当前位置:文档之家› 硅微型陀螺仪

硅微型陀螺仪

硅微型陀螺仪
硅微型陀螺仪

硅微型梳状线振动驱动式陀螺仪

硅微型振动陀螺仪在工作时,用微幅振动代替高速旋转

硅微型梳状线振动驱动式陀螺仪的工作原理:

结构图如图所示:

机械部分由基座,提供驱动力的定齿,动齿,活动质量和连接活动质量的弹簧,固定弹簧的固定端组成。固定端和定齿都固定在基座上,活动质量由弹簧连接在固定端上。动齿固定在活动质量上。该陀螺仪采用静电驱动技术,给固定在基座上的定齿梳状电极上加载带直流偏执的交流电压,活动质量上的动齿接地。这样动、静齿间便产生大小和方向周期性变化的静电吸引力,使整个活动质量和动齿一起在两定齿之间来回振动,此时若基座在惯性空间中作转动,由于哥氏力的作用,活动质量将在垂直于基座的方向上振动,这样就可敏感基座相对于惯性空间转动的角速度。

建坐标系:取将动作标系固连在硅微型梳状线振动驱动式陀螺仪的基座上,取动作标系的原点为活动质量质心的平衡位置,x轴为静电驱动力的方向,z轴为与基座垂直的方向,y轴由右手规则确定。

(1)只做x轴方向的转动时的结论:

1.该方向上的角速度不能测量;

2.随着静电引力的振动频率的增大,活动质量的振动的振幅会大大减小,该陀螺仪的灵敏度会降低。

3.x轴方向的角速度不能大于根号内K/m,否则陀螺仪将被损坏。陀螺仪损坏的临界值随尺寸的降低而迅速增加。

(2)只做z轴方向的转动时的结论:不能测量该方向上的角速度。

(3)陀螺仪的基座在y轴方向的转动角速度近似地与活动质量在z轴方向的这一振动频率为ω的振动的振幅成正比。比例系数为2δ/(mω3)

小结:该陀螺仪对y轴方向的角速度最敏感,即应当它作为输入量,把y轴作为输入轴。而对其影响最强烈的是活动质量在z轴方向频率为ω的振动的振幅,它可以作为输出量。而静

电引力的振动频率充分大时,该输出量与输入量接近于正比关系。

总结:1.单轴角速度计;2.y轴方向上的角速度旋转与z轴的某固定频率振动下的振幅成正比。

振动轮式微机械陀螺仪

振动轮式微机械陀螺仪的结构示意图如图

外框架由挠性轴与驱动轮连接,它相对于驱动轮只能作沿挠性轴方向(即y w方向)的转动,其转动角用φ来表示,,如图:

驱动轮由支柱与基座连接,它相对于基座只能作支柱方向(即Z b方向)的转动其转动角用θ来表示,如图

振动轮式微机械陀螺仪采用静电驱动技术,给固定在基座上的固定梳状电极上加载带直流偏置的交流电压,驱动轮上的动齿接地。这样动、静齿间便产生大小周期性变化的静电吸力,使整个驱动轮绕其中心轴(即支柱)来回振动,并带动外框架一起振动,此时若基座相对惯性空间有一定角速度的转动,它将通过支柱和挠性轴给驱动轮和框架施加力矩,这样由于哥氏力矩的作用框架将相对于驱动轮作挠性轴方向的角振动。通过测量这一角振动的幅度就可敏感基座相对惯性空间转动的角速度。

取基座坐标系与基座相固连,取支柱向上的方向为z b的正向,取挠性轴的平衡位置为基座y b 轴方向,而x b轴由右手规则确定。(只能测量x轴方向的旋转角速度)

音叉式(梳状)线振动硅微陀螺仪

音叉式(梳状)线振动硅微陀螺仪的基本结构如图

它主要由两边驱动器、中间驱动器、检测质量和连接检测质量的挠性支撑组成。两边驱动器和中间驱动器固定在基座上,检测质量由挠性支撑与框架连接在一起,再由挠性弹簧片与基座相连。由于挠性支撑和挠性弹簧片的特殊结构使得检测质量只能做X轴方向的线运动

和沿Y轴方向的转动。为增加驱动器的工作效率,在两边驱动器和中间驱动器上都加装了静齿,而在平板型的检测质量上加装了动齿。

当音叉式(梳状)线振动硅微陀螺仪工作时,给两边驱动器和中间驱动器的静齿上加载带直流偏置的交流电压,检测质量上的动齿接地。这样在动、静齿之间便产生大小和方向做周期性变化的静电吸引力,使检测质量和动齿一起在两边驱动器和中间驱动器之间来回振动,并带动框架和挠性支撑等一起振动。由于两边驱动器的静齿上的电位总是相同的,中间驱动器的静齿上的电位也总是与边驱动器的电位反向,所以两检测质量和其上的动齿总是做相向和相背的交替振动且关于Y轴总是对称的。如果这时陀螺仪的基座在惯性空间中转动(在y 轴方向上),由于哥氏力的作用,两检测质量和其上的动齿将受到大小相等但方向相反的交变哥氏力。从而使得检测质量、动齿和挠性支撑一起沿Y轴方向做角振动,如下图。

这时检测质量、动齿、框架和挠性支撑等将总是保持在同一个平面内。这样就可以通过测量这一角振动的幅度来获得陀螺仪的基座在惯性空间中转动的信息。

Y轴为敏感轴,当陀螺仪只做y轴方向的转动,并且静电引力的振动频率充分大时,基座在惯性空间所做y轴方向的转动的角速度近似地与框架相对于基座在Y轴方向的转动角的运动中振动频率与静电引力的振动频率相同的振动的振幅成正比。

当音叉式(梳状)线振动硅微陀螺仪在惯性空间中只做y轴方向的匀速转动时,最能反映转动的角速度ωy的量,是框架相对于基座在Y k(即Y b)轴方向的转动角θ(t)的运动中振动频率

与静电引力的振动频率相同的振动部分。当基座在惯性空间中只做在与陀螺仪的基座固连的动坐标系(基座坐标系)的y轴方向的转动,并且静电引力的振动频率充分大时,它在y轴方向的

转动的角速度近似地与框架相对于基座在Y k(即Y b)轴方向的转动角θ(t)的运动中振动频率

与静电引力的振动频率相同的振动的振幅成正比,比例系数为

2M x F

I x+I z Mω3

MEMS陀螺仪参数校准方法研究

MEMS陀螺仪参数校准方法研究 摘要:针对陀螺仪标定成本与精度之间矛盾的问题,建立了陀螺仪的误差模型,探索了一组最佳标定位置,提出了针对陀螺仪的零偏、标度因数和安装误差角等参数引起测量数据出现偏差的4位置标定方法。并将该方法应用于机载系统的姿态测量单元,估计出了陀螺的标定参数,并对标定后的陀螺仪进行试验测试。测试结果表明,标定后陀螺仪的性能满足预期试验要求,验证了该标定方法的正确性和有效性。 关键词:陀螺仪;标定;4位置;零偏;标度因数;安装误差 引言 三轴陀螺仪常用来测量物体三个方向的角速率信息,及估计设备姿态信息。相对于传统陀螺仪,采用MEMS集成制造工艺的陀螺仪具有重量轻、体积小、成本低、可靠性高等优点,在机载导航及车载导航等领域得到了广泛应用。系统姿态测量的精度除了与姿态解算算法有关外,还与MEMS陀螺仪的加工工艺及安装精度相关。因而,对MEMS陀螺仪误差估计和标定的研究具有重要意义[1-2]。 陀螺仪的标定方法主要有基于转台的多位置角速率试验标定方法[3]和现场多位置标定方法[4-5]。传统的标定方法以高精度转台为测试基础,标定过程非常复杂。现场标定能够降低工作量,但标定精度相对较差。文献[6]在陀螺速率试验和24位置实验的基础上,提出一种无需基准北向的陀螺标定方法,消除了不对北误差影响。文献[7,8]结合传统的静态多位置和速率标定方法,提出基于双轴旋转机构的6位置标定方法,该方法求解标度因子和安装误差较为方便,但在求解常值漂移时步骤繁琐。文献[9]分别采用24位置、12位置和8位置对陀螺仪进行标定试验,表明标定位置减少,能够降低标定成本,但标定精度随之降低。因而要探究有效的标定位置,在降低标定成本的同时提高标定精度。 本文对陀螺仪的误差源进行分析,建立了测量误差的数学模型,提出了一种新型4位置陀螺仪标定方法,补偿了零偏,安装误差及标度因子对陀螺仪的影响,并进行相关实验测试。测试结果表明,该方法简化了现有标定步骤,节约了标定时间;标定结果满足预期试验要求,标定方法合理、可行。 1 陀螺仪的误差模型 在三轴陀螺仪中,三个轴向的陀螺分别安装于三个正交面上,构成右手坐标系。由于陀螺仪自身工作原理、结构,以及集成制造、安装等因素影响,导致陀螺仪的输入轴坐标系之间不能正交,存在一定的安装误差。陀螺仪标定的目的就是补偿输出值与测量值之间的偏差,补偿测量值为零而实际输出值不为零的零偏,补偿由加工精度、装配工艺等原因引起的安装耦合误差,因此MEMS陀螺的输出模型可以表示为: 其中,为敏感轴测量的角速度,为真实角速度,?啄?棕为线性刻度因子误差矢量,N为非正交因子矢量,为常值漂移(零偏),为陀螺噪声误差。考虑到陀螺噪声误差对标定结果的影响较小,忽略噪声误差对测量结果影响。令K=1+S+N,则上述公式可以变换为: 其中,Ky x、Kz x为敏感轴x对应的安装误差耦合系数;Kx y、Kz y为敏感轴y对应的安装误差耦合系数;Kx z、Ky z为敏感轴z对应的安装误差耦合系数;Kx x、Ky y 、Kz z 为3个敏感轴对应的标定因数;D x 、D y 、D z是陀螺敏感轴x、y、z的常值漂移(零偏)。 2 4位置标定方案

微陀螺仪的设计与制造过程

微陀螺仪的设计与制造 学校:华中科技大学 专业:机械设计制造及其自动化 姓名:潘登 班级:1104班 学号:U201110689 指导老师: 廖广兰 来五星

中文摘要 随着科学技术的发展以及科研技术的逐渐成熟。陀螺仪也逐渐进入了各个领域。现如今陀螺仪在航海导航、航天航空、研究动力学、兵器、汽车、生物医学、环境监控等方面有了广泛的应用。而各种陀螺仪也因其原理的不同而有不同的分类,诸如哥氏加速度效应微振动陀螺、流体陀螺、固体微陀螺、悬浮转子式微陀螺、微集成光学式陀螺以及原子陀螺。而其中随着MEMS技术的不断发展,以其为基础的微陀螺因尺寸小、精度高、重量轻、易于数字化、智能化而越来越受到大家青睐。其在汽车导航、消费电子和移动应用等民用领域以及现代和可预见的未来高科技战场上拥有广阔的发展和市场前景。 文章首先对陀螺仪做了简单的原理和功能介绍,阐述了当前微陀螺仪是非常具有前景的研究防线,并简单介绍了几种常见的微陀螺仪,然后对微陀螺仪的结构进行了简单的分析并且分析了微机械陀螺仪的设计及制造过程和工艺方法并对其中的技术难点进行了分析,也对加工陀螺仪必须的MEMS工艺进行了概述,然后对微陀螺仪的前景及应用进行了进一步的探讨。 关键词: 微机械陀螺仪,MEMS工艺,制作过程,关键技术

Abstract With the development of science and technology as well as scientific research and technology matures.Gyroscope is gradually coming into the fields.Now gyroscope has broad application in marine navigation, aerospace, research dynamics, weapons, cars, bio-medicine, environmental monitoring, etc.And also because of the various gyroscope different principles and have different classifications, such as the Coriolis acceleration effect of micro-vibration gyro, gyro fluid, solid micro-gyroscope, suspended gyroscope rotor micro, micro-gyroscope integrated optical and atomic gyroscope. With the continuous development of which MEMS technology, with its micro-gyroscope-based due to the small size, high precision, light weight, easy-to-digital, intelligent and increasingly being favored. It has a broad development and market prospects in the car navigation, consumer electronics and mobile applications and other civilian areas as well as modern and high-tech battlefield for the foreseeable future. The article first gyroscope do a simple principle and function description, describes the current micro-gyroscope is a very promising line of research, and a brief introduction to some common micro-gyroscope, then the structure of the micro-gyroscope simple analysis and analysis of the micromachined gyroscope design and manufacturing process and process methods and technical difficulties which were analyzed, but also on the processing of MEMS gyroscope must be an overview of the process, then the prospects for and application of micro-gyroscopes were further discussion. Keywords: Micromechanical gyroscopes, MEMS technology, production process, key technologies

微机械陀螺仪的温度误差分析和模型研究

微机械陀螺仪的温度误差分析和模型研究 摘要:微机械陀螺仪是一种用于测量物体运动角速度的新型惯性器件。这种新型陀螺仪具有体积小、重量轻、可靠性高、抗冲击、易于数字化和智能化、能大批量生产等优点,是未来惯性技术向民用领域大量推广应用最有前途的仪表。但环境温度是对其性能有重大影响。本文主要对微机械陀螺仪的温度误差原因进行分析,并对现有温度误差分析补偿模型进行了介绍。 关键词:微机械陀螺仪;温度误差;灰色模型;最小二乘法;小波网络法 The research on error analysis and model of microelectron-mechanical gyroscope (College of Aerospace Engineering, Nanjing University of Aeronautics &Astronautics, Nanjing, 210016, China) Abstract:Micro mechanical gyroscope is a new inertial component, which is used for measuring the velocity object movement. This new type of gyroscope has characteristics such as small size, light weight, high reliability, impact resistant, easy to digital and intelligent, and mass production, so it is the future technology to civil field large inertia popularization and application of the most promising instrument. But environmental temperature has a major impact on its performance. This paper mainly to analyz the micro mechanical inner temperature error reason, and the error analysis of existing temperature compensation models are introduced in this paper. Key words:microelectron-mechanical gyroscope;temperature error;gray model;wavelet network 陀螺仪又称角速度计,可以用来检测旋转角速度和角度。传统的机械陀螺、精密光线陀螺和激光陀螺等已在航空航天等军事领域得到广泛应用。但是无论从尺寸还是成本上,都不能满足微型武器的应用要求[1]。近年来,随着半导体技术集成电路微细加工技术的迅速发展,MEMS(Micro-Electro-Mechanical System)惯性器件得到快速发展,微机械陀螺仪也得到快速发展,它具有体积小,抗冲击,可靠性高,寿命长,成本低等特点,在军事和民用等领域应用前景广阔[2]。据各国研究成果表明,随着器件精度的不断提高,微机械陀螺仪技术必将在未来的军用及民用的相关领域中发挥越来越重要的作用[3]。但是由于性能限制,MEMS陀螺主用于中低精度导航。在微机械陀螺中的众多误差因素中,环境温度的影响是不可忽视的。因此对微机械陀螺仪的温度特性进行分析,并进行温度误差的建模和补偿是提高精度的有效手段,也是当前MEMS陀螺研究的热点之一。 1.微机械陀螺仪的温度误差分析 微机械陀螺仪的精度是决定惯性系统精度的核心因素,陀螺仪的精度较低,对姿态测量系统的动态性能影响很大。由于其对温度敏感度大,温度漂移成为其主要的误差源之一。首先分析微机械陀螺仪的工作原理,然后分析温度对微机械陀螺仪的影响。 1.1微机械陀螺仪的工作原理 微机械陀螺仪利用了哥氏力现象,其原理如图1.1所示。图中的物体沿X轴做周期性振

内框驱动式硅微型角振动陀螺仪灵敏度研究

The S en sitivity Study of an Angular Vibratory Microme chanical Gyro s cope Driven by the Inner Frame F A NY u e-m i n g1,2,M A O Pan-s o n g2 1.D e pa rt m e nt o f In fo r matio n e n g in e er in g,N an jin g U n i v er s it y of Po st s an d T e le c o m m u n ic atio n,N an jin g210003,C h ina 2.D e pa rt m e nt o f E le ctr o n ic e n gi n e e r in g,S o u th e ast U ni v e r sit y,N an ji n g210096,C h in a () Ab stra ct: T hi s pa pe r de v el o p s d y na m ic a n d s en sit i ve eq u ati o n s o f a n g ula r v i br at or y m ic r o m e ch an ic al g yr o s c o p e w ith d u-al-g i m b al dri v en b y t he i n ne r g i m bal f r a m e,a n d pr ese nt s t w o s i m p le an d f ea si ble m et h o d s t o e n ha nc e t he g yr o sc o pe’s sen s iti v it y.T he f re q ue nc y o f t he i n ne r g i m bal f ra m e an d th e nat ur al f r eq u en c y o f th e o ute r g i m bal f ra m e a re e q ual.T h e dri v en si g n al co n si sts o f t w o s in e-w a v es an d th eir fr e q ue ncies a r e s ele cted t o eq u al t o th e nat ur al f re q ue nc y o f in n e r an d o ute r f r a m e.in de si g ni n g g yr o s co pe s y ste m. Ke y w ord s: 7630m icr o m e ch an ic al g y ro sc o p e;d o u b le g i m b als;se n siti v it y EEACC: 内框驱动式硅微型角振动陀螺仪灵敏度研究① 方玉明1、2,茅盘松2 1.南京邮电学院信息工程系,南京210003; 2.东南大学电子工程系,南京210096. () 摘要:建立了内框驱动式硅微型角振动陀螺仪的运动方程,导出了灵敏度方程,提出了提高陀螺系统灵敏度的简单可行的方法,即:设计制造陀螺仪时,使内外框架固有频率相等,或驱动信号采用二个正弦波之和,二个正弦波的频率应选为框架的固有频率。 关键词:微机械陀螺仪;双框架;灵敏度 中图分类号:1?249.122文献标识码:A文章编号:1005-9490(2004)01- 众所周知,微陀螺仪技术对国防建设和国民经济建设具有极其重要的意义。它广阔的应用前景使得这方面的课题成为热门的跨世纪的研究领域之一。硅微型双框架式角振动陀螺仪首先由美国C S-D L实验室1988年研制成功。它有两个框架,一为驱动,一为检测。按驱动框是内框还是外框,可分为内框驱动式和外框驱动式。对于内框驱动,施加于内框架的驱动力矩可以被挠性杆隔离,不会引起外框架振动,从而可以提高信噪比。故本文按内框驱动式,建立了硅微型角振动陀螺仪的运动方程,导出了灵敏度方程,提出了提高陀螺系统灵敏度的简单可行的方法,即:设计制造陀螺仪时,使内外框架固有频率相等,或驱动信号采用二个正弦波之和,二个正弦波的频率应分别选为内、外框架的固有频率。 1内框驱动式硅微型角振动陀螺仪的结构组成及工作原理[1] 如图1所示,陀螺仪由内、外两个框架组成,内 第27卷第1期2004年3月 电子器件 C h in ese J o urn al o f E le ctr o n D e v ic es V o l.27,N o.1 M a r ch.2004 ①收稿日期:2003-02-24 基金项目:江苏省高校自然科学研究计划项目资助(项目编号:03K J B510089) 作者简介:方玉明(1952-),女,南京邮电学院信息工程系讲师,现在东南大学电子工程系微电子专业攻读博士学位,研究方向为微电子学及M E M S系统研究,f an g y m@nj u p t.ed https://www.doczj.com/doc/899014877.html,.

微机械陀螺仪的国内外发展概述

微机械陀螺仪的国内外发展概述 学号:07060441x28 姓名: 摘要:陀螺仪是一种用于测量旋转速度或旋转角的仪器。它在运输系统,例如:导航、刹车调节控制和加速度测量等方面有很多的应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种,现在工业控制、航空航天、军用技术都不可能离开惯性传感器:汽车、消费品和娱乐市场也开始依赖这些设备。许多市场调查一致认为微机械传感器市场将以每年15%-25%的年增长率增长。微机械陀螺仪的性能指标在很短的十几年内得到了迅速提高,目前正由速率级向战术级精度迈进。根据随机游走系数定义陀螺仪的性能指标,体微机械和表面微机械陀螺仪的性能在每2年便以10倍的速度得到提高,表面微机械陀螺仪和体微机械陀螺仪的性能的差距也越来越小。也正是由于微机械陀螺仪的广泛应用,使得世界各国都致力于对陀螺仪的研究和发展。 正文: 一、微机械陀螺仪的分类简介及用途。 陀螺是首先在火箭上得到应用的,开始于二战期间德国的V2火箭。从此,陀螺仪和加速度计成为一门惯性技术而快速发展起来,冷战时期精度上快速提高,功能上有很大扩展。不仅在海、陆、空、天的军事领域普遍应用,而且在大地测量、空中摄影、隧道开凿和石油钻井等等许多民用部门也用它起到定向和稳定作用。在军事应用的牵引下,惯性仪表精度大幅提高的同时,相关的制造工艺越来越复杂,生产周期长,成本很高,价格昂贵,令民用部门望而却步。即使在军用方面,由于陀螺仪转子的高速旋转和惯性测量系统的复杂性,在可靠性、安全性、兼容性、寿命以及体积重量等方面也暴露出某些固有的弱点。凡此种种,促使科技人员去思考和探索新的测量工具和测量方式,以替代传统的机械转子式的陀螺仪。因而,各种各样的新型陀螺仪和加速度计相继研制出来并成功地获得应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种: (1)振动式微机械陀螺仪。 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质量,在被基座带动旋转时的哥氏效应感测角速度。多采用平面电极或是梳状电极静电驱动,并采用平板电容器进行检测。其分类如下:

陀螺仪认识入门

谈谈对陀螺仪和加速度传感器的感性认识 前几天看到官网的新规则觉得很有意思看看自己帐号注册2年多了比赛也做了2届从论坛上下了大堆资料也没给论坛贡献什么有价值的东西实在惭愧啊正好自己以前捣鼓过一段时间四轴飞行器把当时收集的一些资料发上来大家共享下吧大部分取自网络还有一部分自己的思考重要的地方用红字标明了来自网络的都用蓝字标明本人才疏学浅论坛里藏龙卧虎有不对的还请大家指正新手看看全当一个感性认识。由于时间太长就不标原文地址了大家搜搜都能搜到另外四轴飞控论坛上已经看到有人跑过去要7260 和EN—03的资料了嘿嘿数据手册其实很好找的相关资料也很多的大家多多利用搜索引擎 啊 加速度传感器测的是什么? 我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了 F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS 技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加 速度。 所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是 g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是 g,0,0 所以说只靠加速度传感器 来估计自己的姿态是很危险而不可取的 加速度传感器有什么用? 加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也 就是横滚角和俯仰角计算公示如下俯仰角

硅微型陀螺仪

硅微型梳状线振动驱动式陀螺仪 硅微型振动陀螺仪在工作时,用微幅振动代替高速旋转 硅微型梳状线振动驱动式陀螺仪的工作原理: 结构图如图所示: 机械部分由基座,提供驱动力的定齿,动齿,活动质量和连接活动质量的弹簧,固定弹簧的固定端组成。固定端和定齿都固定在基座上,活动质量由弹簧连接在固定端上。动齿固定在活动质量上。该陀螺仪采用静电驱动技术,给固定在基座上的定齿梳状电极上加载带直流偏执的交流电压,活动质量上的动齿接地。这样动、静齿间便产生大小和方向周期性变化的静电吸引力,使整个活动质量和动齿一起在两定齿之间来回振动,此时若基座在惯性空间中作转动,由于哥氏力的作用,活动质量将在垂直于基座的方向上振动,这样就可敏感基座相对于惯性空间转动的角速度。 建坐标系:取将动作标系固连在硅微型梳状线振动驱动式陀螺仪的基座上,取动作标系的原点为活动质量质心的平衡位置,x轴为静电驱动力的方向,z轴为与基座垂直的方向,y轴由右手规则确定。 (1)只做x轴方向的转动时的结论: 1.该方向上的角速度不能测量; 2.随着静电引力的振动频率的增大,活动质量的振动的振幅会大大减小,该陀螺仪的灵敏度会降低。 3.x轴方向的角速度不能大于根号内K/m,否则陀螺仪将被损坏。陀螺仪损坏的临界值随尺寸的降低而迅速增加。 (2)只做z轴方向的转动时的结论:不能测量该方向上的角速度。 (3)陀螺仪的基座在y轴方向的转动角速度近似地与活动质量在z轴方向的这一振动频率为ω的振动的振幅成正比。比例系数为2δ/(mω3) 小结:该陀螺仪对y轴方向的角速度最敏感,即应当它作为输入量,把y轴作为输入轴。而对其影响最强烈的是活动质量在z轴方向频率为ω的振动的振幅,它可以作为输出量。而静

驱动微梁形状对微陀螺仪耦合误差的影响分析

第31卷第1期2018年1月传感技术学报 CHINESE JOURNALOF SENSORS AND ACTUATORS Vol.31 No.1Jan.2018 项目来源:国家自然科学基金项目(11372210) 收稿日期:2017-04-17 修改日期:2017-09-14Analysis of the Influence of Driving Micro Beam Shape on MEMS Gyroscope Coupling Error ? HAO Shuying 1,2?,ZHANG Chenqing 1,2,QI Chengkun 1,2,LI Huijie 1,2, ZHANG Kunpeng 1,2,CHEN Wei 1,2 (1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control ,School of Mechanical Engineering ,Tianjin University of Technology ,Tianjin 300384,China ;2.National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology ),Tianjin 300384,China )Abstract :Under the machining deviation,in order to study the effect of the microgyroscope drivingmicrobeam Shape Variation on orthogonal coupling Error,modal coupling and detection Signal.The finite element analysis model of the driving microbeam under the diagonal beam width error is established,the influence of the variation of the length of one end of U-beam on the orthogonal coupling error,modal coupling and detection signal of micro-gyroscope is provided by combining the method of elemental simulation and analytic calculation.It is found that when the beam length of one end of U-beam is about one half of the length of the other end,this kind of machining deviation will cause very serious orthogonal coupling error and modal coupling phenomenon,and it have great influence on the de-tection signal.When the U-beam is degraded into a straight beam or an equal length beam,the interference of the detection signal is very small,the orthogonal coupling error is zero,the modal coupling degree is the smallest,and the variation rule of the two is positively correlated.Increasing the frequency spacing between the driving mode and detecting mode of the single degree of freedom microgyroscope.Not only adding the bandwidth of microgyroscope, but also reducing the influence of coupling.Key words :micro gyroscope;machining error;micro beam shape;orthogonal error;modal coupling EEACC :7230 doi :10.3969/j.issn.1004-1699.2018.01.009驱动微梁形状对微陀螺仪耦合误差的影响分析 ? 郝淑英1,2?,张辰卿1,2,齐成坤1,2,李会杰1,2,张昆鹏1,2,陈 炜1,2 (1.天津市先进机电系统设计与智能控制重点实验室,天津300384;2.机电工程国家级实验教学示范中心(天津理工大学),天津300384)摘 要:为研究微陀螺驱动微梁在加工误差下的微梁形状变化对正交耦合误差二模态耦合以及检测信号的影响,建立了驱动微梁在对角线梁宽误差下的有限元分析模型,采用有限元仿真分析和解析计算相结合的方法研究了U 型梁一端梁长的变化对微陀螺正交耦合误差二模态耦合以及检测信号的影响三研究发现,当U 型梁一端的梁长为另一端长度的二分之一左右时该类加工误差会引发非常严重的正交耦合误差和模态耦合现象,并对检测信号产生极大影响;当U 型梁退化为直梁或者为等长梁的时候,对检测信号的干扰很小二正交耦合误差为零二模态耦合程度最小,而且两者的变化规律呈现正相关三适当地加大单自由度微陀螺驱动模态和检测模态的频率差不仅可增加微陀螺的带宽还可减小耦合的影响三 关键词:微陀螺;加工误差;微梁形状;正交误差;模态耦合 中图分类号:V241.62 文献标识码:A 文章编号:1004-1699(2018)01-0048-06 微机械陀螺仪是一种利用哥氏效应来测量物体 转动角速率的惯性传感器,与传统的陀螺仪相比,具 有性价比高二尺寸小二重量轻以及动态性能好等特点,广泛应用于航空航天二军事二汽车工业和消费电万方数据

硅微机械谐振陀螺仪的非线性分析

第14卷第6期中国惯性技术学报V ol.14No.6 2006年12月 Journal of Chinese Inertial Technology Dec. 2006 文章编号:1005-6734(2006)06-0060-03 硅微机械谐振陀螺仪的非线性分析 盛平,王寿荣,吉训生,许宜申 (东南大学 仪器科学与工程系,南京 210096) 摘要:给出了硅微机械谐振陀螺仪的结构,介绍了硅微机械谐振陀螺仪的工作原理,详细推导并给出了陀螺仪的输出频率和标度因数非线性的计算公式;基于影响谐振陀螺仪标度因数的参数,分析了由谐振器的振幅和 梳齿静电驱动力引起的硅微机械谐振陀螺仪的非线性特性,给出了振动幅度与谐振频率关系的表达式。实验结果表明,陀螺仪的整体性能主要取决于谐振器振动幅度的稳定性。 关键词:陀螺;谐振频率;非线性;双端音叉谐振器 中图分类号:U666.1 文献标识码:A Nonlinear analysis on silicon micromachined resonant gyroscope SHENG Ping, WANG Shou-rong, JI Xun-sheng, XU Yi-shen (Department of Instrument Science and Engineering, Southeast University, Nanjing 210096, China ) Abstract: The operating principle of a silicon micro-machined resonant gyroscope was introduced and its structure was given. The output frequency of the gyroscope and the calculation expressions of scale factor nonlinearity were deduced. Based on the parameters that may influence the scale factor of the resonant gyroscope, the nonlinearity characteristic, which was caused by the resonator amplitude and electrostatic comb-finger driving-force, was analyzed. Finally, the relationship between the resonance frequency and vibration amplitude was presented. The results indicated that the performance of the silicon micromachined resonant gyroscope was determined by the stabilization of the vibration amplitude of resonator. Key words: gyroscope; resonance frequency; nonlinearity; double-ended tuning fork resonator(DETF) 0 引 言 谐振传感器输出的频率信号稳定性好,不易受噪声干扰,在传输和处理过程中也不易出现误差。近年来,基于谐振原理,利用表面微机械加工技术和体硅微机械加工技术研制的谐振器件已有报道,但关于硅微机械谐振陀螺仪的鲜有报 道。当硅微机械谐振陀螺仪具有较高的Q值时,陀螺仪非线性将导致谐振频率 点的漂移。因此,研究硅微机械谐振陀螺仪非线性特性,对提高陀螺仪的性能 很有必要[1]。 1 硅微机械谐振陀螺仪工作原理 硅微机械谐振陀螺仪的结构示意图如图1所示,主要由三部分构成:陀 螺仪敏感质量块部分、杠杆传递部分、双端音叉谐振器(DETF)部分。其中, 陀螺仪敏感质量块部分用于敏感输入角速度,杠杆传递部分用来放大哥氏(Coriolis)力,谐振器部分主要是将陀螺质量块输出给它的轴向哥氏力转化 成相应的频率输出[2]。 基金项目:国家863资助项目(编号:2002AA812038) 收稿日期:2006-08-19;修回日期:2006-09-26 作者简介:盛平(1977—),男,博士研究生,研究方向为微型仪表及微系统技术。电子邮箱:pshengcn@https://www.doczj.com/doc/899014877.html, 梳齿质量块 锚驱动方向 杠杆

陀螺仪的选择

陀螺仪的选择:其机械性能是最重要的参数 作者:ADI公司Harvey Weinberg 选择陀螺仪时,需要考虑将最大 误差源最小化。在大多数应用中,振动敏感度是最大的误差源。其它参数可以轻松地通过校准或求取多个传感器的平均值来改善。偏置稳定度是误差预算较小的分量之一。 浏览高性能陀螺仪数据手册时,多数系统设计师关注的第一个要素是偏置稳定度规格。毕竟,它描述的是陀螺仪的分辨率下限,理所当然是反映陀螺仪性能的最佳指标!然而,实际的陀螺仪会因为多种原因而出现误差,使得用户无法获得数据手册中宣称的高偏置稳定度。的确,可能只有在实验室内才能获得那么高的性能。传统方法是借助补偿来最大程度地降低这些误差源的影响。本文将讨论多种此类技术及其局限性。最后,我们将讨论另一种可选范式——根据机械性能选择陀螺仪,以及必要时如何提高其偏置稳定度。 环境误差 所有中低价位的MEMS陀螺仪都有一定的时间-零点偏置和比例因子误差,此外还会随温度而发生一定的变化。因此,对陀螺仪进行温度补偿是很常见的做法。一般而言,陀螺仪集成温度传感器的目的就在于此。温度传感器的绝对精度并不重要,重要的是可重复性以及温度传感器与陀螺仪实际温度的紧密耦合。现代陀螺仪的温度传感器几乎毫不费力就能达到这些要求。 许多技术可以用于温度补偿,如多项式曲线拟合、分段线性近似等。只要记录了足够数量的温度点,并且在校准过程中采取了充分的措施,那么具体使用何种技术是无关紧要的。例如,在每个温度的放置时间不足是一个常见的误差源。然而,无论采用何种技术,无论有多细心,温度迟滞——即通过冷却与通过加热达到某一特定温度时的输出之差——都将是限制因素。 图1所示为陀螺仪ADXRS453的温度迟滞环路。温度从+25℃变为+130℃,再变为–45℃,最后回到+25℃,与此同时记录未补偿陀螺仪的零点偏置测量结果。加热周期与冷却周期中的+25℃零点偏置输出存在细微的差异(本例中约为0.2°/s),这就是温度迟滞。此误差无法通过补偿来消除,因为无论陀螺仪上电与否,它都会出现。此外,迟滞的幅度与所施加的温度“激励”量成比例。也就是说,施加于器件的温度范围越宽,则迟滞越大。

MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用) MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。 工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。 传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。 MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。 两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。 下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。

硅微型陀螺仪零偏温度性能补控方法设计

万方数据

万方数据

万方数据

万方数据

万方数据

硅微陀螺仪零偏温度性能补控方法设计 作者:夏敦柱, 王寿荣, 周百令, Xia Dunzhu, Wang Shourong, Zhou Bailing 作者单位:东南大学微惯性仪表与先进导航技术教育部重点实验室,南京,210096 刊名: 东南大学学报(自然科学版) 英文刊名:Journal of Southeast University(Natural Science Edition) 年,卷(期):2012,42(2) 被引用次数:1次 参考文献(8条) 1.Kulygin A;Schnid U;Seidel H Characterization of a novel micromachined gyroscope under varying ambient pressure conditions[外文期刊] 2008(01) 2.Li Z;Yang Z;Xiao Z A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching 2000(1/2/3) 3.Ashwin A S Integrated micromechanical resonant sensor for inertial measurement system 2002 4.Wyatt O D Mechanical analysis and design of vibratory micromachined gyroscopes 2001 5.Jason K P H Modeling and identification of the jet propulsion laboratory vibratory rate microgyroscope 2002 6.房建成;李建利;盛蔚改进的内框架驱动式硅MEMS陀螺温度误差模型[期刊论文]-北京航空航天大学学报 2006(11) 7.Shcheglov K;Evans C;Gutierrez R Temperature dependent characteristics of die JPL silicon MEMS gyroscope 2000 8.Xia Dunzhu;Cheng Shuling;Wang Shourong Temperature compensation method of silicon microgyroscope based on BP neural network[期刊论文]-Journal of Southeast University(English Edition) 2010(01) 引证文献(1条) 1.吴峰.王向军.汤其剑基于数字调节方法的MEMS陀螺零位补偿技术研究[期刊论文]-传感技术学报 2012(12) 本文链接:https://www.doczj.com/doc/899014877.html,/Periodical_dndxxb201202019.aspx

MEMS陀螺仪原理

mems陀螺仪 mems陀螺仪即硅微机电陀螺仪,绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。MEMS (Micro-Electro-Mechanical Systems)是指集机械元素、微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。 目录 ?mems陀螺仪的原理 ?mems陀螺仪的特点 ?mems陀螺仪的构成 ?mems陀螺仪的选用 ?mems陀螺仪的安装 mems陀螺仪的原理 ?MEMS 陀螺仪(gyroscope)的工作原理传统的陀螺仪主要是利用角动量守恒原理, 因此它主要是一个不停转动的物体, 它的转轴指向不随承载它的支架的旋转而变化. 但是MEMS 陀螺仪(gyroscope)的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事.MEMS 陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力. 下面是导出科里奥利力的方法. 有力学知识的读者应该不难理解. 在空间设立动态坐标系(图一).用以下方程计算加速度可以得到三项,分别来自径向加速,科里奥利加速度和向心加速度. 如果物体在圆盘上没有径向运动,科里奥利力就不会产生.因此,在MEMS 陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90 度.

MEMS 陀螺仪通常有两个方向的可移动电容板.径向的电容板加震荡电压迫使物体作径向运动(有点象加速度计中的自测试模式) ,横向的电容板测量由于横向科里奥利运动带来的电容变化(就象加速度计测量加速度) .因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度. mems陀螺仪的特点 ?MEMS陀螺仪是利用coriolis 定理,将旋转物体的角速度转换成与角速度成正比的直流电压信号,其核心部件通过掺杂技术、光刻技术、腐蚀技术、LIGA技术、封装技术等批量生产的,它主要特点是 1. 体积小、重量轻,其边长都小于1mm,器件核心的重量仅为1.2mg。 2. 成本低 3. 可靠性好,工作寿命超过10 万小时,能承受1000g 的冲击。 4. 测量范围大,目前我公司生产的MEMS 陀螺仪测量范围可扩展到7560?/s。 mems陀螺仪的构成 ?MEMS 陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS 陀螺仪均采用振动物体传感角速度的概念. 利用振动来诱导和探测科里奥利力而设计的 MEMS 陀螺仪没有旋转部件, 不需要轴承, 已被证明可以用微机械加工技术大批量生产. 绝大多数MEMS 陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力. 振动物体被柔软的弹性结构悬挂在基底之上. 整体动力学系统是二维弹性阻尼系统, 在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式. 通过改进设计和静电调试使得驱动和传感的共振频率一致, 以实现最大可能的能量转移, 从而获得最大灵敏度.大多数MEMS 陀螺仪驱动和传感模式完全匹配或接近匹配,它对系统的振动参数变化极其敏感, 而这些系统参数会改变振动的固有频率, 因此需要一个好的控制架构来做修正.如果需要高的品质因子(Q) ,驱动和感应的频宽必须很窄.增加1%的频宽可能降低20%的信号输出.还有阻尼大小也会影响信号输出. 一般的MEMS 陀螺仪由梳子结构的驱动部分和电容板形状的传感部分组成. 有的设计还带有去驱动和传感耦合的结构. mems陀螺仪的选用 ?陀螺仪在选用时,必须注意被测参数的物理环境和必要的性能指标。具体要求分列如下: 1.性能要求 ⑴ .随机漂移、随机游走系数、输出噪声 不同结构形式、不同原理的陀螺仪的对漂移率定义和要求不同,机械式陀螺仪精度使用的是随机漂移,光纤陀螺仪使用的随机游走系数。 随机漂移——指由随机的或不确定的有害力矩引起的漂移率。 随机游走系数——由白噪声产生的随时间累计的陀螺仪输出误差系数。 单位: ?/h1/2、?/s1/2。 输出噪声的单位:?/h/Hz1/2、?/s /Hz1/2 。

相关主题
文本预览
相关文档 最新文档