮食不合理会引起营养不良。如何才能使身体更健康呢? 【多媒体显示】化学元素和人体健康(健康报报道) 【讲解】同学们,你们知道么,色彩斑斓的大千世界的万物是由100多种元素组成的,而我们人体中的元素约有50多种,含量较多的有11种,约占人体质量的99.5%。 【多媒体显示】(佝偻病患者) 【设问】怎么会得这种病呢? 【指导阅读】 1.人体中含量最多的金属是什么? 2.该金属对人体有何影响? 【讨论】学生四人一组进行讨论,教师对讨论进行指导,师生共同得出结论。 【归纳小结】1.成人体内约含有钙1.2kg。钙是构成骨、牙齿的重要成分,它使得骨骼和牙齿具有坚硬的结构支架。 2.幼儿及青少年缺钙会引起生长迟缓、骨骼变形,出现佝偻病、牙齿发软,易患龋齿等症状。成人缺钙,发生骨质软化和骨质疏松,容易骨折,因此人体必须摄入足够的钙。幼儿、青少年处于生长发育阶段,需要摄入比成年人更多的钙。我国营养学会1998

年对每日膳食中的钙供给量提出建议:婴幼儿400 mg~800 mg,青少年1 000 mg~1 200 mg,成年人800 mg,老年人1 000 mg~1 200 mg。 【设问】哪些食物中含有钙元素呢? 【学生活动】学生抢答(对答得最多的学生给予表扬。) 【多媒体显示】常用食物中的钙含量(mg/100 g) 【讲解】在食物中钙的来源以奶及奶制品最好,不但含量丰富而且吸收率高。不知大家有没有听说过“一杯牛奶拯救一个民族”的故事,故事说的是多年前日本人的平均身高比较矮小,但是近几年日本青少年的身高已经远远超过了中国青少年,这是为什么呢?当然,除了生活水平存在差异以外,我想最值得一提的是这样两个数据:日本目前每年人均牛奶消耗量达到68 L,而中国仅为6.6 L。造成身高差异的一个主要原因就是两国青少年自牛奶中获取的钙量存在差别。 【设问】食物中含有如此丰富的钙,怎样才能合理吸收呢?前两天报纸上曾登过这样一篇文章。 【多媒体显示】 晚餐最好这样吃 晚餐早吃:晚餐早吃是医学专家向人们推荐的保健良策。有关研究表明,晚餐早吃可大大降低尿路结石病的发病率。 人的排钙高峰期常在进餐后4到5小时,若晚餐过晚,当排钙高峰期到来时,人已经上床入睡,尿液便滞留在输尿管、膀胱、尿道等尿路中,不能及时排出体外,致使尿中钙的含量不断增加,容易沉淀下来形成小晶体,久而久之,逐渐扩大形成结石。所以下午6点左右吃晚餐较合适。 晚餐素吃:晚餐一定要偏素,以富含碳水化合物的食物为主,而蛋白质、脂肪类吃得越少越好。 据美国研究报告,晚餐时吃大量的肉、蛋、奶等高蛋白食品,会使尿中钙量增加,一方面降低体内的钙贮存,诱发儿童的佝偻病、青少年近视和中老年骨质疏松症,另一方面尿中钙浓度高,患尿路结石病的可能性就会大大的提高。 【复习提问】氯化钠在人的正常生理活动中的作用。 【多媒体显示】 钠和钾元素对人体起着重要的作用。

合金元素在钢中的作用

第六章合金钢 合金钢的优点:高的强度和淬透性 第一节合金元素在钢中的作用 常用合金元素: 非碳化物形成元素——Co Ni Cu Si Al 碳化物形成元素——Zr Nb V Ti W Mo Cr Mn Fe 强中强弱 一、合金元素对钢中基本相的影响 1、形成合金铁素体 合金元素→溶入A →形成合金铁素体→固溶强化(Cr,Ni较好)2、形成合金碳化物 弱碳化物形成元素形成合金渗碳体(Fe,Mn)3C 中强碳化物形成元素形成合金碳化物(Cr23C6,Fe3W3C) 强碳化物形成元素形成特殊碳化物(VC,TiC) 熔点、硬度和稳定性: 特殊碳化物> 合金碳化物> 合金渗碳体> Fe3C 二、合金元素对Fe-FeC相图的影响 合金元素对A相区影响 扩大A相区元素(Mn)——E、S点左下移 缩小A相区元素(Cr)——E、S点左上移 奥氏体钢:1Cr18Ni9 铁素体钢:1Cr17 莱氏体钢:W18Cr4V

三、合金元素对热处理的影响 1、对加热的影响 多数元素减缓A形成,阻碍晶粒长大 2、对冷却的影响 多数元素溶入A后→过冷A稳定性↑→Vc↑→淬透性↑ →Ms点↓→残余A量↑提高淬透性的意义: ①增加淬硬层深度 ②减少工件变形、开裂倾向3、对回火的影响 ①回火稳定性→抗回火软化的能力 ②产生二次硬化(析出特殊碳化物,产生弥散强化;A残→M或B下) 第二节低合金钢 一、低合金高强度钢 碳素结构钢:Q195,Q215,Q235,Q255,Q275 低合金高强度钢:Q295,Q345,Q390,Q420,Q460 Q235+Me(<3%) →Q345 1、成分:0.1~0.2%C,合金元素2~3% 主加元素:Mn ——固溶强化 辅加元素:Ti,Cr,Nb ——弥散强化 使用状态:热轧或正火(F + P),不需最终热处理 2、性能:较高的σs ,良好的塑性韧性, 焊接性,抗蚀性,冷脆转变温度低

相关主题
文本预览
相关文档 最新文档