当前位置:文档之家› 【世纪金榜】2015高考数学专题辅导与训练配套练习:专题五 立体几何

【世纪金榜】2015高考数学专题辅导与训练配套练习:专题五 立体几何

【世纪金榜】2015高考数学专题辅导与训练配套练习:专题五 立体几何
【世纪金榜】2015高考数学专题辅导与训练配套练习:专题五 立体几何

专题提升练(四)

(专题五)

(120分钟150分)

一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能是( )

A.正方形

B.圆

C.等腰直角三角形

D.直角梯形

【解析】选D.当几何体是一个长方体,其中一个侧面为正方形时,A可能;当几何体是一个横放的圆柱时,B可能;当几何体是横放的三棱柱时,C可能;只有D不可能.

2.(2014·绍兴模拟)已知某几何体的三视图如图所示,则该几何体的体积为

( )

A. B.1 C. D.3

【解析】选C.由三视图易知,该几何体是底面积为,高为3的三棱锥,由锥体的体积公式得V=××3=.

3.一个几何体的三视图如图所示,则该几何体的表面积为( )

A.75+2

B.75+4

C.48+4

D.48+2

【解析】选B.由三视图可知该几何体是一个四棱柱.两个底面的面积之和为2××3=27,四个侧面的面积之和为(3+4+5+)×4=48+4,故表面积为75+4.

4.(2014·杭州模拟)已知直线l,m,平面α,β,且l⊥α,m?β,则

( )

A.若平面α不平行于平面β,则l不可能垂直于m

B.若平面α平行于平面β,则l不可能垂直于m

C.若平面α不垂直于平面β,则l不可能平行于m

D.若平面α垂直于平面β,则l不可能平行于m

【解析】选C.A中,l有可能与m垂直;B中,l必与m垂直;D中,l可能平行于m,C正确.

5.将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图2),则在空间四面体ABCD中,AD与BC的位置关系是( )

A.相交且垂直

B.相交但不垂直

C.异面且垂直

D.异面但不垂直

【解析】选C.在图1中的等腰直角三角形ABC中,斜边上的中线AD就是斜边上的高,则AD⊥BC,翻折后如图2,AD与BC变成异面直线,而原线段BC变成两条线段BD,CD,这两条线段与AD垂直且交于一点,即AD⊥BD,AD⊥CD,BD∩CD=D,故AD⊥平面BCD,所以AD⊥BC.

6.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为( )

A.πa2

B.πa2

C.πa2

D.5πa2

【解析】选B.根据题意作图如下(OB即为球的半径R):

由图可知R2=+=,

所以S球=4πR2=πa2.

7.如图,PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是( )

①平面PAB⊥平面PBC; ②平面PAB⊥平面PAD;

③平面PAB⊥平面PCD; ④平面PAB⊥平面PAC.

A.①②

B.①③

C.②③

D.②④

【解析】选A.易证BC⊥平面PAB,则平面PAB⊥平面PBC.又AD∥BC,故AD⊥平面PAB,则平面PAD⊥平面PAB,因此选A.

8.已知三棱锥O-ABC中,OA,OB,OC两两垂直,OC=1,OA=x,OB=y,若x+y=4,则三棱锥体积的最大值是( )

A. B. C.1 D.

【解析】选B.由条件可知V三棱锥O-ABC=OA·OB·OC=xy≤=,当

x=y=2时,取得最大值.

9.已知三边长分别为3,4,5的△ABC的外接圆恰好是球O的一个过球心的圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为

( ) A.5 B.10 C.20 D.30

【解析】选A.易知△ABC为直角三角形且点P在平面ABC上的射影为O,则OP=OA=OB=OC=R,又因为S△ABC=|AB|·|AC|·sinA,由正弦定理可得sinA=,故|AB|·|AC|·sinA==6,解得R=,故V P-ABC=S△

R=5.

ABC·

10.(2014·温州模拟)已知点P是正方体ABCD-A1B1C1D1的表面上一动点,且满足|PA|=2|PB|.设PD1与平面ABCD所成角为θ,则θ的最大值为( )

A. B. C. D.

【解析】选B.如图,设正方体棱长为2,点P的轨迹为:以点Q为球心,以为半径的球与正方体表面的交线,即为如图的弧段EMG,GSF,FNE,要使得PD1与底面ABCD所成角最大,则PD1与底面ABCD的交点R与点D 的距离最短,从而点P在弧段ENF上,故点P在弧段ENF上,且在QD上.从而DP=-=2,从而tanθ最大值为1,故θ最大值为.

二、填空题(本大题共7小题,每小题4分,共28分.请把正确答案填在题中横线上)

11.若正三棱锥的正(主)视图与俯视图如图(单位:cm),则它的侧(左)视图的面积为cm2.

【解析】由该正三棱锥的正(主)视图和俯视图可知,其侧(左)视图为一

个三角形,它的底边长等于俯视图的高即,高等于正(主)视图的高即,所以侧(左)视图的面积为S=××=(cm2).

答案:

12.在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M 是AB上一个动点,则PM的最小值为.

【解析】如图,因为PC⊥平面ABC,MC?平面ABC,所以PC⊥

MC.故PM==.

又因为MC的最小值为=2,所以PM的最小值为2.

答案:2

13.(2014·宁波模拟)一个几何体的三视图如图所示,则该几何体的体积为.

【解析】结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,

故该几何体的体积为×2×2sin60°×2-××2×2sin60°×1=.

答案:

14.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.

【解析】由EF∥平面AB1C,EF?平面ABCD,平面ABCD∩平面AB1C=AC,

知EF∥AC.所以由E是中点知EF=AC=.

答案:

15.已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在

AB上,PO⊥平面ABC,=,则三棱锥与球的体积之比为.

【解析】依题意,AB=2R,又=,∠ACB=90°,因此AC=R,BC=R,V P-ABC=PO·

S△ABC=×R×=R3,而V球=R3,

因此V P-ABC∶V球=R3∶R3=∶8π.

答案:∶8π

16.如图,∠BAC=90°,PC⊥平面ABC,则△ABC,△PAC的边所在的直线中,与PC垂直的直线有;与AP垂直的直线有.

【解析】因为PC⊥平面ABC,所以PC垂直于直线AB,BC,AC;

因为AB⊥AC,AB⊥PC,AC∩PC=C,

所以AB⊥平面PAC,

所以AB⊥AP.即与AP垂直的直线是AB.

答案:AB,BC,AC AB

17.对于四面体ABCD,给出下列四个命题:

①若AB=AC,BD=CD,则BC⊥AD;

②若AB=CD,AC=BD,则BC⊥AD;

③若AB⊥AC,BD⊥CD,则BC⊥AD;

④若AB⊥CD,AC⊥BD,则BC⊥AD.

其中真命题的序号是(把你认为正确命题的序号都填上). 【解析】本题考查四面体的性质,取BC的中点E,则BC⊥

AE,BC⊥DE,AE∩DE=E,所以BC⊥平面ADE,所以BC⊥AD,故①

正确.设O为A在面BCD上的射影,依题意OB⊥CD,OC⊥BD,

所以O为垂心,所以OD⊥BC,所以BC⊥AD,故④正确,②③易

排除,故答案为①④.

答案:①④

三、解答题(本大题共5小题,共72分.解答时应写出必要的文字说明、证明过程或演算步骤)

18.(14分)如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知

AB=3,AD=2,PA=2,PD=2,∠PAB=60°.M是PD的中点.

(1)证明:PB∥平面MAC.

(2)证明:平面PAB⊥平面ABCD.

(3)求四棱锥P-ABCD的体积.

【解析】(1)连接OM,因为M是PD中点,矩形ABCD中O为BD中点,所以

OM∥PB.又OM?平面MAC,PB?平面MAC.所以PB∥平面MAC.

(2)由题设知PA=2,AD=2,PD=2,

有PA2+AD2=PD2,所以AD⊥PA.

在矩形ABCD中,AD⊥AB.

又PA∩AB=A,所以AD⊥平面PAB.

因为AD?平面ABCD,所以平面PAB⊥平面ABCD.

(3)过点P作PH⊥AB于点H.

因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,所以PH⊥平面ABCD.

在Rt△PHA中,PH=PAsin60°=2×=,

V P-ABCD=AB×AD×PH=×3×2×=2.

19.(14分)(2014·龙岩模拟)如图所示的平面四边形ABCD中,△ABD是以A为直角顶点的等腰直角三角形,△BCD为正三角形,且BD=4,AC与BD交于点O(如图甲).现沿BD将平面四边形ABCD折成三棱锥A-BCD,使得折起后∠AOC=θ(0<θ<π)(如图乙).

(1)证明:不论θ在(0,π)内为何值,均有AC⊥BD.

(2)当三棱锥A-BCD的体积为时,确定θ的大小.

【解析】(1)易证△ABC≌△ADC,可知AC是等腰△ABD和等边△BCD的角平分线,也是高,所以AO⊥BD,CO⊥BD.

由于在平面图形中,AO⊥BD,CO⊥BD,

折起后这种关系不变,且AO∩CO=O,

所以折起后BD⊥平面AOC,

又AC?平面AOC,故BD⊥AC,

即不论θ在(0,π)内为何值,均有AC⊥BD.

(2)由(1)知BD⊥平面AOC,又BD?平面BCD,

所以平面AOC⊥平面BCD.过点A作AE⊥OC于点E,

因为平面AOC∩平面BCD=OC,

所以AE⊥平面BCD,即AE是三棱锥A-BCD的高,

在Rt△AOE中,AE=AOsinθ=2sinθ,

S△BCD=×4×4×=4,

故三棱锥A-BCD的体积为V=×4×2sinθ=sinθ,

当三棱锥A-BCD的体积为时,sinθ=1,θ=.

20.(14分)(2014·诸暨模拟)如图,在直角梯形ABCD中,∠ABC=∠DAB=90°,

AD=3,BC=2,AB=,E,F为AD上的两个三等分点,G,H分别为线段AB,BC 的中点,将△ABE沿直线BE翻折成△A1BE,使平面A1BE⊥平面BCDE.

(1)求证:A1D∥平面FGH.

(2)求直线A1D与平面A1BE所成角.

(3)过点A1作平面α与线段BC交于点J,使得平面α垂直于BC,求CJ的长度.

【解析】(1)由已知得BC=2=ED且BC∥ED,

故四边形BCDE为平行四边形,H,F为BC,ED的中点,

连接BD,设BD∩HF=O,则易知O为BD的中点,连接GO,

由G为A1B中点,知OG∥A1D.

又GO?平面FGH,A1D?平面FGH,故A1D∥平面FGH.

(或证平面A1CD∥平面FGH,又A1D?平面A1CD,故A1D∥平面FGH) (2)在平面BCD内过点D作DM⊥BE,交BE延长线于点M,连接A1M,由已知面A1BE⊥平面BCD,且BE为两平面的交线,得DM⊥平面A1BE,则∠DA1M 即为直线A1D与平面A1BE所成的角,

在△DEM中,由DE=2,∠DEM=60°,知DM=.

在△A1EM中,A1E=1,EM=1,∠A1EM=120°,知A1M=,

从而tan∠DA1M===1,所以∠DA1M=,

即直线A1D与平面A1BE所成的角为.

(3)过A1作A1K⊥BE交BE于K,则由平面A1BE⊥平面BCDE可得A1K⊥平面BCDE,从而BC⊥A1K,过K作KM'⊥BC交BC于M',则BC⊥平面A1KM',由于过A1且与BC垂直的平面是唯一的,所以平面A1KM'即平面α,点M'即点J,

在Rt△A1BE中,BK=,

所以在Rt△BKJ中,BJ=BK=,所以CJ=.

21.(15分)(2014·慈溪模拟)如图所示,平面四边形PACB中,∠PAB为直角,△ABC为等边三角形,现把△PAB沿着AB折起,使得平面APB与平面ABC垂直,且点M为AB的中点.

(1)求证:平面PAB⊥平面PCM.

(2)若2PA=AB,求直线BC与平面PMC所成角的余弦值.

【解析】(1)因为平面APB⊥平面ABC且交线为AB,

又因为∠PAB为直角,所以PA⊥平面ABC,

故AP⊥CM.

又因为△ABC为等边三角形,点M为AB的中点,

所以CM⊥AB.

又因为PA∩AB=A,所以CM⊥平面PAB.

又CM 平面PCM,所以平面PAB⊥平面PCM.

(2)假设PA=a,则AB=2a.

方法一:(等体积法)V P-MBC=V B-PMC,

PA·S△MBC=h B·S△PMC,

而三角形PMC为直角三角形,故面积为a2,故h B= a.

所以直线BC与平面PMC所成角的正弦值sinθ==,所以余弦值为

.

方法二:(向量坐标法)

以点M为坐标原点,以MB为x轴,以MC为y轴,过M且平行于AP的直线为z轴建立空间直角坐标系,设PA=a,

则M(0,0,0),P(-a,0,a),

B(a,0,0),C(0,a,0),

故=(0,a,0),=(-a,0,a),=(-2a,0,a).

假设平面PMC的法向量为n=(x,y,z),

则y=0,x=z,令x=1,故n=(1,0,1),

则直线BC与平面PMC所成角的正弦值sinθ=,

所以余弦值为cosθ=.

22.(15分)如图,已知四棱锥S-ABCD是由直角梯形SABC沿着CD折叠而成,其中SD=DA=AB=BC=1,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.

(1)求证:平面ASD⊥平面ABCD.

(2)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

【解析】(1)因为SD=DA=AB=BC=1,

AS∥BC,AB⊥AD,所以CD⊥SD,CD⊥AD.

又AD∩SD=D,所以CD⊥平面ASD.

又因为CD?平面ABCD,所以平面ASD⊥平面ABCD.

(2)过点S作SH⊥AD,交AD的延长线于点H,连接CH.

因为平面ASD⊥平面ABCD,平面ASD∩平面ABCD=AD,

所以SH⊥平面ABCD.

所以CH为侧棱SC在底面ABCD内的射影.

所以∠SCH为侧棱SC和底面ABCD所成的角θ.

在Rt△SHD中,∠SDH=180°-∠ADS=180°-120°=60°,SD=1,SH=SDsin60°=.

在Rt△SDC中,∠SDC=90°,

SD=AB=DC=1,所以SC=.在Rt△SHC中,

sinθ===.即θ的正弦值为.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数学数列专题练习

高考数学数列专题练习 一. 选择题 1.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=( ) (A)-4 (B)-6 (C)-8 (D)-10 2.(xx ,全国3,3)设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( ) A.S 4<S 5 B.S 4=S 5 C.S 6<S 5 D.S 6=S 5 3.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A81 B120 C168 D192 4.设Sn 是等差数列{a n }的前n 项和,若a a 35=95,则S S 5 9=( ) A 1 B -1 C 2 D 21 5.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于( ) A .160 B .180 C .200 D .220 6.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的( ) A. 必要而不充分条件 B. 充分而不必要条件 C. 充要条件 D. 既不充分也不必要条件 7.已知数列{n a }的前n 项和 ),,2,1]()2 1)(1(2[])21(2[11Λ=+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{n x }、{n y }使得( ) A .}{,n n n n x y x a 其中+=为等差数列,{n y }为等比数列 B .}{,n n n n x y x a 其中+=和{n y }都为等差数列 C .}{,n n n n x y x a 其中?=为等差数列,{n y }都为等比数列

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学前三道大题练习

1 A B C D S E F N B 高考数学试题(整理三大题) (一) 17.已知0αβπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且?a b m =.求 2 2cos sin 2() cos sin ααβαα ++-的值. 18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜 甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. 19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。已知∠ABC =45°,AB =2,BC=22,SA =SB =3。 (Ⅰ)证明:SA ⊥BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小; (二) 17.在ABC △中,1tan 4A =,3 tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △ 18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率; (II )连续抛掷2次,求向上的数之和为6的概率; (III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。 19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是 AB 、SC 的中点。 求证:EF ∥平面SAD ; (三) 17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ?? =+ ??? π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19. 在Rt AOB △中,π 6 OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角 的大小; (III )求CD 与平面 AOB 所成角的最大值 (四) 17.已知函数2 π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42 x ??∈???? ,上恒成立,求实数m 的取值范围. 18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。 (Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。 O C A D B E

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

2020高考数学专题训练16

六) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.满足条件?≠?M ≠?{0,1,2}的集合共有( ) A .3个 B .6个 C .7个 D .8个 2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .66 B .99 C .144 D .297 3.函数)1(log 2-=x y 的反函数图像是( ) A B C D 4.已知函数)cos()sin()(??+++=x x x f 为奇函数,则?的一个取值为( ) A .0 B .4 π - C .2π D .π 5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种 子不能放入第1号瓶内,那么不同的放法共有( ) A .4 82 10A C 种 B .5 91 9A C 种 C .5 91 8A C 种 D .5 81 8A C 种 6.函数512322 3 +--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x 展开式的第7项为4 21 ,则实数x 的值是( ) A .31- B .-3 C .4 1 D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是( ) A .π100 B .π300 C . π3100 D .π3 400 9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b 不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高考数学专题训练试题7

第一部分 专题二 第1讲 等差数列、等比数列 (限时60分钟,满分100分) 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·北京高考)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5, 则m =( ) A .9 B .10 C .11 D .12 解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C 2.(精选考题·广元质检)已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则连乘积a 1a 2a 3…aa 精选考题的值为( ) A .-6 B .3 C .2 D .1 解析:∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=-3,a 3=-12,a 4=13,a 5= 2,∴数列{a n }的周期为4,且a 1a 2a 3a 4=1, ∴a 1a 2a 3a 4…aa 精选考题=aa 精选考题=a 1a 2=2×(-3)=-6. 答案:A 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45

C .36 D .27 解析:根据2a 8=6+a 11得2a 1+14d =6+a 1+10d ,因此a 1+4d =6,即a 5=6.因此S 9=9(a 1+a 9) 2 =9a 5=54. 答案:A 4.已知各项不为0的等差数列{a n },满足2a 3-a 2 7+2a 11=0,数 列{b n }是等比数列,且b 7=a 7,则b 6b 8=( ) A .2 B .4 C .8 D .16 解析:因为a 3+a 11=2a 7,所以4a 7-a 27=0,解得a 7=4,所以 b 6b 8=b 27=a 2 7=16. 答案:D 5.(精选考题·福建高考)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 解析:设等差数列{a n }的公差为d , ∵a 4+a 6=-6,∴a 5=-3, ∴d =a 5-a 1 5-1=2, ∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6. 答案:A 6.(精选考题·陕西高考)对于数列{a n },“a n +1>|a n |(n =1,2…)”

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高考数学大题训练及解析

高考数学大题训练及解析 1.三角知识(命题意图:在三角形中,考查三角恒等变换、正余弦定理及面积公式的应用) (本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知 sin C 2=104. (1)求cos C 的值; (2)若△ABC 的面积为3154,且sin 2A +sin 2 B =1316sin 2 C ,求a ,b 及c 的值. 解 (1)因为sin C 2=10 4, 所以cos C =1-2sin 2C 2=-1 4. (2)因为sin 2 A +sin 2 B =1316sin 2 C ,由正弦定理得 a 2+ b 2=13 16c 2,① 由余弦定理得a 2 +b 2 =c 2 +2ab cos C ,将cos C =-14代入,得ab =38c 2 , ② 由S △ABC =3154及sin C =1-cos 2C =15 4,得ab =6,③ 由①②③得?????a =2,b =3,c =4,或???? ?a =3,b =2,c =4.

经检验,满足题意. 所以a =2,b =3,c =4或a =3,b =2,c =4. 2.数列(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等.) (本小题满分12分)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满 足a n =2S 2n 2S n -1 (n ≥2). (1)求证:数列???? ?? 1S n 是等差数列; (2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <3 2. 证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1 , S n -1-S n =2S n S n -1,1S n -1 S n -1=2, 从而???? ?? 1S n 构成以1为首项,2为公差的等差数列. (2)由(1)可知,1S n =1 S 1 +(n -1)×2=2n -1, ∴S n =1 2n -1 , ∴当n ≥2时,1n S n =1n (2n -1)<1 n (2n -2) =12·1n (n -1)=12? ????1n -1-1n 从而S 1+12S 2+13S 3+…+1n S n

高三数学选择题专题训练(17套)含答案

专题训练(一) (每个专题时间:35分钟,满分:60分) 1 .函数y = 的定义域是( ) A .[1,)+∞ B .2 3(,)+∞ C .2 3[,1] D .23(,1] 2.函数221 ()1x f x x -=+, 则(2)1()2 f f = ( ) A .1 B .-1 C .35 D .3 5- 3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( ) A .2 B C .1 D 4.不等式2 21 x x + >+的解集是 ( ) A .(1,0)(1,)-+∞U B .(,1)(0,1)-∞-U C .(1,0)(0,1)-U D .(,1)(1,)-∞-+∞U 5.sin163 sin 223sin 253sin313+=o o o o ( ) A .12- B .12 C . D 6.若向量r r a 与b 的夹角为60o ,||4,(2).(3)72b a b a b =+-=-r r r r r ,则向量a r 的模为( ) A .2 B .4 C .6 D .12 7.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( ) ① ////m m αββα? ???? ② //////m n n m ββ? ??? ③ ,m m n n αβ?? ???? 异面 ④ //m m αββα⊥? ?⊥?? 其中假命题有:( ) A .0个 B .1个 C .2个 D .3个 9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .4008 10.已知双曲线22221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此 双曲线的离心率e 的最大值为 ( ) A .43 B .53 C .2 D .73 11.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮 使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( ) A .2140 B .1740 C .310 D .7120 12. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形 孔,则这个有孔正方体的表面积(含孔内各面)是

高考数学七大必考专题(最新)

高考数学七大必考专题 专题1:函数与不等式,以函数为主线,不等式和函数综合题型是考点 函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。 一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。 不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。 专题2:数列 以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。 专题3:三角函数,平面向量,解三角形 三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。 专题4:立体几何 立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。 另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。 专题5:解析几何

2020高考数学专题训练4

1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2} 2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( ) A .2π B .π C .π2 D .π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( ) A .140种 B .120种 C .35种 D .34种 4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) A .33π100cm B . 33π208cm C . 33π500cm D . 33 π3416cm 5.若双曲线1822 2=-b y x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( ) A .2 B .22 C . 4 D .24 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) A .0.6小时 B .0.9小时 C .1.0小时 D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .48 8.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( ) A .a =2,b=2 B .a = 2 ,b=2 C .a =2,b=1 D .a = 2 ,b= 2 9.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( ) A .5216 B .25216 C .31216 D .91216 10.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-19 11.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于 A 点,它的反函数y=f -1(x)的图象与y 轴交于 B 点,并且这两个函数的图象交于P 点. 已知 四边形OAPB 的面积是3,则k 等于 ( ) A .3 B .3 2 C .4 3 D .65 12.设函数)(1)(R x x x x f ∈+-=,区间M=[a ,b](a

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,… (1)写出c1,c2,c3,c4;

(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1. 10.(2011?安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.

相关主题
文本预览
相关文档 最新文档